prostaglandin-d2 and Kidney-Diseases

prostaglandin-d2 has been researched along with Kidney-Diseases* in 10 studies

Reviews

2 review(s) available for prostaglandin-d2 and Kidney-Diseases

ArticleYear
[Prostaglandin D2].
    Nihon rinsho. Japanese journal of clinical medicine, 2005, Volume: 63 Suppl 8

    Topics: Biomarkers; Cardiovascular Diseases; Diabetes Mellitus; Enzyme-Linked Immunosorbent Assay; Humans; Kidney Diseases; Mass Spectrometry; Prognosis; Prostaglandin D2; Radioimmunoassay; Reference Values; Specimen Handling

2005
[PGD(2)/L-PGDS system in hypertension and renal injury].
    Nihon yakurigaku zasshi. Folia pharmacologica Japonica, 2004, Volume: 123, Issue:1

    Prostaglandin D(2) (PGD(2)) and its metabolites bind to the intracellular PPARs to regulate vasoactive substances involved in vascular remodeling through regulation of mRNAs transcription as well as through receptor-mediated mechanisms. PGD(2) decreases inducible NO, PAI-1, endothelin, and VCAM expression through inhibition to NF kappa B, STAT, or AP-1 transcription factors, which are regulated by cytokines/immune system. Moreover, transfer of L-PGDS (PGD(2) synthase) into the intracellular space of EC or SMC increases intracellular PGD(2), thereby decreasing these substances. PGD(2) attenuates in vivo organ injury mediated by cytokines and the immune system. The pretreatment with PGD(2) attenuates the liver damage and hemodynamic collapse following LPS. Dahl salt-sensitive rats, with decreased PGD(2) in the outer medulla of the kidney, are prone to hypertensive kidney injury. Serum L-PGDS level is increased in renal dysfunction through a decrease in glomerular filtration. L-PGDS in urine may be derived from a failure of tubular reabsorption or from in situ synthesis. Urinary L-PGDS excretion markedly increases in the early stage of kidney injury, and urinary L-PGDS is a useful predictor of the forthcoming renal injury. Indeed, urinary L-PGDS precedes clinically overt proteinuria or other parameters indicating renal dysfunction in hypertension, primary renal diseases, and diabetes in humans. PGD(2)/L-PGDS system is a Cinderella of vascular biology.

    Topics: Animals; Diabetes Mellitus; Humans; Hypertension; Intramolecular Oxidoreductases; Kidney Diseases; Lipocalins; Prostaglandin D2; Rats

2004

Other Studies

8 other study(ies) available for prostaglandin-d2 and Kidney-Diseases

ArticleYear
Renal tubular epithelium-targeted peroxisome proliferator-activated receptor-γ maintains the epithelial phenotype and antagonizes renal fibrogenesis.
    Oncotarget, 2016, Oct-04, Volume: 7, Issue:40

    Accumulating evidence suggests that loss of the renal tubular epithelial phenotype plays an important role in the pathogenesis of renal tubulointerstitial fibrosis. Systemic activation of peroxisome proliferator-activated receptor γ (PPAR-γ) has been shown to be protective against renal fibrosis, although the mechanisms are poorly understood. The present study aimed to define the role of renal tubular epithelium-targeted PPAR-γ in protection of the epithelial phenotype and the antagonism of renal fibrosis and to define the underlying mechanisms. In response to TGF-β1 challenge, PPAR-γ expression and activity in the renal proximal tubule epithelial cells (RPTECs) were significantly reduced, and the reduction was accompanied by decreased E-cadherin and elevated α-SMA, indicating a loss of the epithelial phenotype. Oxidative stress induced by TGF-β1 was shown to be attributed to the alteration of the epithelial phenotype and PPAR-γ inhibition. Activation of PPAR-γ by its agonists of rosiglitazone and 15d-PGJ2 or genetic overexpression of PPAR-γ prevented the loss of the epithelial phenotype induced by TGF-β1 in line with the inhibition of oxidative stress. To explore the role of PPAR-γ in renal tubular epithelial in antagonizing fibrogenesis, PPAR-γ was specifically deleted from RPTECs in mice. Following unilateral ureteral obstruction, the fibrosis was markedly deteriorated in mice with PPAR-γ invalidation in RPTECs. Treatment with rosiglitazone attenuated tubulointerstitial fibrosis and epithelial phenotype transition in WT but not proximal tubule PPAR-γ KO mice. Taken together, these findings identified an important role of renal tubular epithelium-targeted PPAR-γ in maintaining the normal epithelial phenotype and opposing fibrogenesis, possibly via antagonizing oxidative stress.

    Topics: Animals; Cells, Cultured; Fibrosis; Humans; Kidney; Kidney Diseases; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidative Stress; Phenotype; PPAR gamma; Prostaglandin D2; Rosiglitazone; Signal Transduction; Thiazolidinediones; Transforming Growth Factor beta1; Urothelium

2016
The role of peroxisome-proliferator-activating receptor gamma agonists: rosiglitazone and 15-deoxy-delta12,14-prostaglandin J2 in chronic experimental cyclosporine A-induced nephrotoxicity.
    Journal of physiology and pharmacology : an official journal of the Polish Physiological Society, 2014, Volume: 65, Issue:6

    Cyclosporine A(CsA) is an immunosuppressor frequently used in the transplant surgery and in the treatment of autoimmune diseases. The therapeutic benefits of CsA are often limited by it's main side effect-nephrotoxicity. Mechanisms of chronic CsA- induced renal damage include: activation of renin-angiotensin-aldosterone system, upregulation of transforming growth factor beta (TGF-β), oxidative stress. This study was undertaken to investigate the protective effect of the peroxisome-proliferator-activated receptors gamma (PPARs-γ) agonists: rosiglitazone and 15-deoxy-Δ12,14-prostaglandin J2 (PGDJ2), against CsA-induced kidney injury in male Wistar rats. CsA was administered subcutaneously at a dose of 15 mg/kg/day for 28 days. Both PPAR-γ agonists were given for 28 days 0.5 hour before the administration of CsA. Rosiglitazone was administered orally at a dose of 8 mg/kg/day and PGDJ2 was given intraperitoneally at a dose of 30 μg/kg/day. CsA induced renal failure was evidenced by increased serum levels of urea, uric acid and creatinine. Serum concentrations of GSH and GSSG, lipid peroxidation products as well as NAD+/NADH, NADP+/NADPH and ADP/ATP ratios showed, that CsA induced oxidative stress and evoked an imbalanced red-ox state in the kidney. Light and electron microscope studies showed degenerative changes within renal tubules with damage to their mitochondria, interstitial fibrosis and arteriolopathy. Immunohistochemical expression of profibrotic TGF-β was assessed. The biochemical and morphological changes induced by CsA were limited by administration of both rosiglitazone and PGDJ2. Ultrastructural examination of renal tubular epithelial cells showed marked improvement within mitochondria. Our results indicate that both PPAR-γ agonists used in the experiment may play an important role in protecting against CsA-induced damage in the kidney.

    Topics: Animals; Creatinine; Cyclosporine; Disease Models, Animal; Glutathione; Glutathione Disulfide; Kidney; Kidney Diseases; Male; NAD; NADP; PPAR gamma; Prostaglandin D2; Protective Agents; Rats, Wistar; Rosiglitazone; Thiazolidinediones; Urea; Uric Acid

2014
Dietary fish oil reduces glomerular injury and elevated renal hydroxyeicosatetraenoic acid levels in the JCR:LA-cp rat, a model of the metabolic syndrome.
    The British journal of nutrition, 2013, Jul-14, Volume: 110, Issue:1

    We have previously shown nutritional intervention with fish oil (n-3 PUFA) to reduce numerous complications associated with the metabolic syndrome (MetS) in the JCR:LA-corpulent (cp) rat. In the present study, we sought to explore the potential role of fish oil to prevent glomerulosclerosis in JCR:LA-cp rats via renal eicosanoid metabolism and lipidomic analysis. Male lean and MetS JCR:LA-cp rats were fed a lipid-balanced diet supplemented with fish oil (5 or 10 % of total fat). After 16 weeks of feeding, albuminuria was significantly reduced in MetS rats supplemented with 5 or 10 % fish oil ( - 53 and - 70 %, respectively, compared with the untreated MetS rats). The 5 % fish oil diet resulted in markedly lower glomerulosclerosis ( - 43 %) in MetS rats and to a lesser extent in those supplemented with 10 % fish oil. Interestingly, untreated MetS rats had higher levels of 11- and 12-hydroxyeicosatetraenoic acids (HETE) v. lean rats. Dietary fish oil reduced these levels, as well as other (5-, 9- and 15-) HETE. Whilst genotype did not alter prostanoid levels, fish oil reduced endogenous renal levels of 6-keto PGF1α (PGI2 metabolite), thromboxane B2 (TxB2), PGF2α and PGD2 by approximately 60 % in rats fed 10 % fish oil, and TxB2 ( - 50 %) and PGF2α ( - 41 %) in rats fed 5 % fish oil. In conclusion, dietary fish oil prevented glomerular damage in MetS rats and mitigated the elevation in renal HETE levels. These results suggest a potential role for dietary fish oil to improve dysfunctional renal eicosanoid metabolism associated with kidney damage during conditions of the MetS.

    Topics: 6-Ketoprostaglandin F1 alpha; Albuminuria; Animals; Dietary Fats; Dietary Supplements; Dinoprost; Disease Models, Animal; Fish Oils; Genotype; Hydroxyeicosatetraenoic Acids; Kidney Diseases; Kidney Glomerulus; Male; Metabolic Syndrome; Prostaglandin D2; Prostaglandins; Rats; Rats, Inbred Strains; Thromboxane B2

2013
PGD2-CRTH2 pathway promotes tubulointerstitial fibrosis.
    Journal of the American Society of Nephrology : JASN, 2012, Volume: 23, Issue:11

    Urinary excretion of lipocalin-type PGD(2) synthase (L-PGDS), which converts PG H(2) to PGD(2), increases in early diabetic nephropathy. In addition, L-PGDS expression in the tubular epithelium increases in adriamycin-induced nephropathy, suggesting that locally produced L-PGDS may promote the development of CKD. In this study, we found that L-PGDS-derived PGD(2) contributes to the progression of renal fibrosis via CRTH2-mediated activation of Th2 lymphocytes. In a mouse model, the tubular epithelium synthesized L-PGDS de novo after unilateral ureteral obstruction (UUO). L-PGDS-knockout mice and CRTH2-knockout mice both exhibited less renal fibrosis, reduced infiltration of Th2 lymphocytes into the cortex, and decreased production of the Th2 cytokines IL-4 and IL-13. Furthermore, oral administration of a CRTH2 antagonist, beginning 3 days after UUO, suppressed the progression of renal fibrosis. Ablation of IL-4 and IL-13 also ameliorated renal fibrosis in the UUO kidney. Taken together, these data suggest that blocking the activation of CRTH2 by PGD(2) might be a strategy to slow the progression of renal fibrosis in CKD.

    Topics: Animals; Carbazoles; Disease Models, Animal; Fibrosis; Humans; Interleukin-13; Interleukin-4; Intramolecular Oxidoreductases; Kidney Diseases; Lipocalins; Lymphocyte Activation; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Prostaglandin D2; Receptors, Immunologic; Receptors, Prostaglandin; RNA, Messenger; Signal Transduction; Sulfonamides; Th2 Cells; Ureteral Obstruction

2012
[Prostaglandin D2 and related substances].
    Nihon rinsho. Japanese journal of clinical medicine, 2010, Volume: 68 Suppl 7

    Topics: Enzyme-Linked Immunosorbent Assay; Female; Humans; Kidney Diseases; Male; Prostaglandin D2

2010
Hypoxia reduces the expression and anti-inflammatory effects of peroxisome proliferator-activated receptor-gamma in human proximal renal tubular cells.
    Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 2007, Volume: 22, Issue:4

    Peroxisome proliferator-activated receptor (PPAR)-gamma may counteract tissue fibrosis via its anti-inflammatory actions, while hypoxia, a new pro-fibrotic factor, reportedly modifies PPAR-gamma expression. However, the effects of hypoxia on the expression and anti-inflammatory actions of PPAR-gamma have yet remained to be clarified in renal tubular cells.. Confluent human proximal renal tubular epithelial cells (HPTECs) were exposed to hypoxia (1% O2) and/or TNF-alpha at 10 ng/ml for up to 48 h. The cells were incubated with PPAR-gamma agonists, 15d-PGJ2 or pioglitazone, for 30 min before stimulation. Precise amounts of PPAR-gamma and MCP-1 mRNA and protein were measured by TaqMan quantitative PCR and immunoblot or ELISA, respectively.. A cDNA array analysis identified PPAR-gamma as one of the hypoxia-affected genes in HPTECs. Hypoxia reduced mRNA levels of PPAR-gamma at 24 and 48 h and protein levels at 6 and 48 h. Knockout of hypoxia-inducible factor-1alpha (HIF-1alpha) with its dominant negative form did not block the hypoxia-induced reduction in PPAR-gamma expression. PPAR-gamma's activation with 15d-PGJ2 or pioglitazone reduced basal and TNF-alpha-stimulated MCP-1 expression at mRNA and protein levels at 24 h under normoxia. MCP-1 reduction rates at basal mRNA and protein levels were slightly but significantly lower during hypoxia than normoxia (9 vs 69% and 36 vs 42%, respectively, for 15d-PGJ2, and 0 vs 34% and 12 vs 21%, respectively, for pioglitazone). Finally, a specific inhibitor for PPAR-gamma, GW9662, weakened the MCP-1-decreasing effect of 15d-PGJ2 by about 30%, under basal conditions, while it abolished the effect of pioglitazone almost completely.. Hypoxia-induced loss of function of PPAR-gamma reduces anti-inflammatory effects of PPAR-gamma activation, possibly modulating inflammatory responses in the diseased kidney.

    Topics: Antioxidants; Cells, Cultured; Chemokine CCL2; Cyclic N-Oxides; Gene Expression Regulation; Humans; Hypoglycemic Agents; Hypoxia; Hypoxia-Inducible Factor 1, alpha Subunit; Kidney Diseases; Kidney Tubules, Proximal; Oligonucleotide Array Sequence Analysis; Pioglitazone; PPAR gamma; Prostaglandin D2; RNA, Messenger; Spin Labels; Thiazolidinediones; Tumor Necrosis Factor-alpha

2007
Rosiglitazone ameliorates cisplatin-induced renal injury in mice.
    Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 2006, Volume: 21, Issue:8

    Inflammatory mechanisms may play an important role in the pathogenesis of cisplatin nephrotoxicity. Agonists of the peroxisome proliferator-activated receptor-gamma (PPARgamma), such as rosiglitazone, have been recently demonstrated to regulate inflammation by modulating the production of inflammatory mediators and adhesion molecules. The purpose of this study was to examine the protective effects of rosiglitazone on cisplatin nephrotoxicity and to explore the mechanism of its renoprotection.. Mice were treated with cisplatin with or without pre-treatment with rosiglitazone. Renal functions, histological findings, aquaporin 2 (AQP2) and adhesion molecule expression, macrophage infiltration and tumour necrosis factor-alpha (TNF-alpha) levels were investigated. The effect of rosiglitazone on nuclear factor (NF)-kappaB activity and on viability was examined using cultured human kidney (HK-2) cells.. Rosiglitazone significantly decreased both the damage to renal function and histological pathology after cisplatin injection. Pre-treatment with rosiglitazone reduced the systemic levels of TNF-alpha and down-regulated adhesion molecule expression in addition to the infiltration of inflammatory cells after cisplatin administration. Rosiglitazone restored the decreased AQP2 expression after cisplatin treatment. Pre-treatment with rosiglitazone blocked the phosphorylation of the p65 subunit of NF-kappaB in cultured HK-2 cells. Rosiglitazone had a protective effect via a PPARgamma-dependent pathway in cisplatin-treated HK-2 cells.. These results showed that pre-treatment with rosiglitazone attenuates cisplatin-induced renal damage through the suppression of TNF-alpha overproduction and NF-kappaB activation.

    Topics: Anilides; Animals; Apoptosis; C-Peptide; Cell Line; Chromans; Cisplatin; Drug Evaluation, Preclinical; Glioma; Humans; Hypoglycemic Agents; Inflammation; Insulin; Intercellular Adhesion Molecule-1; Kidney; Kidney Diseases; Kidney Function Tests; Kidney Tubules, Proximal; Macrophages; Male; Mice; Mice, Inbred C57BL; Monocytes; PPAR gamma; Prostaglandin D2; Protein Transport; Rosiglitazone; Thiazolidinediones; Transcription Factor RelA; Troglitazone; Tumor Necrosis Factor-alpha

2006
The cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J2 ameliorates ischemic acute renal failure.
    Cardiovascular research, 2004, Feb-15, Volume: 61, Issue:3

    Here we investigate the effects of the endogenous prostaglandin D2 metabolite 15-deoxy-Delta(12,14)-prostaglandin J2, on the renal dysfunction and injury caused by ischemia/reperfusion of the kidney.. Male Wistar rats, subjected to bilateral renal ischemia for 45 min followed by reperfusion for up to 48 h, were administered 15-deoxy-Delta(12,14)-prostaglandin J2 (1 mg/kg, intravenously) 5 min prior to and again after 3 or 12 h reperfusion.. 15-deoxy-Delta(12,14)-prostaglandin J2 significantly reduced (i) renal and tubular dysfunction (serum urea and creatinine levels, creatinine clearance, fractional excretion of Na+ (FENA)), (ii) tubular and reperfusion-injury (urinary N-acetyl-beta-D-glucosaminidase, aspartate aminotransferase (ASP) and gamma-glutamyltransferase (gamma-GT)) and (iii) histological evidence of renal injury. 15-deoxy-Delta(12,14)-prostaglandin J2 also improved renal function (plasma creatinine levels) and reduced the histological signs of renal injury (after 48 h reperfusion). Administration of 15-deoxy-Delta(12,14)-prostaglandin J2 markedly reduced the expression of inducible nitric oxide synthase (iNOS) and intercellular adhesion molecule-1 during reperfusion (determined using immunohistochemistry). Immunohistochemical analysis of p65 translocation and Western blot analysis of IkappaB-alpha degradation revealed that 15-deoxy-Delta(12,14)-prostaglandin J2 inhibited the activation of nuclear factor (NF)-kappaB in renal cells. Subsequently, 15d-PGJ2 was able to significantly reduce nitric oxide production during renal ischemia/reperfusion and by primary cultures of rat proximal tubular (PT) cells incubated with interferon-gamma and bacterial lipopolysaccharide (LPS) in combination.. We demonstrate here, for the first time, that 15-deoxy-Delta(12,14)-prostaglandin J2 significantly reduces renal ischemia/reperfusion-injury via reduction of pro-inflammatory gene expression during reperfusion subsequent to the inhibition of the activation of NF-kappaB.

    Topics: Animals; Calcium-Binding Proteins; Cells, Cultured; I-kappa B Proteins; Intercellular Adhesion Molecule-1; Interferon-gamma; Ischemia; Kidney; Kidney Diseases; Kidney Tubules; Lipopolysaccharides; Male; Membrane Glycoproteins; Models, Animal; Nerve Tissue Proteins; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Prostaglandin D2; Rats; Rats, Wistar; Reperfusion Injury; Synaptotagmin I; Synaptotagmins; Time Factors

2004