prostaglandin-d2 has been researched along with Burkitt-Lymphoma* in 3 studies
3 other study(ies) available for prostaglandin-d2 and Burkitt-Lymphoma
Article | Year |
---|---|
15-Deoxy-delta 12,14-prostaglandin J2 induces apoptosis in human malignant B cells: an effect associated with inhibition of NF-kappa B activity and down-regulation of antiapoptotic proteins.
Cyclopentenone prostaglandins are potent inhibitors of nuclear factor-kappa B (NF-kappa B), a transcription factor with a critical role in promoting inflammation and connected with multiple aspects of oncogenesis and cancer cell survival. In the present report, we investigated the role of NF-kappa B in the antineoplastic activity of the cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) in multiple myeloma (MM) and Burkitt lymphoma (BL) cells expressing constitutively active NF-kappa B. 15d-PGJ(2) was found to suppress constitutive NF-kappa B activity and potently induce apoptosis in both types of B-cell malignancies. 15d-PGJ(2)-induced apoptosis occurs through multiple caspase activation pathways involving caspase-8 and caspase-9, and is prevented by pretreatment with the pan-caspase inhibitor ZVAD (z-Val-Ala-Asp). NF-kappa B inhibition is accompanied by rapid down-regulation of NF-kappa B-dependent antiapoptotic gene products, including cellular inhibitor-of-apoptosis protein 1 (cIAP-1), cIAP-2, X-chromosome-linked inhibitor-of-apoptosis protein (XIAP), and FLICE-inhibitory protein (cFLIP). These effects were mimicked by the proteasome inhibitor MG-132, but not by the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist troglitazone, suggesting that 15d-PGJ(2)-induced apoptosis is independent of PPAR-gamma. Knockdown of the NF-kappa B p65-subunit by lentiviral-mediated shRNA interference also resulted in apoptosis induction in malignant B cells with constitutively active NF-kappa B. The results indicate that inhibition of NF-kappa B plays a major role in the proapoptotic activity of 15d-PGJ(2) in aggressive B-cell malignancies characterized by aberrant regulation of NF-kappa B. Topics: Apoptosis; B-Lymphocyte Subsets; bcl-X Protein; Burkitt Lymphoma; CASP8 and FADD-Like Apoptosis Regulating Protein; Caspases; Cell Line; Cell Line, Tumor; DNA-Binding Proteins; Down-Regulation; Enzyme Activation; Growth Inhibitors; Humans; Inhibitor of Apoptosis Proteins; Intracellular Signaling Peptides and Proteins; K562 Cells; Multiple Myeloma; NF-kappa B; Prostaglandin D2; Proteins; Proto-Oncogene Proteins c-bcl-2; X-Linked Inhibitor of Apoptosis Protein | 2005 |
Peroxisome proliferator-activated receptor gamma ligands induce growth inhibition and apoptosis of human B lymphocytic leukemia.
This study examined the expression and structural intactness of peroxisome proliferator-activated receptor gamma (PPARgamma) in human acute lymphocytic leukemia (ALL) cells and determined the effect of PPARgamma ligands on growth and apoptosis of these cells. We noted that all lymphocytic leukemia cell lines expressed PPARgamma and no PPARgamma mutations were found in these cell lines as indicated by SSCP analysis. Effect of the PPARgamma ligands on the proliferation, differentiation and apoptosis of B type ALL cells was further examined. Treatment of these cells with the PPARgamma ligands Pioglitazone (PGZ) and 15-deoxy-delta (12,14)-prostaglandin J2 (15d-PGJ2) resulted in growth inhibition in a dose-dependent manner which was associated with a G1 to S cell cycle arrest. However, this effect appeared to be PPARgamma-independent since several PPARgamma antagonists could not reverse this effect. No differentiation was induced by this treatment. Four out of five cell lines underwent apoptosis after culture with the PPARgamma ligands. This effect was partially caspase-dependent because a pan-caspase inhibitor partially reversed this effect. In conclusion, our results suggest that PPARgamma ligands may offer a new therapeutic approach to aid in the treatment of ALL. Topics: Adolescent; Apoptosis; Blotting, Western; Burkitt Lymphoma; Cell Cycle; Cell Division; Cell Line, Tumor; Child; Child, Preschool; Dose-Response Relationship, Drug; Enzyme-Linked Immunosorbent Assay; Female; Humans; In Situ Nick-End Labeling; Ligands; Male; Middle Aged; Pioglitazone; Polymorphism, Single-Stranded Conformational; Prostaglandin D2; Receptors, Cytoplasmic and Nuclear; Reverse Transcriptase Polymerase Chain Reaction; Thiazolidinediones; Transcription Factors | 2004 |
Molecular characterization of human and rat organic anion transporter OATP-D.
We have isolated and characterized a novel human and rat organic anion transporter subtype, OATP-D. The isolated cDNA from human brain encodes a polypeptide of 710 amino acids (Mr 76,534) with 12 predicted transmembrane domains. The rat clone encodes 710 amino acids (Mr 76,821) with 97.6% amino acid sequence homology with human OATP-D. Human and rat OATP-D have moderate amino acid sequence homology with LST-l/rlst-1, the rat oatp family, the prostaglandin transporter, and moatl/MOAT1/KIAA0880/OATP-B. Phylogenetic tree analysis revealed that OATP-D is branched in a different position from all known organic anion transporters. OATP-D transports prostaglandin E1 (Km 48.5 nM), prostaglandin E2 (Km 55.5 nM), and prostaglandin F2,, suggesting that, functionally, OATP-D encodes a protein that has similar characteristics to those of the prostaglandin transporter. Rat OATP-D also transports prostaglandins. The expression pattern of OATP-D mRNA was abundant mainly in the heart, testis, brain, and some cancer cells. Immunohistochemical analysis further revealed that rat OATP-D is widely expressed in the vascular, renal, and reproductive system at the protein level. These results suggest that OATP-D plays an important role in translocating prostaglandins in specialized tissues and cells. Topics: Alprostadil; Amino Acid Sequence; Animals; Anions; Blotting, Northern; Brain Chemistry; Burkitt Lymphoma; Dinoprostone; DNA, Complementary; HeLa Cells; HL-60 Cells; Humans; K562 Cells; Leukemia, Lymphoid; Lung Neoplasms; Melanoma; Molecular Sequence Data; Oocytes; Organic Anion Transporters; Rats; RNA, Messenger; Xenopus laevis | 2003 |