pridopidine has been researched along with Schizophrenia* in 2 studies
1 review(s) available for pridopidine and Schizophrenia
Article | Year |
---|---|
Schizophrenia: from dopamine to glutamate and back.
The first part of the present review describes the exciting journey of dopamine stabilizers, starting in the early eighties with the development of the partial dopamine agonist (-)-3-PPP of phenylpiperidine structure, via various compounds with aminotetraline structure with preferential autoreceptor antagonist properties, and then back again to phenylpiperidine compounds carrying substituents on the aromatic ring that transformed them from partial dopamine agonists to partial dopamine receptor antagonists, such as OSU6162. OSU6162 was brought to the clinic and has in preliminary trials showed antidyskinetic and antipsychotic efficacy. The second part of this review describes results from a hypoglutamatergia mouse model for cognitive symptoms of schizophrenia, where we have tested traditional neuroleptics, new generation antipsychotics with marked 5-HT2 vs dopamine D2 receptor blockade as well as a dopamine stabilizer belonging to the partial dopamine receptor antagonist category. Topics: Animals; Antipsychotic Agents; Aripiprazole; Disease Models, Animal; Dopamine; Dopamine Agonists; Dopamine Antagonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Mice; Piperazines; Piperidines; Quinolones; Schizophrenia | 2004 |
1 other study(ies) available for pridopidine and Schizophrenia
Article | Year |
---|---|
The dopaminergic stabiliser ACR16 counteracts the behavioural primitivization induced by the NMDA receptor antagonist MK-801 in mice: implications for cognition.
The Carlsson research group has developed a series of compounds capable of stabilising the dopamine system without inducing the deleterious hypodopaminergia that encumbers the currently used antipsychotic drugs. In the present study one of these dopaminergic stabilisers, ACR16, was tested in a mouse model for cognitive deficits of schizophrenia and autism. Since we believe that hypoglutamatergia is a key element in both schizophrenia and autism we used mice rendered hypoglutamatergic by treatment with the N-methyl-D-aspartate (NMDA) antagonist MK-801. MK-801 causes both hyperactivity and a behavioural primitivization. ACR16 attenuated the MK-801-induced hyperactivity and, in addition, caused a marked improvement of behavioural quality with a movement pattern approaching that of control animals. Since we believe that the impoverishment of the behavioural repertoire caused by MK-801 may correspond to the cognitive deficits seen in schizophrenia and autism, these results suggest that ACR16 may improve cognitive status in these disorders. Topics: Animals; Autistic Disorder; Behavior, Animal; Cognition; Dizocilpine Maleate; Dopamine Antagonists; Dopamine D2 Receptor Antagonists; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Glutamic Acid; Grooming; Haloperidol; Hyperkinesis; Male; Mice; Motor Activity; Piperidines; Schizophrenia | 2004 |