praeruptorin-c and Disease-Models--Animal

praeruptorin-c has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for praeruptorin-c and Disease-Models--Animal

ArticleYear
Effect of Praeruptorin C on 3-nitropropionic acid induced Huntington's disease-like symptoms in mice.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2017, Volume: 86

    Huntington's disease (HD) is an autosomal dominant inherited disease characterized by movement, psychiatric, and cognitive disorders. Previous research suggests that Praeruptorin C (Pra-C), an effective component in the root of Peucedanum praeruptorum dunn, a traditional Chinese medicine, may function in neuroprotection. The present study was conducted to evaluate the effectiveness of Pra-C in the treatment of HD-like symptoms in a 3-nitropropionic acid (3-NP) mouse model, and to explore the possible mechanism of the drug's activity. We treated 3-NP-injected mice with two different doses of Pra-C (1.5 and 3.0mg/kg) for 3 days. Motor behavior was tested using the open field test (OFT) and rotarod test, while psychiatric symptoms were tested using the forced swimming test (FST) and tail suspension test (TST). We found that Pra-C alleviated the motor deficits and depression-like behavior in the 3-NP-treated mice, and protected neurons from excitotoxicity. Western blot analysis revealed that Pra-C upregulated BDNF, DARPP32, and huntingtin protein in the striatum of 3-NP mice. These results taken together suggest that Pra-C may have therapeutic potential with respect to the movement, psychiatric, and cognitive symptoms of HD.

    Topics: Animals; Coumarins; Disease Models, Animal; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Huntington Disease; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Nitro Compounds; Propionates; Treatment Outcome

2017
Simultaneously enantiospecific determination of (+)-trans-khellactone, (+/-)-praeruptorin A, (+/-)-praeruptorin B, (+)-praeruptorin E, and their metabolites, (+/-)-cis-khellactone, in rat plasma using online solid phase extraction-chiral LC-MS/MS.
    Journal of pharmaceutical and biomedical analysis, 2014, Volume: 88

    Many chiral drugs are used as the racemic mixtures in clinical practice. The occurrence of enantioselectively pharmacological activities calls for the development of enantiospecific analytical approaches during pharmacokinetic studies of enantiomers. Sample preparation plays a key role during quantitative analysis of biological samples. In current study, a rapid and reliable online solid phase extraction-chiral high performance liquid chromatography-tandem mass spectrometry (online SPE-chiral LC-MS/MS) method was developed for the simultaneously enantiospecific quantitation of (+)-trans-khellactone (dTK), (+/-)-cis-khellactone (d/lCK), (+/-)-praeruptorin A (d/lPA), (+/-)-praeruptorin B (d/lPB) and (+)-praeruptorin E (dPE), the main active angular-type pyranocoumarins (APs) in Peucedani Radix (Chinese name: Qian-hu) or the major metabolites of those APs, in rat plasma. The validation assay results described here show good selectivity and enantiospecificity, extraction efficiency, accuracy and precision with quantification limits (LOQs) of 2.57, 1.28, 1.28, 1.88, 4.16, 4.16 and 4.18ngmL(-1) for dTK, lCK, dCK, dPA, dPB, lPB and dPE, respectively, while lPA was not detected in rat plasma due to the carboxylesterase(s)-mediated hydrolysis. In addition, the validated system was satisfactorily applied to characterize the pharmacokinetic properties of those components in normal and chronic obstructive pulmonary disease (COPD) rats following oral administration of Qian-hu extract. dCK and lCK were observed as the main herb-related compounds in plasma. Enantioselectively pharmacokinetic profiles occurred for dCK vs lCK, dPA vs lPA, and dPB vs lPB in either normal or COPD rats. The proposed whole system is expected to be a preferable analytical tool for in vivo study of chiral drugs, in particular for the characterization of enantioselectively pharmacokinetic profiles.

    Topics: Administration, Oral; Animals; Calibration; Chromatography, High Pressure Liquid; Coumarins; Disease Models, Animal; Hydrolysis; Linear Models; Male; Pulmonary Disease, Chronic Obstructive; Rats; Rats, Wistar; Reproducibility of Results; Stereoisomerism; Tandem Mass Spectrometry

2014