potassium-cyanate and Asphyxia

potassium-cyanate has been researched along with Asphyxia* in 1 studies

Other Studies

1 other study(ies) available for potassium-cyanate and Asphyxia

ArticleYear
Evidence of a suffocation alarm system within the periaqueductal gray matter of the rat.
    Neuroscience, 2012, Jan-03, Volume: 200

    Dyspnea, hunger for air, and urge to flee are the cardinal symptoms of panic attacks. Patients also show baseline respiratory abnormalities and a higher rate of comorbid and antecedent respiratory diseases. Panic attacks are also precipitated by infusion of sodium lactate and inhalation of 5% CO₂ in predisposed patients but not in healthy volunteers or patients without panic disorder. Accordingly, Klein [Klein (1993) Arch Gen Psychiatry 50:306-317] suggested that clinical panic is the misfiring of an as-yet-unidentified suffocation alarm system. In rats, selective anoxia of chemoreceptor cells by potassium cyanide (KCN) and electrical and chemical stimulations of periaqueductal gray matter (PAG) produce defensive behaviors, which resemble panic attacks. Thus, here we examined the effects of single or combined administrations of CO₂ (8% and 13%) and KCN (10-80 μg, i.v.) on spontaneous and PAG-evoked behaviors of rats either intact or bearing electrolytic lesions of PAG. Exposure to CO₂ alone reduced grooming while increased exophthalmus, suggesting an arousal response to non-visual cues of environment. Unexpectedly, however, CO₂ attenuated PAG-evoked immobility, trotting, and galloping while facilitated defecation and micturition. Conversely, KCN produced all defensive behaviors of the rat and facilitated PAG-evoked trotting, galloping, and defecation. There were also facilitatory trends in PAG-evoked exophthalmus, immobility, and jumping. Moreover, whereas the KCN-evoked defensive behaviors were attenuated or even suppressed by discrete lesions of PAG, they were markedly facilitated by CO₂. Authors suggest that the PAG harbors an anoxia-sensitive suffocation alarm system which activation precipitates panic attacks and potentiates the subject responses to hypercapnia.

    Topics: Analysis of Variance; Animals; Asphyxia; Behavior, Animal; Carbon Dioxide; Cyanates; Disease Models, Animal; Dose-Response Relationship, Drug; Electric Stimulation; Escape Reaction; Freezing Reaction, Cataleptic; Logistic Models; Male; Periaqueductal Gray; Rats; Rats, Wistar

2012