plitidepsin has been researched along with Primary-Myelofibrosis* in 2 studies
1 trial(s) available for plitidepsin and Primary-Myelofibrosis
Article | Year |
---|---|
Evaluation of plitidepsin in patients with primary myelofibrosis and post polycythemia vera/essential thrombocythemia myelofibrosis: results of preclinical studies and a phase II clinical trial.
Previous data established that plitidepsin, a cyclic depsipeptide, exerted activity in a mouse model of myelofibrosis (MF). New preclinical experiments reported herein found that low nanomolar plitidepsin concentrations potently inhibited the proliferation of JAK2V617F-mutated cell lines and reduced colony formation by CD34+ cells of individuals with MF, at least in part through modulation of p27 levels. Cells of MF patients had significantly reduced p27 content, that were modestly increased upon plitidepsin exposure. On these premise, an exploratory phase II trial evaluated plitidepsin 5 mg/m(2) 3-h intravenous infusion administered on days 1 and 15 every 4 weeks (q4wk). Response rate (RR) according to the International Working Group for Myelofibrosis Research and Treatment consensus criteria was 9.1% (95% CI, 0.2-41.3%) in 11 evaluable patients during the first trial stage. The single responder achieved a red cell transfusion independence and stable disease was reported in nine additional patients (81.8%). Eight patients underwent a short-lasting improvement of splenomegaly. In conclusion, plitidepsin 5 mg/m(2) 3-h infusion q4wk was well tolerated but had a modest activity in patients with primary, post-polycythaemia vera or post-essential thrombocythaemia MF. Therefore, this trial was prematurely terminated and we concluded that further clinical trials with plitidepsin as single agent in MF are not warranted. Topics: Aged; Cell Proliferation; Depsipeptides; Female; Humans; Janus Kinase 2; Male; Middle Aged; Peptides, Cyclic; Polycythemia Vera; Primary Myelofibrosis; Splenomegaly; Thrombocythemia, Essential | 2015 |
1 other study(ies) available for plitidepsin and Primary-Myelofibrosis
Article | Year |
---|---|
CXCR4-independent rescue of the myeloproliferative defect of the Gata1low myelofibrosis mouse model by Aplidin.
The discovery of JAK2 mutations in Philadelphia-negative myeloproliferative neoplasms has prompted investigators to evaluate mutation-targeted treatments to restore hematopoietic cell functions in these diseases. However, the results of the first clinical trials with JAK2 inhibitors are not as promising as expected, prompting a search for additional drugable targets to treat these disorders. In this paper, we used the hypomorphic Gata1(low) mouse model of primary myelofibrosis (PMF), the most severe of these neoplasms, to test the hypothesis that defective marrow hemopoiesis and development of extramedullary hematopoiesis in myelofibrosis is due to insufficient p27(Kip1) activity and is treatable by Aplidin, a cyclic depsipeptide that activates p27(Kip1) in several cancer cells. Aplidin restored expression of Gata1 and p27(Kip1) in Gata1(low) hematopoietic cells, proliferation of marrow progenitor cells in vitro and maturation of megakaryocytes in vivo (reducing TGF-beta/VEGF levels released in the microenvironment by immature Gata1(low) megakaryocytes). Microvessel density, fibrosis, bone growth, and marrow cellularity were normal in Aplidin-treated mice and extramedullary hematopoiesis did not develop in liver although CXCR4 expression in Gata1(low) progenitor cells remained low. These results indicate that Aplidin effectively alters the natural history of myelofibrosis in Gata1(low) mice and suggest this drug as candidate for clinical evaluation in PMF. Topics: Age Distribution; Animals; Antineoplastic Agents; Bone Marrow Cells; Cyclin-Dependent Kinase Inhibitor p27; Depsipeptides; Dose-Response Relationship, Drug; Drug Administration Schedule; GATA1 Transcription Factor; Gene Expression Regulation; Male; Mice; Mutation; Peptides, Cyclic; Primary Myelofibrosis; Receptors, CXCR4; Stem Cells; Weight Loss | 2010 |