pradofloxacin has been researched along with Escherichia-coli-Infections* in 2 studies
2 other study(ies) available for pradofloxacin and Escherichia-coli-Infections
Article | Year |
---|---|
Mutant prevention concentrations of pradofloxacin for susceptible and mutant strains of Escherichia coli with reduced fluoroquinolone susceptibility.
Pharmacodynamic and mutant prevention properties of the fluoroquinolone pradofloxacin (PRA) were measured against a set of 17 Escherichia coli strains carrying no, one or two known mutations conferring reduced fluoroquinolone susceptibility. The strains included susceptible wild-types, isogenic constructed mutants, isogenic selected mutants and clinical isolates. The effectiveness of PRA was determined with regard to preventing the selection of resistant mutants, using static and changing concentrations of drug. Ciprofloxacin was used as a reference drug. Minimum inhibitory concentrations (MICs) and mutant prevention concentrations (MPCs) of PRA for the susceptible wild-type strains were in the range 0.012-0.016mg/L and 0.2-0.3mg/L, respectively, giving a mean±standard deviation mutant prevention index (MPI=MPC/MIC) of 17.7±1.1. The mean MPI PRA of the 14 mutant strains was 19.2±12, and the mean MPI across all 17 strains was 18.9±10.8. In an in vitro kinetic model in which PRA was diluted with a half-life of 7h to mimic in vivo conditions, an initial concentration of PRA of 1.6-2.4mg/L (8-10× MPC), giving a PRA AUC/MPC ratio of 73-92, and a T>MPC of 21-23h was sufficient to prevent the selection of resistant mutants from the three susceptible wild-type strains. Dosing to reduce selection for antibiotic resistance in veterinary therapy has a role in reducing the reservoir of resistant mutants. We conclude that a level of dosing that prevents the selection of resistant mutants during therapy should be achievable in vivo. Topics: Anti-Bacterial Agents; Drug Resistance, Bacterial; Escherichia coli; Escherichia coli Infections; Fluoroquinolones; Humans; Microbial Sensitivity Tests; Models, Theoretical; Mutation; Selection, Genetic | 2014 |
In vitro selection of resistance to pradofloxacin and ciprofloxacin in canine uropathogenic Escherichia coli isolates.
This study explored and compared the mechanisms and selective concentration of resistance between a 3rd (pradofloxacin) and 2nd (ciprofloxacin) generation fluoroquinolone. Pradofloxacin- and ciprofloxacin-resistant mutants were selected by stepwise exposure of Escherichia coli (E. coli) to escalating concentrations of pradofloxacin and ciprofloxacin. The sequence of the quinolone resistance determining region (QRDR) and the transcriptional regulator soxS were analyzed, and efflux pump AcrAB-TolC activity was measured by quantitative real-time reverse transcription-PCR (qRT-PCR). First-step mutants reduced the fluoroquinolone sensitivity and one mutant bore a single substitution in gyrA. Four of six second-step mutants expressed ciprofloxacin resistance, and displayed additional mutations in gyrA and/or parC, while these mutants retained susceptibility to pradofloxacin. All the third-step mutants were fluoroquinolone resistant, and each expressed multidrug resistance (MDR) phenotypes. Further, they displayed resistance to all antibacterials tested except cefotaxime, ceftazidime and meropenem. The number of mutations in QRDR of gyrA and parC correlated with fluoroquinolone MICs. Mutations in parC were not common in pradofloxacin-associated mutants. Moreover, one second- and one third-step ciprofloxacin-associated mutants bore both mutations at position 12 (Ala12Ser) and 78 (Met78Leu) in the soxS gene, yet no mutations in the soxS gene were detected in the pradofloxacin-selected mutants. Altogether, these results demonstrated that resistance emerged relatively more rapidly in 2nd compared to 3rd generation fluoroquinolones. Point mutations in gyrA were a key mechanism of resistance to pradofloxacin, and overexpression of efflux pump gene acrB played a potential role in the emergence of MDR phenotypes identified in this study. Topics: Animals; Anti-Bacterial Agents; Ciprofloxacin; DNA Gyrase; DNA Topoisomerases, Type I; Dog Diseases; Dogs; Drug Resistance, Bacterial; Escherichia coli Infections; Escherichia coli Proteins; Fluoroquinolones; Microbial Sensitivity Tests; Mutation; Urinary Tract Infections; Uropathogenic Escherichia coli | 2014 |