prostaglandin-a2 and Pain

prostaglandin-a2 has been researched along with Pain* in 2 studies

Reviews

1 review(s) available for prostaglandin-a2 and Pain

ArticleYear
Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents.
    Journal of medicinal chemistry, 2010, Jul-22, Volume: 53, Issue:14

    Topics: Analgesics; Animals; Anti-Inflammatory Agents; Asthma; Humans; Ion Channel Gating; Neurons; Pain; Peripheral Nervous System Diseases; Pulmonary Disease, Chronic Obstructive; Transient Receptor Potential Channels

2010

Other Studies

1 other study(ies) available for prostaglandin-a2 and Pain

ArticleYear
Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1.
    Proceedings of the National Academy of Sciences of the United States of America, 2008, Aug-19, Volume: 105, Issue:33

    Prostaglandins (PG) are known to induce pain perception indirectly by sensitizing nociceptors. Accordingly, the analgesic action of nonsteroidal anti-inflammatory drugs (NSAIDs) results from inhibition of cyclooxygenases and blockade of PG biosynthesis. Cyclopentenone PGs, 15-d-PGJ(2), PGA(2), and PGA(1), formed by dehydration of their respective parent PGs, PGD(2), PGE(2), and PGE(1), possess a highly reactive alpha,beta-unsaturated carbonyl group that has been proposed to gate the irritant transient receptor potential A1 (TRPA1) channel. Here, by using TRPA1 wild-type (TRPA1(+/+)) or deficient (TRPA1(-/-)) mice, we show that cyclopentenone PGs produce pain by direct stimulation of nociceptors via TRPA1 activation. Cyclopentenone PGs caused a robust calcium response in dorsal root ganglion (DRG) neurons of TRPA1(+/+), but not of TRPA1(-/-) mice, and a calcium-dependent release of sensory neuropeptides from the rat dorsal spinal cord. Intraplantar injection of cyclopentenone PGs stimulated c-fos expression in spinal neurons of the dorsal horn and evoked an instantaneous, robust, and transient nociceptive response in TRPA1(+/+) but not in TRPA1(-/-) mice. The classical proalgesic PG, PGE(2), caused a slight calcium response in DRG neurons, increased c-fos expression in spinal neurons, and induced a delayed and sustained nociceptive response in both TRPA1(+/+) and TRPA1(-/-) mice. These results expand the mechanism of NSAID analgesia from blockade of indirect nociceptor sensitization by classical PGs to inhibition of direct TRPA1-dependent nociceptor activation by cyclopentenone PGs. Thus, TRPA1 antagonism may contribute to suppress pain evoked by PG metabolites without the adverse effects of inhibiting cyclooxygenases.

    Topics: Animals; Calcium; Fatty Acids; Ganglia, Spinal; Mice; Mice, Knockout; Neurons; Nociceptors; Pain; Prostaglandin-Endoperoxide Synthases; Rats; Tissue Culture Techniques; Transient Receptor Potential Channels; TRPA1 Cation Channel

2008