polygalacturonic-acid has been researched along with Inflammation* in 2 studies
2 other study(ies) available for polygalacturonic-acid and Inflammation
Article | Year |
---|---|
The impact of the level and distribution of methyl-esters of pectins on TLR2-1 dependent anti-inflammatory responses.
Pectins have anti-inflammatory effects via Toll-like receptor (TLR) inhibition in a degree of methyl-esterification-(DM)-dependent manner. However, pectins also vary in distribution of methyl-esters over the galacturonic-acid (GalA) backbone (Degree of Blockiness - DB) and impact of this on anti-inflammatory capacity is unknown. Pectins mainly inhibit TLR2-1 but magnitude depends on both DM and DB. Low DM pectins (DM18/19) with both low (DB86) and high DB (DB94) strongly inhibit TLR2-1. However, pectins with intermediate DM (DM43/DM49) and high DB (DB60), but not with low DB (DB33), inhibit TLR2-1 as strongly as low DM. High DM pectins (DM84/88) with DB71 and DB91 do not inhibit TLR2-1 strongly. Pectin-binding to TLR2 was confirmed by capture-ELISA. In human macrophages, low DM and intermediate DM pectins with high DB inhibited TLR2-1 induced IL-6 secretion. Both high number and blockwise distribution of non-esterified GalA in pectins are responsible for the anti-inflammatory effects via inhibition of TLR2-1. Topics: Anti-Inflammatory Agents; Cell Line; Chromatography, High Pressure Liquid; Esterification; Esters; Hexuronic Acids; Humans; Inflammation; Macrophages; Pectins; Toll-Like Receptor 2 | 2021 |
D-galacturonic acid ameliorates the intestinal mucosal permeability and inflammation of functional dyspepsia in rats.
Functional dyspepsia (FD) is a gastrointestinal disease caused by imbalanced gastrointestinal function. Traditional treatments are deemed to be limited, and new therapeutic drugs are required. New study suggested that duodenal low-grade inflammation and increased intestinal permeability play an important role in the pathogenesis of FD. Previous studies have shown that polysaccharides containing D-galacturonic acid (GA) could modulate intestinal immune activity in vitro and in animal models. However, the ability of GA monomer to improve intestinal mucosal permeability and inflammation in FD has not been clearly elucidated.. A FD rat model was established using iodoacetamide (IA). FD Rats were administrated different doses of GA. Subsequently, the body weight and behavioral sensitivity of the rats were measured and evaluated; the permeability of the intestinal barrier was measured by determining D-lactose, lactulose/mannitol ratio (LMR), and permeability-related genes [desmocollin-2 (DSC2), TJP1, and OCLN] in FD rats. Also, inflammatory cells [cluster of differentiation (CD)3+ cells and mast cells] were assessed by immunohistochemistry, and the levels of immune-related factors, such as the Toll-like receptor-nuclear factor kappa B (TLR/NF-κB) pathway, were monitored by reverse transcription quantitative polymerase chain reaction (RT-qPCR) or western blot assays.. Our results suggested that GA could markedly increase the body weight and attenuate the behavioral sensitivity of FD rats. Moreover, GA also has an obvious ameliorating effect on the intestinal mucosal permeability and inflammatory response of FD rats. Furthermore, we found that GA could markedly downregulate TLR2, TLR4, and NF-κB in FD rats.. These findings indicate that GA could significantly attenuate the intestinal mucosal permeability and inflammation FD rats. The effect of GA was partially mediated by the TLR/NF-κB signaling pathway. Topics: Animals; Dyspepsia; Hexuronic Acids; Inflammation; NF-kappa B; Permeability; Rats | 2021 |