potassium-oxonate has been researched along with Inflammation* in 15 studies
15 other study(ies) available for potassium-oxonate and Inflammation
Article | Year |
---|---|
Anti-Hyperuricemic, Nephroprotective, and Gut Microbiota Regulative Effects of Separated Hydrolysate of α-Lactalbumin on Potassium Oxonate- and Hypoxanthine-Induced Hyperuricemic Mice.
This study aims to investigate the anti-hyperuricemic and nephroprotective effects and the potential mechanisms of the separated gastrointestinal hydrolysates of α-lactalbumin on hyperuricemic mice.. The gastrointestinal hydrolysate of α-lactalbumin, the hydrolysate fraction with molecular weight (MW) < 3 kDa (LH-3k), and the fragments with smallest MW among LH-3K harvested through dextran gel chromatography (F5) are used. Hyperuricemia mice are induced via daily oral gavage of potassium oxonate and hypoxanthine. F5 displays the highest in vitro xanthine oxidase (XO) inhibition among all the fractions separated from LH-3k. Oral administration of F5 significantly reduces the levels of serum uric acid (UA), creatinine, and urea nitrogen. F5 treatment could ameliorate kidney injury through alleviating oxidative stress and inflammation. F5 alleviates hyperuricemia in mice by inhibiting hepatic XO activity and regulating the expression of renal urate transporters. Gut microbiota analysis illustrates that F5 administration increases the abundance of some SCFAs producers, and inhibits the growth of hyperuricemia and inflammation associated genera. LH-3k exhibits similar effects but does not show significance as those of the F5 fraction.. The anti-hyperuricemia and nephroprotective functions of F5 are mediated by inhibiting hepatic XO activity, ameliorating oxidative stress and inflammation, regulating renal urate transporters, and modulating the gut microbiota in hyperuricemic mice. Topics: Animals; Gastrointestinal Microbiome; Hyperuricemia; Hypoxanthines; Inflammation; Kidney; Lactalbumin; Mice; Oxonic Acid; Transcription Factors; Uric Acid | 2023 |
Marine Fish Protein Peptide Regulating Potassium Oxonate-Induced Intestinal Dysfunction in Hyperuricemia Rats Helps Alleviate Kidney Inflammation.
The metabolic disease hyperuricemia (HUA) is characterized by a disturbance in purine metabolism. Peptides, such as marine fish-derived peptides, have previously been shown to be effective in alleviating HUA. In this study, HUA rats were induced by potassium oxonate with 100 mg/kg (L), 200 mg/kg (M), and 400 mg/kg (H) of marine fish protein peptide (MFPP). The results showed that MFPP could effectively reduce the serum uric acid (SUA) levels compared with the model group rats; kidney histopathology and the levels of inflammatory factors (TNF-α, IL-6, and IL-10) indicated that MFPP attenuated HUA-induced kidney inflammation. Meanwhile, MFPP restored the abundance of beneficial bacteria, including Topics: Animals; Carrier Proteins; Fish Proteins; Hyperuricemia; Inflammation; Intestinal Diseases; Kidney; Peptides; Rats; Uric Acid | 2023 |
A flavonoid-rich fraction of Monolluma quadrangula inhibits xanthine oxidase and ameliorates potassium oxonate-induced hyperuricemia in rats.
Hyperuricemia represents a risk factor for the progression of chronic kidney disease. Oxidative stress and inflammation are implicated in the mechanisms underlying hyperuricemia-mediated kidney injury. Monolluma quadrangula possesses several beneficial effects; however, its effect on hyperuricemia has not been investigated. This study evaluated the renoprotective and xanthine oxidase (XO) inhibitory activity of M. quadrangula in hyperuricemic rats. Phytochemical investigation revealed the presence of six known flavonoid isolated for the first time from this species. The rats received M. quadrangula extract (MQE) and potassium oxonate (PO) for 7 days. In vitro assays showed the radical scavenging and XO inhibitory activities of MQE, and in silico molecular docking revealed the inhibitory activity of the isolated flavonoids towards XO. Hyperuricemic rats showed elevated serum uric acid, creatinine, urea, and XO activity, and renal pro-inflammatory cytokines, MDA and NO, and decreased GSH, SOD, and catalase. MQE ameliorated serum uric acid, urea, creatinine, and XO activity, and renal pro-inflammatory cytokines. In addition, MQE attenuated renal oxidative stress, enhanced antioxidants, downregulated URAT-1, and GLUT-9 and upregulated OAT-1 in PO-induced rats. In conclusion, M. quadrangula attenuated hyperuricemia and kidney impairment by suppressing XO activity, oxidative stress and inflammation, and modulating urate transporters. Topics: Animals; Catalase; Creatinine; Cytokines; Flavonoids; Hyperuricemia; Inflammation; Kidney; Molecular Docking Simulation; Oxonic Acid; Plant Extracts; Rats; Superoxide Dismutase; Urea; Uric Acid; Xanthine Oxidase | 2022 |
Eggshell Membrane Ameliorates Hyperuricemia by Increasing Urate Excretion in Potassium Oxonate-Injected Rats.
Hyperuricemia is the primary cause of gouty arthritis and other metabolic disorders. Eggshell membrane (EM) is an effective and safe supplement for curing pain and stiffness connected with osteoarthritis. However, the effect of EM on hyperuricemia is unclear. This study determines the effects of EM on potassium oxonate-injected hyperuricemia. Uric acid, creatinine, blood urea nitrogen concentrations in the serum, and xanthine oxidase activity in the liver are measured. Protein levels of renal urate transporter 1 (URAT1), organic anion transporters 1 (OAT1), glucose transporter 9 (GLUT9), and ATP-binding cassette transporter G2 (ABCG2) in the kidney are determined with renal histopathology. The results demonstrate that EM reduces serum uric acid levels and increases urine uric acid levels in hyperuricemic rats. Moreover, EM downregulates renal URAT1 protein expression, upregulates OAT1 and ABCG2, but does not change GLUT9 expression. Additionally, EM does not change xanthine oxidase activity in the liver or the serum. EM also decreases uric acid uptake into oocytes expressing hURAT1. Finally, EM markedly reduces renal inflammation and serum interleukin-1β levels. These findings suggest that EM exhibits antihyperuricemic effects by promoting renal urate excretion and regulating renal urate transporters. Therefore, EM may be useful in the prevention and treatment of gout and hyperuricemia. Topics: Animals; Egg Shell; Humans; Hyperuricemia; Inflammation; Injections; Kidney; Kidney Function Tests; Male; Oocytes; Organic Anion Transporters; Oxonic Acid; Rats, Sprague-Dawley; Uric Acid; Xanthine Oxidase; Xenopus | 2021 |
Astaxanthin attenuated hyperuricemia and kidney inflammation by inhibiting uric acid synthesis and the NF-κ B/NLRP3 signaling pathways in potassium oxonate and hypoxanthine-induced hyperuricemia mice.
Inflammation is an important pathological feature of hyperuricemia, which in turn aggravates hyperuricemia. Astaxanthin is a carotenoid with strong antioxidant capacity and possesses many biological activities. This study was aimed to evaluate the effect of astaxanthin (ASX) on hyperuricemia and kidney inflammation in potassium oxonate (PO) and hypoxanthine (HX)-induced hyperuricemic mice. Male ICR mice were administered intragastrically with PO and HX (250 mg/kg, respectively) for 14 days. ASX was given by gavage one hour after PO and HX administration. ASX treatment significantly reversed PO and HX-induced hyperuricemia and kidney inflammation in mice as evidenced by decreased serum levels of uric acid (UA), creatinine (Cr), blood urea nitrogen (BUN), and inflammatory factors (IL-1β, IL-6, and TNF-α) and increased activities of antioxidant enzymes (CAT, SOD and GSH-Px). Furthermore, ASX administration effectively inhibited the activities of key enzymes related to UA synthesis (xanthine oxidase (XOD) and adenosine deaminase (ADA)) and modulated the protein expressions of NF-κ B p65, p-NF-κ B p65, Iκ Bα, p-Iκ Bα, NLRP3, ASC, Caspase-1, and cleavedCaspase-1 involved in inflammation pathways. Our results suggested that ASX improved hyperuricemia and kidney inflammation induced by PO and HX, probably by reducing UA synthesis and suppressing the NF-κ B and NLRP3 pathways simultaneously. Topics: Animals; Antioxidants; Hyperuricemia; Hypoxanthine; Inflammation; Kidney; Male; Mice; Mice, Inbred ICR; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Oxonic Acid; Signal Transduction; Transcription Factor RelA; Uric Acid; Xanthine Oxidase; Xanthophylls | 2021 |
Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis.
Hyperuricemia (HUA) is induced by abnormal purine metabolism and elevated serum uric acid (UA) concentrations, and it is often accompanied by inflammatory responses and intestinal disorders. This study aims to assess the protective effects of chlorogenic acid (CGA) on HUA in mice. CGA or allopurinol was given to mice with HUA induced by hypoxanthine and potassium oxonate. CGA lowered the levels of UA, blood urea nitrogen (BUN), creatinine (CR), AST, and ALT; inhibited xanthine oxidase (XOD) activity; and downregulated the mRNA expression of UA secretory proteins in HUA mice. Moreover, CGA significantly reduced serum lipopolysaccharides (LPS) levels and the mRNA expression of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, NOD-like receptor superfamily pyrin domain containing 3 (NLRP3), and caspase-1, and it inhibited the activation of the toll-like receptor 4/myeloid differentiation factor 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signaling pathway in the kidney, resulting in inflammation relief in HUA mice. In addition, CGA treatment increased the production of fecal short-chain fatty acids (SCFAs) in HUA mice. Additional investigations showed that CGA significantly lowered the mRNA expression of ileal IL-1β and IL-6, and it increased the mRNA expression of intestinal tight junction proteins (zonula occludens-1 (ZO-1) and occludin). Also, CGA increased the relative abundance of SCFA-producing bacteria, including Bacteroides, Prevotellaceae UGC-001, and Butyricimonas, and it reversed the purine metabolism and glutamate metabolism functions of gut microbiota. In conclusion, CGA may be a potential candidate for relieving the symptoms of HUA and regulating its associated inflammatory responses and intestinal homeostasis. Topics: Animals; Blood Urea Nitrogen; Chlorogenic Acid; Creatinine; Dietary Supplements; Gastrointestinal Microbiome; Homeostasis; Hyperuricemia; Hypoxanthine; Inflammation; Interleukin-1beta; Intestines; Kidney; Lipopolysaccharides; Male; Mice; Myeloid Differentiation Factor 88; NF-kappa B; Oxonic Acid; Signal Transduction; Toll-Like Receptor 4; Uric Acid; Xanthine Oxidase | 2021 |
Vitamin C alleviates hyperuricemia nephropathy by reducing inflammation and fibrosis.
Hyperuricemia contributes to chronic kidney disease development. However, it has been historically viewed with limited research interest. In this study, we mimicked the development of hyperuricemic nephropathy by using a potassium oxonate-induced hyperuricemia rat model. We found that administering vitamin C at 10 mg/kg/day effectively ameliorated hyperuricemic nephropathy. Compared to the control group, rats with hyperuricemia had significantly increased serum uric acid level, xanthine oxidase activity, and urine microalbumin level, by 5-fold, 1.5-fold, and 4-fold, respectively. At the same time, vitamin C supplementation reverted these values by 20% for serum uric acid level and xanthine oxidase activity and 50% for microalbumin level. Vitamin C also alleviated renal pathology and decreased the expression of pro-inflammatory and pro-fibrotic markers. A further mechanistic study suggested that vitamin C might attenuate hyperuricemic nephropathy in renal tubular epithelial cells induced by monosodium urate (MSU) crystal, at least in part, by directly inhibiting IL-6/JAK2/STAT3 signaling pathway. Meanwhile, in macrophages, vitamin C inhibited the expression of TGF-β, and reduced ROS level induced by MSU by about 35%. In short, our results suggest that vitamin C supplementation delay the progression of hyperuricemic nephropathy. Topics: Animals; Antioxidants; Ascorbic Acid; Fibrosis; Hyperuricemia; Inflammation; Kidney Diseases; Male; Oxonic Acid; Rats; Rats, Sprague-Dawley | 2021 |
Termipaniculatones A-F, chalcone-flavonone heterodimers from Terminthia paniculata, and their protective effects on hyperuricemia and acute gouty arthritis.
Topics: Anacardiaceae; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arthritis, Gouty; Chalcone; Dose-Response Relationship, Drug; Edema; Enzyme Inhibitors; Flavanones; Hyperuricemia; Inflammation; Male; Mice; Mice, Inbred Strains; Molecular Structure; Oxonic Acid; Structure-Activity Relationship; Uric Acid; Xanthine Oxidase | 2019 |
Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice.
Current evidences suggest that hyperuricemia is closely related to the overproduction or underexcretion of uric acid (UA). Curcumin (CUR), a natural polyphenol component extracted from the rhizome of Curcuma longa, has been reported to treat various symptoms such inflammation disease, seems to be efficacious in hyperuricemia. In this study, we aimed to investigate the effect of CUR on hyperuricemia and kidney inflammation in hyperuricemic mice. Administration with CUR (20 or 40 mg/kg) or allopurinol (ALL, 5 mg/kg) was given to mice orally one hour later after the injection of potassium oxonate (PO) (300 mg/kg, i.p.) for 14 days. CUR administration decreased the levels of uric acid (UA), creatinine (CRE) and blood urea nitrogen (BUN) in serum. Meanwhile, treatment with CUR effectively inhibited serum and liver xanthine oxidase (XOD) levels, and further renewed normal antioxidant enzymes activities (SOD, GSH-Px), reduced MDA accumulation in serum. Further studies showed that CUR decreased inflammatory cytokines productions (IL-1β, IL-18) in serum, as well as inhibited PO-induced the activation of NLRP3 inflammasome signaling in the kidney. In conclusion, the study revealed that CUR exhibited anti-hyperuricemic and anti-inflammatory effects through suppressing NLRP3 inflammasome activation in kidney and provided the evidence for treating hyperuricemia and associated renal inflammation. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Biomarkers; Curcumin; Cytokines; Disease Models, Animal; Hyperuricemia; Inflammasomes; Inflammation; Kidney; Kidney Function Tests; Male; Mice, Inbred Strains; NLR Family, Pyrin Domain-Containing 3 Protein; Oxonic Acid | 2019 |
MiR-143-3p directly targets GLUT9 to reduce uric acid reabsorption and inflammatory response of renal tubular epithelial cells.
GLUT9 is generally considered to be associated with the uric acid transport, which plays an important role in the regulation of serum uric acid level. In this study, the expression level of miR-143-3p was significantly decreased in hyperuricemia mice model group compared with the normal control by miRNA microarray, the same results were confirmed in the hyperuricemia patients and the healthy control group. It is predicted that GLUT9 may be the target gene of miR-143-3p by target scan and other net-software. GLUT9 as the downstream target gene of miR-143-3p was determinated by fluorescence enzyme activity assay. Western blotting and qRT-PCR indicated that the expression of GLUT9 in human renal tubular epithelial cells transfected with miR-143-3p mimics was significantly reduced. Meanwhile inflammatory factors IL-1β and MCP-1 significantly decreased. In conclusion, miR-143-3p can reduce uric acid reabsorption by inhibiting its downstream target gene GLUT9. Topics: Animals; Base Sequence; Case-Control Studies; Chemokine CCL2; Disease Models, Animal; Gene Expression Regulation; Glucose Transport Proteins, Facilitative; Humans; Hyperuricemia; Hypoxanthine; Inflammation; Interleukin-1beta; Kidney Cortex; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Oligonucleotide Array Sequence Analysis; Organic Anion Transporters; Organic Cation Transport Proteins; Oxonic Acid; Renal Reabsorption; Signal Transduction; Uric Acid | 2019 |
A novel IgG1 monoclonal antibody against xanthine oxidase alleviates inflammation induced by potassium oxonate in mice.
Topics: Allopurinol; Animals; Antibodies, Monoclonal; Antibody Affinity; Antioxidants; Creatinine; Cross Reactions; Female; Immune Sera; Immunization; Immunoglobulin G; Inflammation; Kidney; Liver; Malondialdehyde; Mice; Mice, Inbred BALB C; Oxonic Acid; Protective Agents; Spleen; Superoxide Dismutase; Th1 Cells; Th2 Cells; Urea; Uric Acid; Xanthine Oxidase | 2018 |
Astilbin improves potassium oxonate-induced hyperuricemia and kidney injury through regulating oxidative stress and inflammation response in mice.
Astilbin is a flavonoid compound derived from the rhizome of Smilax china L. The effects and possible molecular mechanisms of astilbin on potassium oxonate-induced hyperuricemia mice were investigated in this study. Different dosages of astilbin (5, 10, and 20mg/kg) were administered to induce hyperuricemic mice. The results demonstrated that the serum uric acid (Sur) level was significantly decreased by increasing the urinary uric acid (Uur) level and fractional excretion of urate (FEUA) with astilbin, related with suppressing role in meditation of Glucose transporter 9 (GLUT9), Human urate transporter 1 (URAT1) expression and up-regulation of ABCG2, Organic anion transporter 1/3 (OAT1/3) and Organic cation transporter 1 (OCT1). In addition, kidney function parameters, including serum creatinine (Scr) and blood urea nitrogen (BUN) were restored in astilbin-treated hyperuricemic rats. Further investigation indicated that astilbin prevented the renal damage against the expression of Thioredoxin-interacting protein (TXNIP) and its related inflammation signal pathway, including NLR pyrin domain-containing 3/Nuclear factor κB (NLRP3/NF-κB), which is associated with the up-regulation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), and also presented a renal protective role by suppression oxidative stress. Moreover, astilbin inhibited activation of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) cascade and over-expression of suppressor of cytokine signaling 3 (SOCS3) in the kidneys of potassium oxonate-induced mice. These findings provide potent evidence and therapeutic strategy for astilbin as a safe and promising compound in the development of a disease-modifying drug due to its function against hyperuricaemia and renal injury induced by potassium oxonate. Topics: Animals; Carrier Proteins; Flavonols; Hyperuricemia; Inflammasomes; Inflammation; Janus Kinase 2; Kidney; Male; Membrane Transport Proteins; Mice; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Oxidative Stress; Oxonic Acid; Podocytes; Signal Transduction; STAT3 Transcription Factor; Thioredoxins; Uric Acid | 2016 |
Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice.
Nuciferine, a major aporphine alkaloid of the leaves of Nelumbo nucifera, was found to decrease serum urate levels and improved kidney function, as well as inhibited system and renal interleukin-1β (IL-1β) secretion in potassium oxonate-induced hyperuricemic mice. Furthermore, nuciferine reversed expression alteration of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), ATP-binding cassette, subfamily G, membrane 2 (ABCG2), organic anion transporter 1 (OAT1), organic cation transporter 1 (OCT1), and organic cation/carnitine transporters 1/2 (OCTN1/2) in hyperuricemic mice. More importantly, nuciferine suppressed renal activation of Toll-like receptor 4/myeloid differentiation factor 88/NF-kappaB (TLR4/MyD88/NF-κB) signaling and NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome to reduce serum and renal IL-1β levels in hyperuricemic mice with renal inflammation reduction. The anti-inflammatroy effect of nuciferine was also confirmed in human proximal renal tubular epithelial cells (HK-2 cells) incubated with 4mg/dl uric acid for 24h. This study firstly reported the anti-hyperuricemic and anti-inflammatory effects of nuciferine by regulating renal organic ion transporters and inflammatory signaling in hyperuricemia. These results suggest that a dietary supplement of nuciferine rich in lotus leaf may be potential for the prevention and treatment of hyperuricemia with kidney inflammation. Topics: Animals; Aporphines; Carrier Proteins; Cell Line; Humans; Hyperuricemia; Inflammasomes; Inflammation; Interleukin-1beta; Intestinal Mucosa; Intestines; Kidney; Male; Mice; Myeloid Differentiation Factor 88; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; Organic Anion Transporters; Oxonic Acid; Signal Transduction; Toll-Like Receptor 4; Uric Acid | 2015 |
Pharmacological basis for use of Lychnophora trichocarpha in gouty arthritis: anti-hyperuricemic and anti-inflammatory effects of its extract, fraction and constituents.
The ethanolic extract of Lychnophora trichocarpha Spreng. is used in Brazilian folk medicine to treat bruise, pain and inflammatory diseases.. The present study aimed at investigating whether ethanolic extract of L. trichocarpha, its ethyl acetate fraction and its main bioactive compounds could be useful to treat gouty arthritis by countering hyperuricemia and inflammation.. L. trichocarpha ethanolic extract (LTE), ethyl acetate fraction from ethanolic extract (LTA) and isolated compounds were evaluated for urate-lowering activity and liver xanthine oxidase (XOD) inhibition in oxonate-induced hyperuricemic mice. Anti-inflammatory activity in monosodium urate crystal-induced paw oedema, an experimental model of gouty arthritis, was also investigated.. Crude ethanolic extract and its ethyl acetate fraction showed significant urate-lowering effects. LTE was also able to significantly inhibit liver xantine oxidase (XOD) activity in vivo at the dose of 250mg/kg. Luteolin, apigenin, lupeol, lychnopholide and eremantholide C showed the anti-hyperuricemic activities among tested compounds. Apigenin also showed XOD inhibitory activity in vivo. Luteolin, lychnopholide, lupeol and eremantholide C, in turn, did not shown significant inhibitory activity towards this enzyme, indicating that this mechanism is not likely to be involved in urate-lowering effects of those compounds. LTE, LTA, lupeol, β-sitosterol, lychnopholide, eremantholide, luteolin and apigenin were also found to inhibit monosodium urate crystals-induced paw oedema in mice.. Ethanolic extract of Lychnophora trichocarpha and some of its bioactive compounds may be promising agents for the treatment of gouty arthritis since they possesses both anti-hiperuricemic and anti-inflammatory properties. Topics: Acetates; Animals; Anti-Inflammatory Agents; Arthritis, Gouty; Asteraceae; Ethanol; Flavonoids; Hyperuricemia; Inflammation; Liver; Male; Mice; Oxonic Acid; Phytotherapy; Plant Components, Aerial; Plant Extracts; Solvents; Uric Acid; Xanthine Oxidase | 2012 |
Lithospermic acid as a novel xanthine oxidase inhibitor has anti-inflammatory and hypouricemic effects in rats.
Lithospermic acid (LSA) was originally isolated from the roots of Salvia mitiorrhiza, a common herb of oriental medicine. Previous studies demonstrated that LSA has antioxidant effects. In this study, we investigated the in vitro xanthine oxidase (XO) inhibitory activity, and in vivo hypouricemic and anti-inflammatory effects of rats. XO activity was detected by measuring the formation of uric acid or superoxide radicals in the xanthine/xanthine oxidase system. The results showed that LSA inhibited the formation of uric acid and superoxide radicals significantly with an IC50 5.2 and 1.08 microg/ml, respectively, and exhibited competitive inhibition. It was also found that LSA scavenged superoxide radicals directly in the system beta-NADH/PMS and inhibited the production of superoxide in human neutrophils stimulated by PMA and fMLP. LSA was also found to have hypouricemic activity on oxonate-pretreated rats in vivo and have anti-inflammatory effects in a model of gouty arthritis. These results suggested that LSA is a competitive inhibitor of XO, able to directly scavenge superoxide and inhibit superoxide production in vitro, and presents hypouricemic and anti-inflammatory actions in vivo. Topics: Allopurinol; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arthritis, Gouty; Benzofurans; Depsides; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; Hyperuricemia; Inflammation; Male; Molecular Conformation; N-Formylmethionine Leucyl-Phenylalanine; Neutrophils; Oxonic Acid; Rats; Rats, Wistar; Reactive Oxygen Species; Tetradecanoylphorbol Acetate; Uric Acid; Xanthine Oxidase | 2008 |