plastochromanol-8 and Acute-Radiation-Syndrome

plastochromanol-8 has been researched along with Acute-Radiation-Syndrome* in 9 studies

Reviews

1 review(s) available for plastochromanol-8 and Acute-Radiation-Syndrome

ArticleYear
γ-Tocotrienol as a Promising Countermeasure for Acute Radiation Syndrome: Current Status.
    International journal of molecular sciences, 2016, May-03, Volume: 17, Issue:5

    The hazard of ionizing radiation exposure due to nuclear accidents or terrorist attacks is ever increasing. Despite decades of research, still, there is a shortage of non-toxic, safe and effective medical countermeasures for radiological and nuclear emergency. To date, the U.S. Food and Drug Administration (U.S. FDA) has approved only two growth factors, Neupogen (granulocyte colony-stimulating factor (G-CSF), filgrastim) and Neulasta (PEGylated G-CSF, pegfilgrastim) for the treatment of hematopoietic acute radiation syndrome (H-ARS) following the Animal Efficacy Rule. Promising radioprotective efficacy results of γ-tocotrienol (GT3; a member of the vitamin E family) in the mouse model encouraged its further evaluation in the nonhuman primate (NHP) model. These studies demonstrated that GT3 significantly aided the recovery of radiation-induced neutropenia and thrombocytopenia compared to the vehicle controls; these results particularly significant after exposure to 5.8 or 6.5 Gray (Gy) whole body γ-irradiation. The stimulatory effect of GT3 on neutrophils and thrombocytes (platelets) was directly and positively correlated with dose; a 75 mg/kg dose was more effective compared to 37.5 mg/kg. GT3 was also effective against 6.5 Gy whole body γ-irradiation for improving neutrophils and thrombocytes. Moreover, a single administration of GT3 without any supportive care was equivalent, in terms of improving hematopoietic recovery, to multiple doses of Neupogen and two doses of Neulasta with full supportive care (including blood products) in the NHP model. GT3 may serve as an ultimate radioprotector for use in humans, particularly for military personnel and first responders. In brief, GT3 is a promising radiation countermeasure that ought to be further developed for U.S. FDA approval for the ARS indication.

    Topics: Acute Radiation Syndrome; Animals; Blood Platelets; Chromans; Cytokines; Drug Evaluation, Preclinical; Humans; Neutrophils; Radiation-Protective Agents; Vitamin E

2016

Other Studies

8 other study(ies) available for plastochromanol-8 and Acute-Radiation-Syndrome

ArticleYear
Development of gamma-tocotrienol as a radiation medical countermeasure for the acute radiation syndrome: current status and future perspectives.
    Expert opinion on investigational drugs, 2023, Volume: 32, Issue:1

    The possibility of exposure to high doses of total- or partial-body ionizing radiation at a high dose rate due to radiological/nuclear accidents or terrorist attacks is increasing. Despite research and development during the last six decades, there is a shortage of nontoxic, safe, and effective radiation medical countermeasures (MCMs) for radiological and nuclear emergencies. To date, the US Food and Drug Administration (US FDA) has approved only four agents for the mitigation of hematopoietic acute radiation syndrome (H-ARS).. We present the current status of a promising radiation countermeasure, gamma-tocotrienol (GT3; a component of vitamin E) as a radiation MCM that has been investigated in murine and nonhuman primate models of H-ARS. There is significant work with this agent using various omic platforms during the last few years to identify its efficacy biomarkers.. GT3 is a newer type of radioprotector having significant injury-countering potential and is currently under advanced development for H-ARS. As a pre-exposure drug, it requires only single doses, lacks significant toxicity, and has minimal, ambient temperature storage requirements; thus, GT3 appears to be an ideal MCM for military and first responders as well as for storage in the Strategic National Stockpile.

    Topics: Acute Radiation Syndrome; Animals; Humans; Medical Countermeasures; Mice; Radiation-Protective Agents; Vitamin E

2023
Gamma-tocotrienol, a radiation countermeasure, reverses proteomic changes in serum following total-body gamma irradiation in mice.
    Scientific reports, 2022, 03-01, Volume: 12, Issue:1

    Radiological incidents or terrorist attacks would likely expose civilians and military personnel to high doses of ionizing radiation, leading to the development of acute radiation syndrome. We examined the effectiveness of prophylactic administration of a developmental radiation countermeasure, γ-tocotrienol (GT3), in a total-body irradiation (TBI) mouse model. CD2F1 mice received GT3 24 h prior to 11 Gy cobalt-60 gamma-irradiation. This dose of radiation induces severe hematopoietic acute radiation syndrome and moderate gastrointestinal injury. GT3 provided 100% protection, while the vehicle control group had 100% mortality. Two-dimensional differential in-gel electrophoresis was followed by mass spectrometry and Ingenuity Pathway Analysis (IPA). Analysis revealed a change in expression of 18 proteins in response to TBI, and these changes were reversed with prophylactic treatment of GT3. IPA revealed a network of associated proteins involved in cellular movement, immune cell trafficking, and inflammatory response. Of particular interest, significant expression changes in beta-2-glycoprotein 1, alpha-1-acid glycoprotein 1, alpha-2-macroglobulin, complement C3, mannose-binding protein C, and major urinary protein 6 were noted after TBI and reversed with GT3 treatment. This study reports the untargeted approach, the network, and specific serum proteins which could be translated as biomarkers of both radiation injury and protection by countermeasures.

    Topics: Acute Radiation Syndrome; Animals; Chromans; Gamma Rays; Glycoproteins; Mice; Proteomics; Radiation-Protective Agents; Vitamin E; Whole-Body Irradiation

2022
Effects of Gamma-Tocotrienol on Intestinal Injury in a GI-Specific Acute Radiation Syndrome Model in Nonhuman Primate.
    International journal of molecular sciences, 2022, Apr-22, Volume: 23, Issue:9

    The gastrointestinal (GI) system is highly susceptible to irradiation. Currently, there is no Food and Drug Administration (FDA)-approved medical countermeasures for GI radiation injury. The vitamin E analog gamma-tocotrienol (GT3) is a promising radioprotector in mice and nonhuman primates (NHP). We evaluated GT3-mediated GI recovery in total-body irradiated (TBI) NHPs. Sixteen rhesus macaques were divided into two groups; eight received vehicle and eight GT3 24 h prior to 12 Gy TBI. Proximal jejunum was assessed for structural injuries and crypt survival on day 4 and 7. Apoptotic cell death and crypt cell proliferation were assessed with TUNEL and Ki-67 immunostaining. Irradiation induced significant shortening of the villi and reduced mucosal surface area. GT3 induced an increase in crypt depth at day 7, suggesting that more stem cells survived and proliferated after irradiation. GT3 did not influence crypt survival after irradiation. GT3 treatment caused a significant decline in TUNEL-positive cells at both day 4 (p < 0.03) and 7 (p < 0.0003). Importantly, GT3 induced a significant increase in Ki-67-positive cells at day 7 (p < 0.05). These data suggest that GT3 has radioprotective function in intestinal epithelial and crypt cells. GT3 should be further explored as a prophylactic medical countermeasure for radiation-induced GI injury.

    Topics: Acute Radiation Syndrome; Animals; Chromans; Disease Models, Animal; Intestines; Ki-67 Antigen; Macaca mulatta; Radiation-Protective Agents; Vitamin E

2022
A Metabolomic Serum Signature from Nonhuman Primates Treated with a Radiation Countermeasure, Gamma-tocotrienol, and Exposed to Ionizing Radiation.
    Health physics, 2018, Volume: 115, Issue:1

    The search for and development of radiation countermeasures to treat acute lethal radiation injury has been underway for the past six decades, resulting in the identification of multiple classes of radiation countermeasures. However, to date only granulocyte colony-stimulating factor (Neupogen) and PEGylated granulocyte colony-stimulating factor (Neulasta) have been approved by the U.S. Food and Drug Administration for the treatment of hematopoietic acute radiation syndrome. Gamma-tocotrienol has demonstrated radioprotective efficacy in murine and nonhuman primate models. Currently, this agent is under advanced development as a radioprotector, and the authors are trying to identify its efficacy biomarkers. In this study, global metabolomic changes were analyzed using ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry. The pilot study using 16 nonhuman primates (8 nonhuman primates each in gamma-tocotrienol- and vehicle-treated groups), with samples obtained from gamma-tocotrienol-treated and irradiated nonhuman primates, demonstrates several metabolites that are altered after irradiation, including compounds involved in fatty acid beta-oxidation, purine catabolism, and amino acid metabolism. The machine-learning algorithm, Random Forest, separated control, irradiated gamma-tocotrienol-treated, and irradiated vehicle-treated nonhuman primates at 12 h and 24 h as evident in a multidimensional scaling plot. Primary metabolites validated included carnitine/acylcarnitines, amino acids, creatine, and xanthine. Overall, gamma-tocotrienol administration reduced high fluctuations in serum metabolite levels, suggesting an overall beneficial effect on animals exposed to radiation. This initial assessment also highlights the utility of metabolomics in determining underlying physiological mechanisms responsible for the radioprotective efficacy of gamma-tocotrienol.

    Topics: Acute Radiation Syndrome; Animals; Biomarkers; Chromans; Dose-Response Relationship, Radiation; Female; Macaca mulatta; Male; Metabolome; Metabolomics; Pilot Projects; Radiation Exposure; Radiation Injuries, Experimental; Radiation-Protective Agents; Radiation, Ionizing; Vitamin E

2018
A Metabolomic and Lipidomic Serum Signature from Nonhuman Primates Administered with a Promising Radiation Countermeasure, Gamma-Tocotrienol.
    International journal of molecular sciences, 2017, Dec-28, Volume: 19, Issue:1

    The development of radiation countermeasures for acute radiation syndrome (ARS) has been underway for the past six decades, leading to the identification of multiple classes of radiation countermeasures. However, to date, only two growth factors (Neupogen and Neulasta) have been approved by the United States Food and Drug Administration (US FDA) for the mitigation of hematopoietic acute radiation syndrome (H-ARS). No radioprotector for ARS has been approved by the FDA yet. Gamma-tocotrienol (GT3) has been demonstrated to have radioprotective efficacy in murine as well as nonhuman primate (NHP) models. Currently, GT3 is under advanced development as a radioprotector that can be administered prior to radiation exposure. We are studying this agent for its safety profile and efficacy using the NHP model. In this study, we analyzed global metabolomic and lipidomic changes using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) in serum samples of NHPs administered GT3. Our study, using 12 NHPs, demonstrates that alterations in metabolites manifest only 24 h after GT3 administration. Furthermore, metabolic changes are associated with transient increase in the bioavailability of antioxidants, including lactic acid and cholic acid and anti-inflammatory metabolites 3 deoxyvitamin D3, and docosahexaenoic acid. Taken together, our results show that the administration of GT3 to NHPs causes metabolic shifts that would provide an overall advantage to combat radiation injury. This initial assessment also highlights the utility of metabolomics and lipidomics to determine the underlying physiological mechanisms involved in the radioprotective efficacy of GT3.

    Topics: Acute Radiation Syndrome; Animals; Antioxidants; Biological Availability; Cholecalciferol; Cholic Acid; Chromans; Docosahexaenoic Acids; Female; Humans; Lactic Acid; Lipid Metabolism; Macaca mulatta; Male; Metabolome; Radiation-Protective Agents; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Vitamin E

2017
Radioprotective Efficacy of Gamma-Tocotrienol in Nonhuman Primates.
    Radiation research, 2016, Volume: 185, Issue:3

    The search for treatments to counter potentially lethal radiation-induced injury over the past several decades has led to the development of multiple classes of radiation countermeasures. However, to date only granulocyte colony-stimulating factor (G-CSF; filgrastim, Neupogen)and pegylated G-CSF (pegfilgrastim, Neulasta) have been approved by the United States Food and Drug Administration (FDA) for the treatment of hematopoietic acute radiation syndrome (ARS). Gamma-tocotrienol (GT3) has demonstrated strong radioprotective efficacy in the mouse model, indicating the need for further evaluation in a large animal model. In this study, we evaluated GT3 pharmacokinetics (PK) and efficacy at different doses of cobalt-60 gamma radiation (0.6 Gy/min) using the nonhuman primate (NHP) model. The PK results demonstrated increased area under the curve with increasing drug dose and half-life of GT3. GT3 treatment resulted in reduced group mean neutropenia by 3-5 days and thrombocytopenia by 1-5 days. At 5.8 and 6.5 Gy total-body irradiation, GT3 treatment completely prevented thrombocytopenia. The capability of GT3 to reduce severity and duration of neutropenia and thrombocytopenia was dose dependent; 75 mg/kg treatment was more effective than 37.5 mg/kg treatment after a 5.8 Gy dose. However, the higher GT3 dose (75 mg/kg) was associated with higher frequency of adverse skin effects (small abscess) at the injection site. GT3 treatment of irradiated NHPs caused no significant difference in animal survival at 60 days postirradiation, however, low mortality was observed in irradiated, vehicle-treated groups as well. The data from this pilot study further elucidate the role and pharmacokinetics of GT3 in hematopoietic recovery after irradiation in a NHP model, and demonstrate the potential of GT3 as a promising radioprotector.

    Topics: Acute Radiation Syndrome; Animals; Chromans; Cobalt Radioisotopes; Disease Models, Animal; Dose-Response Relationship, Radiation; Gamma Rays; Humans; Macaca mulatta; Primates; Radiation-Protective Agents; Thrombocytopenia; United States; Vitamin E; Whole-Body Irradiation

2016
Progenitor Cell Mobilization by Gamma-tocotrienol: A Promising Radiation Countermeasure.
    Health physics, 2016, Volume: 111, Issue:2

    This article reviews studies of progenitor mobilization with gamma-tocotrienol (GT3), a tocol under advanced development as a radiation countermeasure for acute radiation syndrome (ARS). GT3 protects mice against high doses of ionizing radiation and induces high levels of granulocyte colony-stimulating factor (G-CSF). GT3-induced G-CSF in conjunction with AMD3100 (a chemokine receptor antagonist clinically used to improve the yield of mobilized progenitors) mobilizes progenitors; these mobilized progenitors mitigate injury when infused to mice exposed to acute, high-dose ionizing radiation. The administration of a G-CSF antibody to GT3-injected donor mice abrogated the radiomitigative efficacy of blood or peripheral blood mononuclear cells (PBMC) in irradiated recipient mice. The efficacy of GT3-injected donor mice blood or PBMC was comparable to a recently published article involving blood or mononuclear cells obtained from mice injected with G-CSF. The injected progenitors were found to localize in various tissues of irradiated hosts. The authors demonstrate the efficacy of a bridging therapy in a preclinical animal model that allows the lymphohematopoietic system of severely immunocompromised mice to recover. This suggests that GT3 is a highly effective agent for radioprotection and mobilizing progenitors with significant therapeutic potential. Therefore, GT3 may be considered for further translational development and ultimately for use in humans.

    Topics: Acute Radiation Syndrome; Animals; Cell Movement; Cells, Cultured; Chromans; Hematopoietic Stem Cell Mobilization; Hematopoietic Stem Cell Transplantation; Hematopoietic Stem Cells; Male; Mice; Radiation-Protective Agents; Treatment Outcome; Vitamin E

2016
Development of Orally Administered γ-Tocotrienol (GT3) Nanoemulsion for Radioprotection.
    International journal of molecular sciences, 2016, Dec-24, Volume: 18, Issue:1

    The purpose of this study was two-fold: (1) to formulate γ-tocotrienol (GT3) in a nanoemulsion formulation as a prophylactic orally administered radioprotective agent; and (2) to optimize the storage conditions to preserve the structural integrity of both the formulation and the compound. γ-tocotrienol was incorporated into a nanoemulsion and lyophilized with lactose. Ultra performance liquid chromatography-mass spectroscopy (UPLC-MS) was used to monitor the chemical stability of GT3 over time, the particle size and ζ potential, and scanning electron microscopy (SEM) were used to study the physical stability of the nanoemulsion. Radioprotective and toxicity studies were performed in mice. The liquid formulation exhibited GT3 degradation at all storage temperatures. Lyophilization, in the presence of lactose, significantly reduced GT3 degradation. Both the liquid and lyophilized nanoemulsions had stable particle size and ζ potential when stored at 4 °C. Toxicity studies of the nanoemulsion resulted in no observable toxicity in mice at an oral dose of 600 mg/kg GT3. The nano-formulated GT3 (300 mg/kg) demonstrated enhanced survival efficacy compared to GT3 alone (200 and 400 mg/kg) in CD2F1 mice exposed to total body gamma radiation. The optimal long-term storage of formulated GT3 is as a powder at -20 °C to preserve drug and formulation integrity. Formulation of GT3 as a nanoemulsion for oral delivery as a prophylactic radioprotectant shows promise and warrants further investigation.

    Topics: Acute Radiation Syndrome; Administration, Oral; Animals; Chromans; Drug Stability; Emulsions; Lactose; Male; Mice; Radiation-Protective Agents; Vitamin E

2016