potassium-oxonate has been researched along with Nephritis* in 2 studies
2 other study(ies) available for potassium-oxonate and Nephritis
Article | Year |
---|---|
Apigenin ameliorates hyperuricemic nephropathy by inhibiting URAT1 and GLUT9 and relieving renal fibrosis via the Wnt/β-catenin pathway.
Hyperuricemia (HUA) is characterized by abnormal serum uric acid (UA) levels and demonstrated to be involved in renal injury leading to hyperuricemic nephropathy (HN). Apigenin (API), a flavonoid naturally present in tea, berries, fruits, and vegetables, exhibits various biological functions, such as antioxidant and anti-inflammatory activity.. To investigate the effect of API treatment in HN and to reveal its underlying mechanisms.. The mice with HN were induced by potassium oxonate intraperitoneally and orally administered for two weeks. The effects of API on renal function, inflammation, fibrosis, and uric acid (UA) metabolism in mice with HN were evaluated. The effects of API on urate transporters were further examined in vitro.. The mice with HN exhibited abnormal renal urate excretion and renal dysfunction accompanied by increased renal inflammation and fibrosis. In contrast, API reduced the levels of serum UA, serum creatinine (CRE), blood urea nitrogen (BUN) and renal inflammatory factors in mice with HN. Besides, API ameliorated the renal fibrosis via Wnt/β-catenin pathway suppression. Furthermore, API potently promoted urinary UA excretion and inhibited renal urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in mice with HN. In vitro, API competitively inhibited URAT1 and GLUT9 in a dose-dependent manner, with IC. API could effectively attenuate HN through co-inhibiting UA reabsorption and Wnt/β-catenin pathway, and thus it might be a potential therapy to HN. Topics: Animals; Apigenin; beta Catenin; Creatinine; Dose-Response Relationship, Drug; Fibrosis; Glucose Transport Proteins, Facilitative; HEK293 Cells; Humans; Hyperuricemia; Kidney Diseases; Male; Mice; Nephritis; Organic Anion Transporters; Oxonic Acid; Uric Acid; Wnt Signaling Pathway | 2021 |
Pharmacological inhibition of fatty acid-binding protein 4 alleviated kidney inflammation and fibrosis in hyperuricemic nephropathy.
Hyperuricemia is an independent risk factor for chronic kidney disease (CKD). Excessive uric acid (UA) level in the blood leads to hyperuricemic nephropathy (HN), which is characterized by glomerular hypertension, arteriolosclerosis and tubulointerstitial fibrosis. Fatty acid binding protein 4 (FABP4) is a potential mediator of inflammatory responses which contributes to renal interstitial fibrosis. However, the roles of FABP4 in HN remains unknown. In the study, a mouse model of HN induced by feeding a mixture of adenine and potassium oxonate, severe kidney injury and interstitial fibrosis, as well as the increased kidney-expressed FABP4 protein level were evident, accompanied by the activation of inflammatory responses. Oral administration of BMS309403, a highly selective FABP4 inhibitor, improved renal dysfunction, inhibited the mRNA level of KIM-1 and NGAL, as well as reduced the expression of proinflammatory cytokines and fibrotic proteins in the injured kidneys. BMS309403 treatment also inhibited the FABP4 activity and further suppressed the activation of JAK2-STAT3 and NF-kB P65 signaling pathways in the hyperuricemia-injured kidneys and UA-stimulated human tubular epithelial (HK-2) cells, respectively. In summary, our study for the first time demonstrated that FABP4 played a crucial role in kidney inflammation and fibrosis via the regulation of JAK2-STAT3 and NF-kB P65 pathways in HN mice. The results suggested that FABP4 inhibition might be a promising therapeutic strategy for HN. Topics: Adenine; Animals; Biphenyl Compounds; Cytokines; Fatty Acid-Binding Proteins; Fibrosis; Hepatitis A Virus Cellular Receptor 1; Humans; Hyperuricemia; Janus Kinase 2; Kidney; Kidney Diseases; Lipocalin-2; Male; Mice; Mice, Inbred C57BL; Nephritis; Oxonic Acid; Pyrazoles; STAT3 Transcription Factor; Transcription Factor RelA | 2020 |