prostaglandin-d2 and Heart-Failure

prostaglandin-d2 has been researched along with Heart-Failure* in 2 studies

Other Studies

2 other study(ies) available for prostaglandin-d2 and Heart-Failure

ArticleYear
POTENTIAL CARDIOPROTECTIVE EFFECT OF GENIPIN VIA CYCLOOXIDASE 2 SUPPRESSION AND P53 SIGNAL PATHWAY ATTENUATION IN INDUCED MYOCARDIAL INFARCTION IN RATS.
    Shock (Augusta, Ga.), 2022, 11-01, Volume: 58, Issue:5

    Background and aims: Genipin, an iridoid derived from geniposide by β-glucosidase hydrolysis, has shown potential benefit in the treatment of heart function insufficiency despite its unclear therapeutic mechanism. This study aimed to investigate the primary cardioprotective mechanism of genipin. We hypothesized that genipin demonstrated the antiapoptosis and anti-inflammation for cardiac protection by inhibiting the cyclooxidase 2 (COX2)-prostaglandin D2 (PGD2) and murine double minute 2 (MDM2)-p53 pathways. Methods: The normal Sprague-Dawley rats were made into myocardial infarction models by conventional methods. Animals were treated with genipin for 5 weeks after myocardial infarction (MI). Morphometric and hemodynamic measurements were performed 5 weeks post-MI. Biological and molecular experiments were performed after the termination. Results: Both morphometry and hemodynamics in systole and diastole were significantly impaired in the model group but restored close to basal level after treatment with genipin. Genipin also restored the post-MI upregulated expressions of cytochrome c, p53, COX2, and PGD2 and downregulated expression of MDM2 to the approximate baseline. Genipin inhibited apoptotic and inflammatory pathways to prevent post-MI structure-function remodeling. Conclusions: This study showed the cardioprotective mechanism of genipin and implied its potential clinical application for the treatment of ischemic heart failure.

    Topics: Animals; Cyclooxygenase 2; Heart Failure; Iridoids; Myocardial Infarction; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Signal Transduction; Tumor Suppressor Protein p53

2022
Increased prostaglandin-D2 in male STAT3-deficient hearts shifts cardiac progenitor cells from endothelial to white adipocyte differentiation.
    PLoS biology, 2020, Volume: 18, Issue:12

    Cardiac levels of the signal transducer and activator of transcription factor-3 (STAT3) decline with age, and male but not female mice with a cardiomyocyte-specific STAT3 deficiency conditional knockout (CKO) display premature age-related heart failure associated with reduced cardiac capillary density. In the present study, isolated male and female CKO-cardiomyocytes exhibit increased prostaglandin (PG)-generating cyclooxygenase-2 (COX-2) expression. The PG-degrading hydroxyprostaglandin-dehydrogenase-15 (HPGD) expression is only reduced in male cardiomyocytes, which is associated with increased prostaglandin D2 (PGD2) secretion from isolated male but not female CKO-cardiomyocytes. Reduced HPGD expression in male cardiomyocytes derive from impaired androgen receptor (AR)-signaling due to loss of its cofactor STAT3. Elevated PGD2 secretion in males is associated with increased white adipocyte accumulation in aged male but not female hearts. Adipocyte differentiation is enhanced in isolated stem cell antigen-1 (SCA-1)+ cardiac progenitor cells (CPC) from young male CKO-mice compared with the adipocyte differentiation of male wild-type (WT)-CPC and CPC isolated from female mice. Epigenetic analysis in freshly isolated male CKO-CPC display hypermethylation in pro-angiogenic genes (Fgfr2, Epas1) and hypomethylation in the white adipocyte differentiation gene Zfp423 associated with up-regulated ZFP423 expression and a shift from endothelial to white adipocyte differentiation compared with WT-CPC. The expression of the histone-methyltransferase EZH2 is reduced in male CKO-CPC compared with male WT-CPC, whereas no differences in the EZH2 expression in female CPC were observed. Clonally expanded CPC can differentiate into endothelial cells or into adipocytes depending on the differentiation conditions. ZFP423 overexpression is sufficient to induce white adipocyte differentiation of clonal CPC. In isolated WT-CPC, PGD2 stimulation reduces the expression of EZH2, thereby up-regulating ZFP423 expression and promoting white adipocyte differentiation. The treatment of young male CKO mice with the COX inhibitor Ibuprofen or the PGD2 receptor (DP)2 receptor antagonist BAY-u 3405 in vivo increased EZH2 expression and reduced ZFP423 expression and adipocyte differentiation in CKO-CPC. Thus, cardiomyocyte STAT3 deficiency leads to age-related and sex-specific cardiac remodeling and failure in part due to sex-specific alterations in PGD2 secretion and subsequent epigenetic i

    Topics: Adipocytes, White; Animals; Cell Differentiation; Cells, Cultured; Cyclooxygenase 2; Endothelial Cells; Female; Heart Failure; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Multipotent Stem Cells; Myocytes, Cardiac; Prostaglandin D2; Signal Transduction; STAT3 Transcription Factor; Stem Cells

2020