pnd-1186 and Disease-Models--Animal

pnd-1186 has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for pnd-1186 and Disease-Models--Animal

ArticleYear
Inhibiting Focal Adhesion Kinase Ameliorates Cyst Development in Polycystin-1-Deficient Polycystic Kidney Disease in Animal Model.
    Journal of the American Society of Nephrology : JASN, 2021, Volume: 32, Issue:9

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by numerous cysts originating from renal tubules and is associated with significant tubular epithelial cell proliferation. Focal adhesion kinase (FAK) promotes tumor growth by regulating multiple proliferative pathways.. We established the forskolin (FSK)-induced three-dimensional (3D) Madin-Darby Canine Kidney cystogenesis model and 8-bromoadenosine-3`,5`-cyclic monophosphate-stimulated cyst formation in. FAK activity was significantly elevated in OX-161 cells and in two ADPKD mouse models. Inhibiting FAK activity reduced cell proliferation in OX-161 cells and prevented cyst growth in. Our study demonstrates the critical involvement of FAK in renal cyst development, suggests that FAK is a potential therapeutic target in treating patients with ADPKD, and highlights the role of FAK in cAMP-PKA-regulated proliferation.

    Topics: Aminopyridines; Animals; Benzamides; Cell Culture Techniques; Cell Proliferation; Disease Models, Animal; Dogs; Epithelial Cells; Focal Adhesion Protein-Tyrosine Kinases; Humans; Hydroxamic Acids; Mice; Mice, Inbred C57BL; Polycystic Kidney, Autosomal Dominant; Pyrazines; Signal Transduction; Sulfonamides

2021
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy.
    Nature medicine, 2016, Volume: 22, Issue:8

    Single-agent immunotherapy has achieved limited clinical benefit to date in patients with pancreatic ductal adenocarcinoma (PDAC). This may be a result of the presence of a uniquely immunosuppressive tumor microenvironment (TME). Critical obstacles to immunotherapy in PDAC tumors include a high number of tumor-associated immunosuppressive cells and a uniquely desmoplastic stroma that functions as a barrier to T cell infiltration. We identified hyperactivated focal adhesion kinase (FAK) activity in neoplastic PDAC cells as an important regulator of the fibrotic and immunosuppressive TME. We found that FAK activity was elevated in human PDAC tissues and correlated with high levels of fibrosis and poor CD8(+) cytotoxic T cell infiltration. Single-agent FAK inhibition using the selective FAK inhibitor VS-4718 substantially limited tumor progression, resulting in a doubling of survival in the p48-Cre;LSL-Kras(G12D);Trp53(flox/+) (KPC) mouse model of human PDAC. This delay in tumor progression was associated with markedly reduced tumor fibrosis and decreased numbers of tumor-infiltrating immunosuppressive cells. We also found that FAK inhibition rendered the previously unresponsive KPC mouse model responsive to T cell immunotherapy and PD-1 antagonists. These data suggest that FAK inhibition increases immune surveillance by overcoming the fibrotic and immunosuppressive PDAC TME and renders tumors responsive to immunotherapy.

    Topics: Aminopyridines; Animals; Antimetabolites, Antineoplastic; Carcinoma, Pancreatic Ductal; CD8-Positive T-Lymphocytes; Cell Proliferation; Deoxycytidine; Disease Models, Animal; Disease Progression; Fibrosis; Focal Adhesion Protein-Tyrosine Kinases; Gemcitabine; Humans; Immunoblotting; Immunohistochemistry; Immunotherapy; Immunotherapy, Adoptive; Mice; Pancreatic Neoplasms; Programmed Cell Death 1 Receptor; Reverse Transcriptase Polymerase Chain Reaction; Tumor Escape; Tumor Microenvironment

2016
Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity.
    Cell, 2015, Sep-24, Volume: 163, Issue:1

    Focal adhesion kinase (FAK) promotes anti-tumor immune evasion. Specifically, the kinase activity of nuclear-targeted FAK in squamous cell carcinoma (SCC) cells drives exhaustion of CD8(+) T cells and recruitment of regulatory T cells (Tregs) in the tumor microenvironment by regulating chemokine/cytokine and ligand-receptor networks, including via transcription of Ccl5, which is crucial. These changes inhibit antigen-primed cytotoxic CD8(+) T cell activity, permitting growth of FAK-expressing tumors. Mechanistically, nuclear FAK is associated with chromatin and exists in complex with transcription factors and their upstream regulators that control Ccl5 expression. Furthermore, FAK's immuno-modulatory nuclear activities may be specific to cancerous squamous epithelial cells, as normal keratinocytes do not have nuclear FAK. Finally, we show that a small-molecule FAK kinase inhibitor, VS-4718, which is currently in clinical development, also drives depletion of Tregs and promotes a CD8(+) T cell-mediated anti-tumor response. Therefore, FAK inhibitors may trigger immune-mediated tumor regression, providing previously unrecognized therapeutic opportunities.

    Topics: Aminopyridines; Animals; Carcinoma, Squamous Cell; Chemokine CCL5; Disease Models, Animal; Focal Adhesion Protein-Tyrosine Kinases; Humans; Keratinocytes; Mice; Mice, Nude; Skin Neoplasms; T-Lymphocytes, Regulatory; Transcription, Genetic; Tumor Escape

2015