posaconazole and Parasitemia

posaconazole has been researched along with Parasitemia* in 2 studies

Other Studies

2 other study(ies) available for posaconazole and Parasitemia

ArticleYear
Identification of Pyrazolo[3,4-e][1,4]thiazepin based CYP51 inhibitors as potential Chagas disease therapeutic alternative: In vitro and in vivo evaluation, binding mode prediction and SAR exploration.
    European journal of medicinal chemistry, 2018, Apr-10, Volume: 149

    American trypanosomiasis or Chagas disease (CD) is a vector borne pathology caused by the parasite Trypanosoma cruzi (T. cruzi), which remains a serious global health problem. The current available treatment for CD is limited to two nitroderivatives with limited efficacy and several side effects. The rational design of ergosterol synthetic route inhibitors (e.g. CYP51 inhibitors) represents a promising strategy for fungi and trypanosomatids, exhibiting excellent anti-T.cruzi activity in pre-clinical assays. In the present work, we evaluate through different approaches (molecular docking, structure activity relationships, CYP51 inhibitory assay, and phenotypic screenings in vitro and in vivo) the potency and selectivity of a novel CYP51 inhibitor (compound 1) and its analogues against T.cruzi infection. Regarding anti-parasitic effect, compound 1 was active in vitro with EC

    Topics: 14-alpha Demethylase Inhibitors; Animals; Chagas Disease; Mice; Molecular Docking Simulation; Parasitemia; Pyrazolones; Structure-Activity Relationship; Survival Rate; Thiazepines; Trypanosoma cruzi

2018
Synthesis and pharmacological evaluation of mono-arylimidamides as antileishmanial agents.
    Bioorganic & medicinal chemistry letters, 2016, 05-15, Volume: 26, Issue:10

    Arylimidamide (AIA) compounds containing two pyridylimidamide terminal groups (bis-AIAs) possess outstanding in vitro antileishmanial activity, and the frontrunner bis-AIA DB766 (2,5-bis[2-(2-isopropoxy)-4-(2-pyridylimino)aminophenyl]furan) is active in visceral leishmaniasis models when given orally. Eighteen compounds containing a single pyridylimidamide terminal group (mono-AIAs) were synthesized and evaluated for their antileishmanial potential. Six of these compounds exhibited sub-micromolar potency against both intracellular Leishmania donovani and Leishmania amazonensis amastigotes, and three of these compounds also displayed selectivity indexes of 25 or greater for the parasites compared to a J774 macrophage cell line. When given orally at a dose of 100mg/kg/day for five days, compound 1b (N-(3-isopropoxy-4-(5-phenylfuran-2-yl)phenyl)picolinimidamide methanesulfonate) reduced liver parasitemia by 46% in L. donovani-infected mice. Mono-AIAs are thus a new class of candidate molecules for antileishmanial drug development.

    Topics: Administration, Oral; Animals; Antiprotozoal Agents; Chemistry Techniques, Synthetic; Drug Evaluation, Preclinical; Furans; Inhibitory Concentration 50; Leishmania donovani; Leishmania mexicana; Leishmaniasis, Visceral; Macrophages; Mice, Inbred BALB C; Parasitemia; Structure-Activity Relationship

2016