pkh-26 has been researched along with Joint-Diseases* in 2 studies
2 other study(ies) available for pkh-26 and Joint-Diseases
Article | Year |
---|---|
Engraftment of autologous bone marrow cells into the injured cranial cruciate ligament in dogs.
Current research indicates that exogenous stem cells may accelerate reparative processes in joint disease but, no previous studies have evaluated whether bone marrow cells (BMCs) target the injured cranial cruciate ligament (CCL) in dogs. The objective of this study was to investigate engraftment of BMCs following intra-articular injection in dogs with spontaneous CCL injury. Autologous PKH26-labelled BMCs were injected into the stifle joint of eight client-owned dogs with CCL rupture. The effects of PKH26 staining on cell viability and PKH26 fluorescence intensity were analysed in vitro using a MTT assay and flow cytometry. Labelled BMCs in injured CCL tissue were identified using fluorescence microscopy of biopsies harvested 3 and 13 days after intra-articular BMC injection. The intensity of PKH26 fluorescence declines with cell division but was still detectable after 16 days. Labelling with PKH26 had no detectable effect on cell viability or proliferation. Only rare PKH26-positive cells were present in biopsies of the injured CCL in 3/7 dogs and in synovial fluid in 1/7 dogs. No differences in transforming growth factor-β1, and interleukin-6 before and after BMC treatment were found and no clinical complications were noted during a 1 year follow-up period. In conclusion, BMCs were shown to engraft to the injured CCL in dogs when injected into the articular cavity. Intra-articular application of PKH26-labelled cultured mesenchymal stem cells is likely to result in higher numbers of engrafted cells that can be tracked using this method in a clinical setting. Topics: Animals; Anterior Cruciate Ligament Injuries; Bone Marrow Transplantation; Dog Diseases; Dogs; Fluorescent Dyes; Injections, Intra-Articular; Joint Diseases; Organic Chemicals; Rupture | 2014 |
Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation.
Autologous chondrocyte implantation (ACI) is an established technique to repair joint surface defects. Although there is some indirect evidence that the expanded chondrocytes are required to achieve proper healing, the role they play in the repair process is not clear yet. To monitor the persistence and the phenotype of the injected chondrocytes in the repair tissue (RT) we have optimized a fluorescent labeling protocol for articular chondrocytes, which allows cell tracking in vivo for up to 14 weeks, using the fluorescent dye PKH26. We have combined in vivo cell tracking, with the immune-detection of collagen type II protein in a goat model of ACI. Our data indicate that the implanted cells can persist for at least 14 weeks in the defects, can participate in the integration with the surrounding tissues, and become structural part of the RT, rich in collagen type II and sulfated proteoglycans. Albeit with a small number of samples, our data provide proof of principal that the implanted chondrocytes can contribute to structural cartilage repair in a goat model of ACI. Topics: Animals; Cartilage; Chondrocytes; Disease Models, Animal; Extracellular Matrix; Female; Fluorescent Dyes; Goats; Graft Survival; Joint Diseases; Organic Chemicals; Phenotype; Surgical Flaps | 2003 |