pkh-26 has been researched along with Inflammation* in 4 studies
4 other study(ies) available for pkh-26 and Inflammation
Article | Year |
---|---|
Novel method to assess resident alveolar macrophage efferocytosis of apoptotic neutrophils by flow cytometry.
Macrophage efferocytosis of apoptotic neutrophils (PMNs) plays a key role in the resolution of inflammation. In these studies, we describe a novel flow cytometric method to assess efferocytosis of apoptotic PMNs. Resident alveolar macrophages and PMNs were collected from lungs of mice exposed to inhaled ozone (0.8 ppm, 3 h) followed by lipopolysaccharide (3 mg/kg, i.v.) to induce acute lung injury. PMNs were labeled with PKH26 or DilC Topics: Animals; Apoptosis; Flow Cytometry; Inflammation; Macrophages, Alveolar; Mice; Neutrophils; Phagocytosis | 2023 |
Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation.
During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied.. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD).. Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice.. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities. Topics: Administration, Intranasal; Adoptive Transfer; Animals; Azacitidine; Bone Marrow Cells; Bronchoalveolar Lavage Fluid; Cell Count; Decitabine; Dendritic Cells; Disease Models, Animal; DNA Modification Methylases; Female; Fluorescein-5-isothiocyanate; Fluorescent Dyes; Immunoglobulin E; Immunoglobulin G; Inflammation; Lipopolysaccharides; Lymph Nodes; Mice, Inbred C57BL; Organic Chemicals; Ovalbumin; Radiation Chimera; Respiratory Hypersensitivity; Skin | 2015 |
Protective effects of Gingko biloba extract 761 on myocardial infarction via improving the viability of implanted mesenchymal stem cells in the rat heart.
When introduced into the infarcted heart, bone marrow‑derived mesenchymal stem cells (MSCs) prevent the heart from deleterious remodeling and improve its recovery. The aim of the present study was to investigate the effects of Ginkgo biloba extract (EGb) 761 on the infarcted myocardium microenvironment following MSC transplantation. The established rat myocardial infarction (MI) model, with implanted PKH‑26 marked MSCs (1x105 cells), were randomly divided into two groups: The control group (injected with normal saline) and the EGb 761 treatment group (injected with 100 mg/kg/day EGb 761). The following indices for cardiac function, including the extent of inflammation, oxidative stress, MSC apoptosis and MSC differentiation were measured 1, 2 and 7 days after treatment. The anti‑inflammatory effect of EGb 761 was observed by histological examination. Compared with the respective control group, the malondialdehyde content significantly decreased and the superoxide dismutase, catalase and glutathione peroxidase activity significantly increased in the EGb761‑treated groups. In addition, the apoptotic index gradually decreased (P<0.05) with the extension of MI time in the EGb761-treated groups compared to the respective control groups, suggesting that EGb761 exhbits anti-oxidative effects. In addition, the level of the Fas protein was positively correlated with the implanted MSC apoptotic ratio. Following 7 days of MSC transplantation with EGb 761 treatment, the expression of cTnI in PKH26‑labeled MSCs was observed in the transplanted myocardium. Cardiac function, including the ejection fraction, left ventricular end‑systolic pressure and dp/dtmax significantly increased, and the left ventricular end diastolic diameters, left ventricular end‑diastolic volumes and left ventricular end‑diastolic pressure significantly decreased (P<0.05, vs. the control group). The results demonstrated that EGb 761 is important in improving cardiac function and the infarcted myocardium microenvironment. The present study indicated that the protective effects of EGb 761 on the infarcted myocardium may be mediated by improving the viability and the differentiation of the implanted MSCs into cardiomyocytes. Topics: Animals; Apoptosis; Biomarkers; Blotting, Western; Cardiotonic Agents; Cell Differentiation; Cell Survival; Disease Models, Animal; Electrocardiography; fas Receptor; Ginkgo biloba; Inflammation; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Myocardial Infarction; Myocardium; Organic Chemicals; Oxidation-Reduction; Oxidative Stress; Plant Extracts; Rats; Rats, Sprague-Dawley; Ultrasonography | 2014 |
Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity.
Although recent studies show that adipose tissue macrophages (ATMs) participate in the inflammatory changes in obesity and contribute to insulin resistance, the properties of these cells are not well understood. We hypothesized that ATMs recruited to adipose tissue during a high-fat diet have unique inflammatory properties compared with resident tissue ATMs. Using a dye (PKH26) to pulse label ATMs in vivo, we purified macrophages recruited to white adipose tissue during a high-fat diet. Comparison of gene expression in recruited and resident ATMs using real-time RT-PCR and cDNA microarrays showed that recruited ATMs overexpress genes important in macrophage migration and phagocytosis, including interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and C-C chemokine receptor 2 (CCR2). Many of these genes were not induced in ATMs from high-fat diet-fed CCR2 knockout mice, supporting the importance of CCR2 in regulating recruitment of inflammatory ATMs during obesity. Additionally, expression of Apoe was decreased, whereas genes important in lipid metabolism, such as Pparg, Adfp, Srepf1, and Apob48r, were increased in the recruited macrophages. In agreement with this, ATMs from obese mice had increased lipid content compared with those from lean mice. These studies demonstrate that recruited ATMs in obese animals represent a subclass of macrophages with unique properties. Topics: Adipose Tissue; Animals; Diet; Dietary Fats; Fluorescent Dyes; Inflammation; Macrophages; Male; Mice; Mice, Inbred C57BL; Obesity; Organic Chemicals | 2007 |