preproenkephalin and Morphine-Dependence

preproenkephalin has been researched along with Morphine-Dependence* in 7 studies

Reviews

1 review(s) available for preproenkephalin and Morphine-Dependence

ArticleYear
Enkephalinergic neurons in the periaqueductal gray and morphine withdrawal.
    Japanese journal of pharmacology, 2000, Volume: 82, Issue:3

    The effects of opioid (e.g., morphine) withdrawal on levels of endogenous opioid peptides and their mRNA in the various brain regions have been studied. However, the role of this opioidergic mechanism in the mediation of opioid withdrawal is not fully understood. Preproenkephalin (PPE) mRNA in the caudal periaqueductal gray (cPAG), an important brain region in opioid withdrawal, is increased by both opioid antagonist (naloxone)-precipitated and spontaneous morphine withdrawal, but not by various other stresses in rats, indicating a role of endogenous enkephalins in the cPAG in morphine withdrawal. In addition, PPE mRNA levels in the cPAG increase in the course of the dissipation of morphine withdrawal, and they are returned to the control levels after disappearance of morphine withdrawal signs. Local administration of an enkephalin analog or peptidase inhibitors into the cPAG suppresses morphine withdrawal signs. These facts suggest that enkephalinergic neurons in the PAG may have a critical role in the recovery phase of morphine withdrawal. Recently, an involvement of transcription factors in morphine withdrawal has been suggested. Thus, the possible role of transcription factors in the regulation of PPE gene expression in the cPAG during morphine withdrawal is also discussed.

    Topics: Animals; Cyclic AMP Response Element-Binding Protein; Enkephalins; Humans; Morphine Dependence; Periaqueductal Gray; Protein Precursors; RNA, Messenger; Substance Withdrawal Syndrome

2000

Other Studies

6 other study(ies) available for preproenkephalin and Morphine-Dependence

ArticleYear
Forebrain PENK and PDYN gene expression levels in three inbred strains of mice and their relationship to genotype-dependent morphine reward sensitivity.
    Psychopharmacology, 2010, Volume: 208, Issue:2

    Vulnerability to drug abuse disorders is determined not only by environmental but also by genetic factors. A body of evidence suggests that endogenous opioid peptide systems may influence rewarding effects of addictive substances, and thus, their individual expression levels may contribute to drug abuse liability.. The aim of our study was to assess whether basal genotype-dependent brain expression of opioid propeptides genes can influence sensitivity to morphine reward.. Experiments were performed on inbred mouse strains C57BL/6J, DBA/2J, and SWR/J, which differ markedly in responses to morphine administration: DBA/2J and SWR/J show low and C57BL/6J high sensitivity to opioid reward. Proenkephalin (PENK) and prodynorphin (PDYN) gene expression was measured by in situ hybridization in brain regions implicated in addiction. The influence of the kappa opioid receptor antagonist nor-binaltorphimine (nor-BNI), which attenuates effects of endogenous PDYN-derived peptides, on rewarding actions of morphine was studied using the conditioned place preference (CPP) paradigm.. DBA/2J and SWR/J mice showed higher levels of PDYN and lower levels of PENK messenger RNA in the nucleus accumbens than the C57BL/6J strain. Pretreatment with nor-BNI enhanced morphine-induced CPP in the opioid-insensitive DBA/2J and SWR/J strains.. Our results demonstrate that inter-strain differences in PENK and PDYN genes expression in the nucleus accumbens parallel sensitivity of the selected mouse strains to rewarding effects of morphine. They suggest that high expression of PDYN may protect against drug abuse by limiting drug-produced reward, which may be due to dynorphin-mediated modulation of dopamine release in the nucleus accumbens.

    Topics: Animals; Behavior, Addictive; Behavior, Animal; Conditioning, Psychological; Cues; Enkephalins; Gene Expression Regulation; Genotype; In Situ Hybridization; Male; Mice; Mice, Inbred C57BL; Mice, Inbred DBA; Morphine Dependence; Naltrexone; Narcotic Antagonists; Nucleus Accumbens; Phenotype; Protein Precursors; Receptors, Opioid, kappa; Reward; RNA, Messenger; Species Specificity

2010
Induction of FosB/DeltaFosB in the brain stress system-related structures during morphine dependence and withdrawal.
    Journal of neurochemistry, 2010, Volume: 114, Issue:2

    The transcription factor DeltaFosB is induced in the nucleus accumbens (NAc) by drugs of abuse. This study was designed to evaluate the possible modifications in FosB/DeltaFosB expression in both hypothalamic and extrahypothalamic brain stress system during morphine dependence and withdrawal. Rats were made dependent on morphine and, on day 8, were injected with saline or naloxone. Using immunohistochemistry and western blot, the expression of FosB/DeltaFosB, tyrosine hydroxylase (TH), corticotropin-releasing factor (CRF) and pro-dynorphin (DYN) was measured in different nuclei from the brain stress system in morphine-dependent rats and after morphine withdrawal. Additionally, we studied the expression of FosB/DeltaFosB in CRF-, TH- and DYN-positive neurons. FosB/DeltaFosB was induced after chronic morphine administration in the parvocellular part of the hypothalamic paraventricular nucleus (PVN), NAc-shell, bed nucleus of the stria terminalis, central amygdala and A(2) noradrenergic part of the nucleus tractus solitarius (NTS-A(2)). Morphine dependence and withdrawal evoked an increase in FosB/DeltaFosB-TH and FosB/DeltaFosB-CRF double labelling in NTS-A(2) and PVN, respectively, besides an increase in TH levels in NTS-A(2) and CRF expression in PVN. These data indicate that neuroadaptation to addictive substances, observed as accumulation of FosB/DeltaFosB, is not limited to the reward circuits but may also manifest in other brain regions, such as the brain stress system, which have been proposed to be directly related to addiction.

    Topics: Animals; Brain; Corticotropin-Releasing Hormone; Dynorphins; Enkephalins; Hypothalamo-Hypophyseal System; Male; Morphine; Morphine Dependence; Pituitary-Adrenal System; Protein Precursors; Proto-Oncogene Proteins c-fos; Rats; Rats, Wistar; Stress, Physiological; Substance Withdrawal Syndrome; Tyrosine 3-Monooxygenase

2010
Maternal deprivation increases vulnerability to morphine dependence and disturbs the enkephalinergic system in adulthood.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2005, May-04, Volume: 25, Issue:18

    Maternal deprivation can trigger long-lasting molecular and cellular modifications in brain functions and might facilitate the appearance of pathogenic behaviors. This study focuses on the vulnerability to develop morphine dependence in adult rats that were separated from their mother and littermates for 3 h per day for 14 d after birth and examines the adaptive changes in the enkephalinergic pathways. Place-preference conditioning was observed with 2 mg/kg morphine in deprived rats, whereas 5 mg/kg morphine was necessary to induce conditioning in nondeprived animals. A prolonged morphine conditioning was shown in deprived rats. A strong increase in oral morphine self-administration behavior and preference was observed in deprived rats. Only a very slight increase in preference for sucrose solution, a more ethological reinforcer known to interact with the opioid system, was shown in deprived rats. These results indicate that this postnatal environment change leads to a hypersensitivity to the reinforcing properties of morphine and to the development of morphine dependence. A significant decrease in preproenkephalin mRNA expression was observed in the nucleus accumbens and the caudate-putamen nucleus of deprived rats. The basal extracellular levels of the Met-enkephalin-like immunoreactivity in the nucleus accumbens were significantly lower in deprived rats when compared with nondeprived animals, whereas no change in mu-opioid receptor binding occurred. These results strongly support that maternal deprivation leads to a basal hypoactivity of the enkephalinergic system and hypersensitivity to morphine effects. Together, our results suggest that maternal deprivation in pups likely represents a risk factor for morphine dependence in adult rats.

    Topics: Analysis of Variance; Animals; Animals, Newborn; Autoradiography; Behavior, Animal; Brain; Choice Behavior; Conditioning, Psychological; Dialysis; Dose-Response Relationship, Drug; Drinking Behavior; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Methionine; Enkephalins; Female; In Situ Hybridization; Maternal Deprivation; Morphine; Morphine Dependence; Narcotics; Nucleus Accumbens; Pregnancy; Protein Precursors; Radioimmunoassay; Rats; Rats, Long-Evans; Receptors, Opioid, mu; RNA, Messenger; Self Administration; Sucrose; Time Factors; Tritium

2005
Genetic dissociation of opiate tolerance and physical dependence in delta-opioid receptor-1 and preproenkephalin knock-out mice.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2002, Dec-15, Volume: 22, Issue:24

    Previous experiments have shown that mice lacking a functional delta-opioid receptor (DOR-1) gene do not develop analgesic tolerance to morphine. Here we report that mice lacking a functional gene for the endogenous ligand preproenkephalin (ppENK) show a similar tolerance deficit. In addition, we found that the DOR-1 and ppENK knock-outs as well as the NMDA receptor-deficient 129S6 inbred mouse strain, which also lacks tolerance, exhibit antagonist-induced opioid withdrawal. These data demonstrate that although signaling pathways involving ppENK, DOR, and NMDA receptor are necessary for the expression of morphine tolerance, other pathways independent of these factors can mediate physical dependence. Moreover, these studies illustrate that morphine tolerance can be genetically dissociated from physical dependence, and thus provide a genetic framework to assess more precisely the contribution of various cellular and molecular changes that accompany morphine administration to these processes.

    Topics: Analgesics, Opioid; Animals; Drug Tolerance; Enkephalins; Gene Targeting; Mice; Mice, Knockout; Morphine; Morphine Dependence; N-Methylaspartate; Protein Precursors; Receptors, Opioid, delta; Substance Withdrawal Syndrome

2002
Effects of peptidase inhibitors, [D-Ala2, Met5]-enkephalinamide and antiserum to methionine-enkephalin microinjected into the caudal periaqueductal gray on morphine withdrawal in rats.
    Japanese journal of pharmacology, 1998, Volume: 78, Issue:4

    We examined the involvement of enkephalins in the caudal periaqueductal gray (cPAG) in morphine withdrawal in rats. Rats were treated with increasing doses of morphine (20-30 mg/kg/day, s.c., for 5 days) to develop morphine dependence. Morphine withdrawal was induced by naloxone (5 mg/kg, s.c.) 24 hr after the final morphine injection. The level of preproenkephalin (PPE) mRNA in the cPAG was estimated by quantitative in situ hybridization. PPE mRNA in the cPAG was increased 4-24 hr after naloxone in morphine-treated rats. A mixture of peptidase inhibitors (0.5 microl of a solution of amastatin, captopril and phosphoramidon, 3 x 10(-3) M each) microinjected into the cPAG suppressed morphine withdrawal (a decrease in the number of jumping, chin rubbing, paw rubbing and teeth chattering). Antiserum to methionine-enkephalin (1:10 dilution) microinjected into the cPAG did not significantly aggravate morphine withdrawal with or without the mixture of peptidase inhibitors. However, [D-Ala2, Met5]-enkephalinamide (20 nmol), an enkephalin analog, injected into the cPAG decreased the number of jumping without any influence on the other withdrawal signs. These results suggest that the increase in enkephalins in the cPAG may participate in the alleviation of morphine withdrawal (jumping behavior).

    Topics: Animals; Enkephalin, Methionine; Enkephalins; Immune Sera; Male; Microinjections; Morphine; Morphine Dependence; Naloxone; Periaqueductal Gray; Protease Inhibitors; Protein Precursors; Rats; Rats, Sprague-Dawley; RNA, Messenger; Substance Withdrawal Syndrome

1998
Modulation of preproenkephalin mRNA levels in brain regions and spinal cord of rats treated chronically with morphine.
    Peptides, 1995, Volume: 16, Issue:3

    The effect of morphine tolerance/dependence and abstinence on the preproenkephalin (PPE) gene expression was determined in brain regions and spinal cord of the rat. Male Sprague-Dawley rats were rendered tolerant and physically dependent on morphine by SC implantation of six pellets, each containing 75 mg of morphine base, during a 7-day period. Placebo pellet-implanted rats served as controls. In tolerant rats, the pellets were left in place at the time of sacrifice whereas in abstinent rats, the pellets were removed 16 h prior to sacrificing. The levels of PPE mRNA were determined in brain regions (striatum, cortex, pons-medulla, hypothalamus, amygdala, and midbrain) and spinal cord. The levels of PPE mRNA increased significantly in the cortex (62%) and the spinal cord (352%) of morphine-tolerant rats when compared to placebo pellet-implanted control rats. In other brain regions, the levels of PPE mRNA in placebo and morphine-tolerant rats did not differ. On the other hand, in morphine-abstinent rats, the levels of PPE mRNA increased in the striatum (62%) and hypothalamus (34%) but were decreased in pons-medulla (68%), midbrain (51%), and spinal cord (36%) in comparison to the placebo controls. The results clearly demonstrate differential changes in enkephalin gene expression in brain regions and spinal cord of the abstinent and nonabstinent morphine-tolerant/dependent rats.

    Topics: Animals; Brain; Drug Tolerance; Enkephalins; Male; Morphine; Morphine Dependence; Protein Precursors; Rats; Rats, Sprague-Dawley; Reference Values; RNA, Messenger; Spinal Cord

1995