polydatin and Disease-Models--Animal

polydatin has been researched along with Disease-Models--Animal* in 3 studies

Other Studies

3 other study(ies) available for polydatin and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Zeaxanthin dipalmitate alleviates hepatic injury induced by superimposed chronic hepatitis B and non-alcoholic steatohepatitis in non-obese mice.
    Journal of Asian natural products research, 2017, Volume: 19, Issue:9

    A hepatitis B virus (HBV) transgenic mice model was used to establish the fatty liver superimposed model by feeding the methionine choline-deficient (MCD) diet for 8 weeks, with or without the gavage of 2 mg/kg zeaxanthin dipalmitate (ZD) three times per week. Both wild-type and HBV transgenic mice, with MCD diet, gained typical non-obese non-alcoholic steatohepatitis (NASH) and HBV symptoms. Coadministration with ZD exhibited evident therapeutic effects through alleviating those pathological events. Moreover, long-term vehicle-ZD treatment was found to be safe. Thus, ZD is a promising and safe hepato-protective agent against hepatic injury induced by superimposed HBV and NASH in non-obese mice.

    Topics: Animals; Disease Models, Animal; Hepatitis B virus; Hepatitis B, Chronic; Liver; Lycium; Mice; Mice, Inbred C57BL; Mice, Transgenic; Molecular Structure; Non-alcoholic Fatty Liver Disease; Palmitates; Xanthophylls

2017
Zeaxanthin dipalmitate therapeutically improves hepatic functions in an alcoholic fatty liver disease model through modulating MAPK pathway.
    PloS one, 2014, Volume: 9, Issue:4

    In the current study, the therapeutic effects of zeaxanthin dipalmitate (ZD) on a rat alcoholic fatty liver disease (AFLD) model were evaluated. After-treatment with ZD from the 5th week to the 10th week in a 10-week ethanol intragastric administration in rats significantly alleviated the typical AFLD symptoms, including reduction in rat body weight, accumulation of hepatic fat droplets, occurrence of oxidative stress, inflammation, chemoattractive responses and hepatic apoptosis in the liver. The reduction of liver function abnormalities by ZD was partly through lower expression level of cytochrome P450 2E1 (CYP2E1), diminished activity of nuclear factor kappa B (NF-κB) through the restoration of its inhibitor kappa B alpha (IκBα), and the modulation of MAPK pathways including p38 MAPK, JNK and ERK. ZD treatment alone did not pose obvious adverse effect on the healthy rat. In the cellular AFLD model, we also confirmed the inhibition of p38 MAPK and ERK abolished the beneficial effects of ZD. These results provide a scientific rationale for the use of zeaxanthin and its derivatives as new complementary agents for the prevention and treatment of alcoholic liver diseases.

    Topics: Animals; Antioxidants; Apoptosis; Cytochrome P-450 CYP2E1; Disease Models, Animal; Ethanol; Extracellular Signal-Regulated MAP Kinases; Fatty Liver, Alcoholic; Female; Gene Expression Regulation; Hepatocytes; I-kappa B Proteins; Liver; MAP Kinase Kinase 4; NF-kappa B; NF-KappaB Inhibitor alpha; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Palmitates; Protective Agents; Rats; Rats, Sprague-Dawley; Signal Transduction; Weight Loss; Xanthophylls

2014