prostaglandin-d2 and Fibrosis

prostaglandin-d2 has been researched along with Fibrosis* in 10 studies

Other Studies

10 other study(ies) available for prostaglandin-d2 and Fibrosis

ArticleYear
Deletion of Alox15 improves kidney dysfunction and inhibits fibrosis by increased PGD
    Clinical and experimental nephrology, 2021, Volume: 25, Issue:5

    Lipid-metabolizing enzymes and their metabolites affect inflammation and fibrosis, but their roles in chronic kidney disease (CKD) have not been completely understood.. To clarify their role in CKD, we measured the mRNA levels of major lipid-metabolizing enzymes in 5/6 nephrectomized (Nx) kidneys of C57BL/6 J mice. Mediator lipidomics was performed to reveal lipid profiles of CKD kidneys.. In 5/6 Nx kidneys, both mRNA and protein levels of Alox15 were higher when compared with those in sham kidneys. With respect to in situ hybridization, the mRNA level of Alox15 was higher in renal tubules of 5/6 Nx kidneys. To examine the role of Alox15 in CKD pathogenesis, we performed 5/6 Nx on Alox15. Increased PGD

    Topics: Actins; Animals; Arachidonate 12-Lipoxygenase; Arachidonate 15-Lipoxygenase; Cell Line; Collagen Type I; Collagen Type I, alpha 1 Chain; Fibrosis; Humans; Intramolecular Oxidoreductases; Kidney; Kidney Tubules, Proximal; Lipid Metabolism; Lipocalins; Male; Mice, Inbred C57BL; Nephrectomy; Prostaglandin D2; Renal Insufficiency, Chronic; RNA, Messenger

2021
Tuft Cells Inhibit Pancreatic Tumorigenesis in Mice by Producing Prostaglandin D
    Gastroenterology, 2020, Volume: 159, Issue:5

    Development of pancreatic ductal adenocarcinoma (PDA) involves acinar to ductal metaplasia and genesis of tuft cells. It has been a challenge to study these rare cells because of the lack of animal models. We investigated the role of tuft cells in pancreatic tumorigenesis.. We performed studies with LSL-Kras. Pancreata from KC mice had increased formation of tuft cells and higher levels of prostaglandin D. In mice with KRAS-induced pancreatic tumorigenesis, loss of tuft cells accelerates tumorigenesis and increases the severity of caerulein-induced pancreatic injury, via decreased production of prostaglandin D

    Topics: Animals; Carcinoma, Pancreatic Ductal; Cell Transformation, Neoplastic; Ceruletide; Disease Models, Animal; Energy Metabolism; Fibrosis; Humans; Interleukins; Intramolecular Oxidoreductases; Mice, Transgenic; Mutation; Octamer Transcription Factors; Pancreas; Pancreatic Neoplasms; Pancreatitis; Prostaglandin D2; Proto-Oncogene Proteins p21(ras); Time Factors; Transcription Factors

2020
15-Deoxy-Δ-12, 14-prostaglandin J2 acts cooperatively with prednisolone to reduce TGF-β-induced pro-fibrotic pathways in human osteoarthritis fibroblasts.
    Biochemical pharmacology, 2019, Volume: 165

    Synovial fibrosis is a pathological process that is observed in several musculoskeletal disorders and characterized by the excessive deposition of extracellular matrix, as well as cell migration and proliferation. Despite the fact that glucocorticoids are widely employed in the treatment of rheumatic pathologies such as osteoarthritis (OA) and rheumatoid arthritis, the mechanisms by which glucocorticoids act in the joint and their impacts on pro-fibrotic pathways are still unclear.. Human OA synovial fibroblasts were obtained from knee and hip joints. Cells were treated with prednisolone (1 mM) or transforming growth factor-beta 1 (TGF-β1) (10 ng/ml) for 1 and 7 days for quantification of RNA and protein expression (by real-time quantitative reverse transcription-PCR and western blot, respectively), 72 h for immunocytochemistry analysis, and 48 h for proliferation (by BrdU assay) and migration (by wound assay) studies. In addition, cells were preincubated with prednisolone and/or the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist 15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) for 6 h before adding TGF-β1. pSmad1/5, pSmad2 and β-catenin levels were analyzed by Western blot. The activin receptor-like kinase-5 (ALK-5) inhibitor (SB-431542) was employed for the mechanistic assays.. Prednisolone showed a predominant anti-fibrotic impact on fibroblast-like synoviocytes as it attenuated the spontaneous and TGF-β-induced gene expression of pro-fibrotic markers. Prednisolone also reduced α-sma protein and type III collagen levels, as well as cell proliferation and migration after TGF-β stimulation. However, prednisolone did not downregulate the gene expression of all the pro-fibrotic markers tested and did not restore the reduced PPAR-γ levels after TGF-β stimulation. Interestingly, anti-fibrotic actions of the glucocorticoid were reinforced in the presence of the PPAR-γ agonist 15d-PGJ2. Combined pretreatment modulated Smad2/3 levels and, similar to the ALK-5 inhibitor, blocked β-catenin accumulation elicited by TGF-β.. Prednisolone, along with 15d-PGJ2, modulates pro-fibrotic pathways activated by TGF-β in synovial fibroblasts at least partially through the inhibition of ALK5/Smad2 signaling and subsequent β-catenin accumulation. These findings shed light on the potential therapeutic effects of glucocorticoids treatment combined with a PPAR-γ agonist against synovial fibrosis, although future studies are warranted to further evaluate this concern.

    Topics: Adult; Aged; beta Catenin; Cells, Cultured; Female; Fibroblasts; Fibrosis; Humans; Male; Middle Aged; Osteoarthritis; PPAR gamma; Prednisolone; Prostaglandin D2; Signal Transduction; Smad Proteins; Transforming Growth Factor beta

2019
Antifibrotic Actions of Peroxisome Proliferator-Activated Receptor γ Ligands in Corneal Fibroblasts Are Mediated by β-Catenin-Regulated Pathways.
    The American journal of pathology, 2017, Volume: 187, Issue:8

    Wound healing after corneal injury typically involves fibrosis, with transforming growth factor β1 (TGF-β1) as one of its strongest mediators. A class of small molecules-peroxisome proliferator-activated receptor γ (PPARγ) ligands-exert potent antifibrotic effects in the cornea by blocking phosphorylation of p38 mitogen-activated protein kinase (MAPK). However, why this blocks fibrosis remains unknown. Herein, we show that PPARγ ligands (rosiglitazone, troglitazone, and 15-deoxy-Δ12,14-prostaglandin J2) decrease levels of β-catenin. We also show that β-catenin siRNA and the Wingless/integrated (Wnt) inhibitor pyrvinium block the ability of corneal fibroblasts to up-regulate synthesis of α-smooth muscle actin (α-SMA), collagen 1 (COL1), and fibronectin (FN) in response to TGF-β1. Activation of TGF-β receptors and p38 MAPK increased glycogen synthase kinase 3β (GSK3β) phosphorylation, whereas a chemical inhibitor of p38 MAPK (SB203580) reduced the phosphorylation of GSK3β, decreasing active β-catenin levels in both cytoplasmic and nuclear fractions. Finally, lithium chloride, a GSK3 inhibitor, also attenuated the TGF-β1-induced increase in α-SMA, COL1, and FN expression. All in all, our results suggest that TGF-β1 stimulation increases active β-catenin concentration in cultured corneal fibroblasts through p38 MAPK regulation of canonical Wnt/β-catenin signaling, increasing α-SMA, COL1, and FN synthesis. Thus, PPARγ ligands, by blocking TGF-β1-induced p38 MAPK phosphorylation, prevent increases in both total and active β-catenin through p38 MAPK-GSK3β signaling.

    Topics: Actins; Animals; beta Catenin; Cats; Chromans; Collagen Type I; Cornea; Fibroblasts; Fibronectins; Fibrosis; Glycogen Synthase Kinase 3 beta; Lithium Chloride; p38 Mitogen-Activated Protein Kinases; Phosphorylation; PPAR gamma; Prostaglandin D2; Pyrvinium Compounds; Receptors, Transforming Growth Factor beta; Rosiglitazone; Signal Transduction; Thiazolidinediones; Transforming Growth Factor beta1; Troglitazone

2017
Renal tubular epithelium-targeted peroxisome proliferator-activated receptor-γ maintains the epithelial phenotype and antagonizes renal fibrogenesis.
    Oncotarget, 2016, Oct-04, Volume: 7, Issue:40

    Accumulating evidence suggests that loss of the renal tubular epithelial phenotype plays an important role in the pathogenesis of renal tubulointerstitial fibrosis. Systemic activation of peroxisome proliferator-activated receptor γ (PPAR-γ) has been shown to be protective against renal fibrosis, although the mechanisms are poorly understood. The present study aimed to define the role of renal tubular epithelium-targeted PPAR-γ in protection of the epithelial phenotype and the antagonism of renal fibrosis and to define the underlying mechanisms. In response to TGF-β1 challenge, PPAR-γ expression and activity in the renal proximal tubule epithelial cells (RPTECs) were significantly reduced, and the reduction was accompanied by decreased E-cadherin and elevated α-SMA, indicating a loss of the epithelial phenotype. Oxidative stress induced by TGF-β1 was shown to be attributed to the alteration of the epithelial phenotype and PPAR-γ inhibition. Activation of PPAR-γ by its agonists of rosiglitazone and 15d-PGJ2 or genetic overexpression of PPAR-γ prevented the loss of the epithelial phenotype induced by TGF-β1 in line with the inhibition of oxidative stress. To explore the role of PPAR-γ in renal tubular epithelial in antagonizing fibrogenesis, PPAR-γ was specifically deleted from RPTECs in mice. Following unilateral ureteral obstruction, the fibrosis was markedly deteriorated in mice with PPAR-γ invalidation in RPTECs. Treatment with rosiglitazone attenuated tubulointerstitial fibrosis and epithelial phenotype transition in WT but not proximal tubule PPAR-γ KO mice. Taken together, these findings identified an important role of renal tubular epithelium-targeted PPAR-γ in maintaining the normal epithelial phenotype and opposing fibrogenesis, possibly via antagonizing oxidative stress.

    Topics: Animals; Cells, Cultured; Fibrosis; Humans; Kidney; Kidney Diseases; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidative Stress; Phenotype; PPAR gamma; Prostaglandin D2; Rosiglitazone; Signal Transduction; Thiazolidinediones; Transforming Growth Factor beta1; Urothelium

2016
Inhibitory effects of PPARγ ligands on TGF-β1-induced corneal myofibroblast transformation.
    The American journal of pathology, 2014, Volume: 184, Issue:5

    Corneal scarring, whether caused by trauma, laser refractive surgery, or infection, remains a significant problem for humans. Certain ligands for peroxisome proliferator-activated receptor gamma (PPARγ) have shown promise as antiscarring agents in a variety of body tissues. In the cornea, their relative effectiveness and mechanisms of action are still poorly understood. Here, we contrasted the antifibrotic effects of three different PPARγ ligands (15-deoxy-Δ12,14-prostaglandin J2, troglitazone, and rosiglitazone) in cat corneal fibroblasts. Western blot analyses revealed that all three compounds reduced transforming growth factor (TGF)-β1-driven myofibroblast differentiation and up-regulation of α-smooth muscle actin, type I collagen, and fibronectin expression. Because these effects were independent of PPARγ, we ascertained whether they occurred by altering phosphorylation of Smads 2/3, p38 mitogen-activated protein kinase, stress-activated protein kinase, protein kinase B, extracellular signal-regulated kinase, and/or myosin light chain 2. Only p38 mitogen-activated protein kinase phosphorylation was significantly inhibited by all three PPARγ ligands. Finally, we tested the antifibrotic potential of troglitazone in a cat model of photorefractive keratectomy-induced corneal injury. Topical application of troglitazone significantly reduced α-smooth muscle actin expression and haze in the stromal ablation zone. Thus, the PPARγ ligands tested here showed great promise as antifibrotics, both in vitro and in vivo. Our results also provided new evidence for the signaling pathways that may underlie these antifibrotic actions in corneal fibroblasts.

    Topics: Actins; Animals; Cats; Cell Line, Transformed; Cell Nucleus; Chromans; Collagen Type I; Cornea; Fibronectins; Fibrosis; Humans; Ligands; Myofibroblasts; p38 Mitogen-Activated Protein Kinases; Phosphorylation; PPAR gamma; Prostaglandin D2; Protein Kinase Inhibitors; Protein Transport; Rosiglitazone; Signal Transduction; Smad Proteins; Thiazolidinediones; Transforming Growth Factor beta1; Troglitazone; Wound Healing

2014
PGD2-CRTH2 pathway promotes tubulointerstitial fibrosis.
    Journal of the American Society of Nephrology : JASN, 2012, Volume: 23, Issue:11

    Urinary excretion of lipocalin-type PGD(2) synthase (L-PGDS), which converts PG H(2) to PGD(2), increases in early diabetic nephropathy. In addition, L-PGDS expression in the tubular epithelium increases in adriamycin-induced nephropathy, suggesting that locally produced L-PGDS may promote the development of CKD. In this study, we found that L-PGDS-derived PGD(2) contributes to the progression of renal fibrosis via CRTH2-mediated activation of Th2 lymphocytes. In a mouse model, the tubular epithelium synthesized L-PGDS de novo after unilateral ureteral obstruction (UUO). L-PGDS-knockout mice and CRTH2-knockout mice both exhibited less renal fibrosis, reduced infiltration of Th2 lymphocytes into the cortex, and decreased production of the Th2 cytokines IL-4 and IL-13. Furthermore, oral administration of a CRTH2 antagonist, beginning 3 days after UUO, suppressed the progression of renal fibrosis. Ablation of IL-4 and IL-13 also ameliorated renal fibrosis in the UUO kidney. Taken together, these data suggest that blocking the activation of CRTH2 by PGD(2) might be a strategy to slow the progression of renal fibrosis in CKD.

    Topics: Animals; Carbazoles; Disease Models, Animal; Fibrosis; Humans; Interleukin-13; Interleukin-4; Intramolecular Oxidoreductases; Kidney Diseases; Lipocalins; Lymphocyte Activation; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Prostaglandin D2; Receptors, Immunologic; Receptors, Prostaglandin; RNA, Messenger; Signal Transduction; Sulfonamides; Th2 Cells; Ureteral Obstruction

2012
15-deoxy-Delta(12,14)-prostaglandin J(2) inhibits fibrogenic response in human hepatoma cells.
    Toxicology letters, 2009, May-22, Volume: 187, Issue:1

    Liver fibrosis can be induced by environmental chemicals or toxicants, and finally stimulates fibrogenic cytokines expression, such as transforming growth factor-beta (TGF-beta) and its downstream mediator connective tissue growth factor (CTGF). 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a metabolite of arachidonic acid, can act as a peroxisome proliferator-activated receptor gamma (PPARgamma) ligand, and function as either anti-inflammatory or inflammatory agents in different cell types. In this study, CTGF was detected in three human hepatoma cell lines, Hep3B, HepG2, and Huh-7, and it was up-regulated by TGF-beta. 15d-PGJ(2) significantly inhibited TGF-beta-induced CTGF protein and mRNA expressions, and promoter activity in hepatoma cells. 15d-PGJ(2) suppressed TGF-beta-induced Smad2 phosphorylation, however enhancing the phosphorylation of ERK, c-Jun N-terminal kinase (JNK), and p38 in TGF-beta-treated Hep3B cells. Other PPAR ligands like the PPARgamma agonist, troglitazone; the PPARalpha agonist, Wy-14643, and bezafibrate were also able to inhibit TGF-beta-induced CTGF. The results suggest that 15d-PGJ(2) inhibits TGF-beta-induced CTGF expression by inhibiting the phosphorylation of Smad2, which is independent of PPAR, and 15d-PGJ(2) might also act through a PPAR-dependent mechanism in human hepatoma cells. 15d-PGJ(2) might have a beneficent effect on prevention of liver fibrosis induced by environmental toxicants.

    Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Survival; Connective Tissue Growth Factor; Fibrosis; Gene Expression; Hepatic Stellate Cells; Hepatocytes; Humans; Immunologic Factors; Liver Cirrhosis; Phosphorylation; Prostaglandin D2; RNA, Messenger; Smad2 Protein; Transforming Growth Factor beta; Up-Regulation

2009
Agonists at PPAR-gamma suppress angiotensin II-induced production of plasminogen activator inhibitor-1 and extracellular matrix in rat cardiac fibroblasts.
    British journal of pharmacology, 2008, Volume: 153, Issue:7

    Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit cardiac fibrosis. However, the underlying mechanisms are poorly understood. We investigated the regulation by PPAR-gamma ligands of angiotensin (Ang) II-induced plasminogen activator inhibitor (PAI)-1, extracellular matrix (ECM) production and cell growth in cardiac fibroblasts.. The effects of PPAR-gamma ligands on Ang II-induced PAI-1, ECM expression and cell growth were assessed in primary-cultured rat cardiac fibroblasts; cardiac PAI-1 and ECM production was examined in Ang II-infused rats.. In growth-arrested cardiac fibroblasts, PPAR-gamma ligands rosiglitazone and 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) dose-dependently attenuated Ang II-induced cell proliferation and expression of PAI-1, collagen type-I, collagen type-III and fibronectin. An accompanying increase in PPAR-gamma expression and activation was also observed. These suppressive effects were attenuated by the PPAR-gamma antagonists GW9662 and bisphenol A diglycidyl ether (BADGE). Moreover, rosiglitazone and 15d-PGJ2 inhibited in part the expression and phosphorylation of Ang II-induced transforming growth factor (TGF)-beta1, Smad2/3 and c-Jun NH(2)-terminal kinase (JNK). Ang II infusion in rats markedly increased left ventricular production of PAI-1, collagen and fibronectin, with a concurrent increase in the ratios of heart weight/body weight and left ventricle weight/body weight. Co-treatment with rosiglitazone significantly decreased these levels and upregulated PPAR-gamma expression.. Rosiglitazone and 15d-PGJ2 suppress Ang II-induced production of PAI-1 and ECM probably via interactions between PPAR-gamma and TGF-beta1/Smad2/3 and JNK signalling pathways. It is suggested that PPAR-gamma and its ligands may have potential applications in preventing cardiac fibrosis.

    Topics: Angiotensin II; Animals; Cell Proliferation; Dose-Response Relationship, Drug; Extracellular Matrix; Fibroblasts; Fibrosis; Gene Expression Regulation; Male; Myocardium; Plasminogen Activator Inhibitor 1; PPAR gamma; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Rosiglitazone; Signal Transduction; Thiazolidinediones; Transforming Growth Factor beta1

2008
Prostaglandin D2 inhibits TGF-beta1-induced epithelial-to-mesenchymal transition in MDCK cells.
    American journal of physiology. Renal physiology, 2006, Volume: 291, Issue:6

    In a separate study, we identified PGE2 as a potent inhibitor of TGF-beta1induced epithelial-mesenchymal transition (EMT) in cultured Madin-Darby canine kidney (MDCK) cells (Zhang A, Wang M-H, Dong Z, and Yang T. Am J Physiol Renal Physiol 291: F1323-F1331, 2006). This finding prompted us to examine the roles of other prostanoids: PGD2, PGF(2alpha), PGI2, and thromboxane A2 (TXA2). Treatment with 10 ng/ml TGF-beta1 for 3 days induced EMT as reflected by conversion to the spindle-like morphology, loss of E-cadherin, and activation of alpha-smooth muscle actin (alpha-SMA). Treatment with PGD2 remarkably preserved the epithelial-like morphology, restored the expression of E-cadherin, and abolished the activation of alpha-SMA. In contrast, PGF(2alpha), carbocyclic thromboxane A2, PGI2 and its stable analog beraprost were without an effect. MDCK cells expressed DP1 and DP2 receptors; however, the effect of PGD2 was neither prevented by DP1 antagonist BW-A868C or DP2 antagonist BAY-u3405 nor was mimicked by DP1 agonist BW-245C. cAMP-elevating agents forskolin and 8-Br-cAMP blocked EMT. However, cAMP blockers H89 and Rp-cAMP failed to block the effect of PGD2. PGD2 did not seem to act via its metabolites as 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) levels in the medium following incubation with 3 microM PGD2 were well below the values predicted from the cross activity of the assay. Exposure to TGF-beta1 induced a threefold increase in reactive oxygen species production that was completely abolished by PGD2. We conclude that 1) PGD2, but not PGI2, PGF(2alpha), and TXA2 inhibit EMT, 2) PGD2 inhibits EMT independently of DP1 and DP2 receptors, and 3) PGD2 exhibits antioxidant property which may, in part, account for the antifibrotic action of this PG.

    Topics: Actins; Animals; Cadherins; Cell Line; Cyclic AMP; Dinoprost; Dogs; Drug Interactions; Epithelial Cells; Epoprostenol; Fibrosis; Kidney Tubules; Mesoderm; Prostaglandin D2; Reactive Oxygen Species; Receptors, Prostaglandin; Thromboxane A2; Transforming Growth Factor beta1

2006