preproenkephalin and Obesity

preproenkephalin has been researched along with Obesity* in 4 studies

Reviews

1 review(s) available for preproenkephalin and Obesity

ArticleYear
Role of cholecystokinin and opioid peptides in control of food intake.
    Physiological reviews, 1986, Volume: 66, Issue:1

    Of the many factors that influence food intake, there is strong evidence that opioid and CCK peptides, which stimulate feeding and elicit satiety, respectively, are important components that may act in concert to regulate energy balance. Cholecystokinin peptides have been isolated in both the brain and gastrointestinal tract, and changes in concentration in the brain and in plasma have been shown to vary with feeding. Peripherally injected CCK has been shown to elicit satiety in many species, including humans, an effect that may be mediated in the CNS via the vagus. In several species, most notably the sheep, direct injection into the CSF potently decreases food intake. Questions remaining regarding the role of CCK peptides in eliciting satiety include the sites and mechanisms of action. It is unknown whether CCK acts directly on receptors, indirectly on some other parameter, or as a neurotransmitter. Although opioid peptides have also been localized in portions of both the periphery and brain, a specific physiological role for their presence has not yet been determined. Opioid peptides from three families--endorphins, enkephalins, and dynorphins--have been shown to stimulate feeding in various species. They have been active at several opioid receptor types in the CNS, but there is limited evidence to suggest they affect food intake when administered peripherally. In contrast, peripheral injection of opiate antagonists has effectively decreased food intake, an observation that led to the original hypothesis that opioids were involved in the hunger component in the control of food intake and that excess concentrations might be involved in the development of obesity. An increasing body of evidence supports the concept that opioid and CCK peptides may interact to control food intake, but the evidence is more suggestive than conclusive.

    Topics: Amino Acid Sequence; Animals; Behavior, Animal; beta-Endorphin; beta-Lipotropin; Brain; Ceruletide; Cholecystokinin; Digestive System Physiological Phenomena; Dynorphins; Eating; Endorphins; Enkephalins; Fasting; Food; Humans; Immunologic Techniques; Kinetics; Morphine; Nervous System; Neurons; Obesity; Peptide Fragments; Protein Precursors; Receptors, Cell Surface; Receptors, Cholecystokinin; Satiation; Sincalide; Species Specificity; Structure-Activity Relationship; Tissue Distribution

1986

Other Studies

3 other study(ies) available for preproenkephalin and Obesity

ArticleYear
The Paraventricular Hypothalamus Regulates Satiety and Prevents Obesity via Two Genetically Distinct Circuits.
    Neuron, 2019, 05-08, Volume: 102, Issue:3

    SIM1-expressing paraventricular hypothalamus (PVH) neurons are key regulators of energy balance. Within the PVH

    Topics: Agouti-Related Protein; Animals; Arcuate Nucleus of Hypothalamus; Basic Helix-Loop-Helix Transcription Factors; Energy Metabolism; Enkephalins; Feeding Behavior; Locus Coeruleus; Mice; Neurons; Obesity; Parabrachial Nucleus; Paraventricular Hypothalamic Nucleus; Protein Precursors; Receptor, Melanocortin, Type 4; Repressor Proteins; Satiety Response

2019
Obesity at conception programs the opioid system in the offspring brain.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2014, Volume: 39, Issue:4

    Maternal obesity during pregnancy increases the risk for offspring obesity, in part through effects on the developing brain. Previous research has shown that perinatal consumption of highly palatable foods by the mother can influence the development of offspring taste preferences and alter gene expression within the central nervous system (CNS) reward system. Opioids stimulate consumption of both fats and carbohydrates, and overconsumption of these energy dense foods increases the risk for obesity. What has remained unclear is whether this risk can be transmitted to the offspring before gestation or if it is wholly the gestational exposure that affects offspring brain development. Utilizing an embryo transfer experimental design, 2-cell embryos were obtained from obese or control dams, and transferred to obese or control gestational carriers. Expression of the mu-opioid receptor (MOR), preproenkephalin (PENK), and the dopamine transporter was evaluated in the hypothalamus and reward circuitry (ventral tegmental area, prefrontal cortex, and nucleus accumbens) in adult and late embryonic brains. Obesity before pregnancy altered expression levels of both MOR and PENK, with males relatively more affected than females. These data are the first to demonstrate that obesity at conception, in addition to during gestation, can program the brain reward system.

    Topics: Animals; Brain; Disease Models, Animal; DNA Methylation; Dopamine Plasma Membrane Transport Proteins; Embryo Disposition; Enkephalins; Female; Gene Expression Regulation, Developmental; Genes, sry; Green Fluorescent Proteins; Male; Maternal-Fetal Relations; Mice; Mice, Inbred C57BL; Mice, Transgenic; Obesity; Pregnancy; Prenatal Exposure Delayed Effects; Protein Precursors; Receptors, Opioid, mu

2014
ARC POMC mRNA and PVN alpha-MSH are lower in obese relative to lean zucker rats.
    Brain research, 2000, Apr-17, Volume: 862, Issue:1-2

    Effects of obesity on gene expression for opioid peptides and neuropeptide-Y (NPY) in the arcuate nucleus (ARC), and on opioid peptides and alpha-melanocyte stimulating hormone (alpha-MSH) in the paraventricular nucleus (PVN) were examined in obese Zucker rats (18 weeks old). Obese Zucker rats are insulin-resistant, diabetic and hyperleptinemic as indicated by high serum glucose, insulin and leptin levels. ARC proOpiomelanocortin (POMC) mRNA levels were significantly lower in the obese relative to lean Zucker rats and ARC proNeuropeptide Y (proNPY) mRNA levels were higher (P<0.05). There were no differences in proDynorphin and proEnkephalin mRNA levels in the ARC (0.05). Obese Zucker rats had lower alpha-MSH and dynorphin A(1-17) peptide levels in the paraventricular nucleus (PVN) (P<0.05), but did not have lower PVN beta-endorphin peptide levels (0.05). The decrease in POMC in the ARC and decrease in alpha-MSH in the PVN seen in the obese Zucker rat in the present study suggest that reduced activity of the melanocortin system in the ARC to PVN pathway may contribute to the related hyperphagia. Reduced activity of the melanocortin system in the ARC to PVN pathway may be due to a disturbance of leptin signaling coupling to POMC.

    Topics: alpha-MSH; Animals; Arcuate Nucleus of Hypothalamus; beta-Endorphin; Blood Glucose; Dynorphins; Energy Metabolism; Enkephalins; Feeding Behavior; Gene Expression; Insulin; Leptin; Male; Melanocytes; Neuropeptide Y; Obesity; Paraventricular Hypothalamic Nucleus; Pro-Opiomelanocortin; Protein Precursors; Rats; Rats, Zucker; RNA, Messenger

2000