pituitrin has been researched along with Autistic-Disorder* in 24 studies
11 review(s) available for pituitrin and Autistic-Disorder
Article | Year |
---|---|
The promiscuity of the oxytocin-vasopressin systems and their involvement in autism spectrum disorder.
Oxytocin and vasopressin systems have been studied separately in autism spectrum disorder (ASD). Here, we provide evidence from an evolutionary and neuroscience perspective about the shared mechanisms and the common roles in regulating social behaviors. We first discuss findings on the evolutionary history of oxytocin and vasopressin ligands and receptors that highlight their common origin and clarify the evolutionary background of the crosstalk between them. Second, we conducted a comprehensive review of the increasing evidence for the role of both neuropeptides in regulating social behaviors. Third, we reviewed the growing evidence on the associations between the oxytocin/vasopressin systems and ASD, which includes oxytocin and vasopressin dysfunction in animal models of autism and in human patients, and the impact of treatments targeting the oxytocin or the vasopressin systems in children and in adults. Here, we highlight the potential of targeting the oxytocin/vasopressin systems to improve social deficits observed in ASD and the need for further investigations on how to transfer these research innovations into clinical applications. Topics: Animals; Autism Spectrum Disorder; Autistic Disorder; Humans; Oxytocin; Social Behavior; Vasopressins | 2021 |
A Novel Role of CD38 and Oxytocin as Tandem Molecular Moderators of Human Social Behavior.
Oxytocin is an important modulator of human affiliative behaviors, including social skills, human pair bonding, and friendship. CD38 will be discussed as an immune marker and then in more detail the mechanisms of CD38 on releasing brain oxytocin. Mention is made of the paralogue of oxytocin, vasopressin, that has often overlapping and complementary functions with oxytocin on social behavior. Curiously, vasopressin does not require CD38 to be released from the brain. This review discusses the social salience hypothesis of oxytocin action, a novel view of how this molecule influences much of human social behaviors often in contradictory ways. The oxytocinergic-vasopressinergic systems are crucial modulators of broad aspects of human personality. Of special interest are studies of these two hormones in trust related behavior observed using behavioral economic games. This review also covers the role of oxytocin in parenting and parental attachment. In conclusion, the effects of oxytocin on human behavior depend on the individual's social context and importantly as well, the individual's cultural milieu, viz. East and West. ACRONYMS: ACC = Anterior Cingulate ADP = Adenosine diphosphate AQ = Autism Quotient cADPR = Cyclic ADP-ribose CNS = Central nervous system DA = Dopamine eQTLC = Expression Quantitative Trait Loci LC-NE = Locus Coeruleus-Norepinephrine MRI = Magnetic Resonance Imaging OFC = Orbitofrontal cortices OXT = Oxytocin RAGE = Receptor for advanced glycation end-products SARM1 = Sterile Alpha and toll/interleukin-1 receptor motif-containing 1 TRPM2= Transient Receptor Potential Cation Channel Subfamily M Member 2 AVP = Vasopressin. Topics: ADP-ribosyl Cyclase 1; Autistic Disorder; Humans; Membrane Glycoproteins; Oxytocin; Receptor for Advanced Glycation End Products; Receptors, Oxytocin; Social Behavior; Vasopressins | 2020 |
Tinkering with the vasopressin pathway in autism.
Two clinical trials targeting the vasopressin pathway in autism highlight continuing challenges in outcome measures and statistical power. Topics: Adaptation, Psychological; Autism Spectrum Disorder; Autistic Disorder; Humans; Male; Receptors, Vasopressin; Vasopressins | 2019 |
Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience.
Oxytocin- and vasopressin-related systems are present in invertebrate and vertebrate bilaterian animals, including humans, and exhibit conserved neuroanatomical and functional properties. In vertebrates, these systems innervate conserved neural networks that regulate social learning and behavior, including conspecific recognition, social attachment, and parental behavior. Individual and species-level variation in central organization of oxytocin and vasopressin systems has been linked to individual and species variation in social learning and behavior. In humans, genetic polymorphisms in the genes encoding oxytocin and vasopressin peptides and/or their respective target receptors have been associated with individual variation in social recognition, social attachment phenotypes, parental behavior, and psychiatric phenotypes such as autism. Here we describe both conserved and variable features of central oxytocin and vasopressin systems in the context of social behavioral diversity, with a particular focus on neural networks that modulate social learning, behavior, and salience of sociosensory stimuli during species-typical social contexts. Topics: Animals; Autistic Disorder; Humans; Nerve Net; Oxytocin; Social Behavior; Vasopressins | 2017 |
The contributions of oxytocin and vasopressin pathway genes to human behavior.
Arginine vasopressin (AVP) and oxytocin (OXT) are social hormones and mediate affiliative behaviors in mammals and as recently demonstrated, also in humans. There is intense interest in how these simple nonapeptides mediate normal and abnormal behavior, especially regarding disorders of the social brain such as autism that are characterized by deficits in social communication and social skills. The current review examines in detail the behavioral genetics of the first level of human AVP-OXT pathway genes including arginine vasopressin 1a receptor (AVPR1a), oxytocin receptor (OXTR), AVP (AVP-neurophysin II [NPII]) and OXT (OXT neurophysin I [NPI]), oxytocinase/vasopressinase (LNPEP), ADP-ribosyl cyclase (CD38) and arginine vasopressin 1b receptor (AVPR1b). Wherever possible we discuss evidence from a variety of research tracks including molecular genetics, imaging genomics, pharmacology and endocrinology that support the conclusions drawn from association studies of social phenotypes and detail how common polymorphisms in AVP-OXT pathway genes contribute to the behavioral hard wiring that enables individual Homo sapiens to interact successfully with conspecifics. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. Topics: ADP-ribosyl Cyclase 1; Animals; Autistic Disorder; Dancing; Feeding Behavior; Gene Expression; Genomics; Humans; Microsatellite Repeats; Music; Oxytocin; Polymorphism, Single Nucleotide; Receptors, Oxytocin; Receptors, Vasopressin; Retinoids; Social Behavior; Substance-Related Disorders; Vasopressins | 2012 |
Neuropeptides and social behaviour: effects of oxytocin and vasopressin in humans.
The fundamental ability to form attachment is indispensable for human social relationships. Impairments in social behaviour are associated with decreased quality of life and psychopathological states. In non-human mammals, the neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) are key mediators of complex social behaviours, including attachment, social recognition and aggression. In particular, OXT reduces behavioural and neuroendocrine responses to social stress and seems both to enable animals to overcome their natural avoidance of proximity and to inhibit defensive behaviour, thereby facilitating approach behaviour. AVP has primarily been implicated in male-typical social behaviours, including aggression and pair-bond formation, and mediates anxiogenic effects. Initial studies in humans suggest behavioural, neural, and endocrine effects of both neuropeptides, similar to those found in animal studies. This review focuses on advances made to date in the effort to understand the role of OXT and AVP in human social behaviour. First, the literature on OXT and AVP and their involvement in social stress and anxiety, social cognition, social approach, and aggression is reviewed. Second, we discuss clinical implications for mental disorders that are associated with social deficits (e.g. autism spectrum disorder, borderline personality disorder). Finally, a model of the interactions of anxiety and stress, social approach behaviour, and the oxytocinergic system is presented, which integrates the novel approach of a psychobiological therapy in psychopathological states. Topics: Aggression; Animals; Anxiety; Autistic Disorder; Borderline Personality Disorder; Cognition; Humans; Interpersonal Relations; Models, Animal; Neuropeptides; Oxytocin; Recognition, Psychology; Social Behavior; Stress, Psychological; Vasopressins | 2008 |
The vasopressin system--from antidiuresis to psychopathology.
Vasopressin is a neuropeptide with multiple functions. In addition to its predominantly antidiuretic action after peripheral secretion from the posterior pituitary, it seems to fulfill--together with its receptor subtype--all requirements for a neuropeptide system critically involved in higher brain functions, including cognitive abilities and emotionality. Following somatodendritic and axonal release in distinct brain areas, vasopressin acts as a neuromodulator and neurotransmitter in multiple and varying modes of interneuronal communication. Accordingly, changes in vasopressin expression and release patterns may have wide-spread consequences. As shown in mice, rats, voles, and humans, central vasopressin release along a continuum may be beneficial to the individual, serving to adjust physiology and behavior in stressful scenarios, possibly at the potential expense of increasing susceptibility to disease. Indeed, if over-expressed and over-released, it may contribute to hyper-anxiety and depression-like behaviors. A vasopressin deficit, in turn, may cause signs of both diabetes insipidus and total hypo-anxiety. The identification of genetic polymorphisms underlying these phenomena does not only explain individual variation in social memory and emotionality, but also help to characterize potential targets for therapeutic interventions. The capability of both responding to stressful stimuli and mediating genetic polymorphisms makes the vasopressin system a key mediator for converging (i.e., environmentally and genetically driven) behavioral regulation. Topics: Animals; Autistic Disorder; Brain; Diabetes Insipidus; Emotions; Humans; Mental Disorders; Polymorphism, Genetic; Schizophrenia; Social Behavior; Vasopressins | 2008 |
Some assessments of the amygdala role in suprahypothalamic neuroendocrine regulation: a minireview.
The amygdala is a complex structure playing primary role in the processing and memorizing of emotional reactions. The amygdalae send impulses to the hypothalamus for activation of the sympathetic nervous system, to the reticular nucleus for increasing reflexes, to the nuclei of the trigeminal nerve and facial nerve for facial expressions of fear, and to the ventral tegmental area, locus coeruleus, and laterodorsal tegmental nucleus for activation of dopamine, norepinephrine and epinephrine release. The amygdala plays a key role in what has been called the "general-purpose defense response control network" and reacts in response to unpleasant sights, sensations, or smells. Anger, avoidance, and defensiveness are emotions activated largely by the amygdale. The amygdala is responsible for activating ancestral signs of distress such as "tense-mouth" and defensive postures such as crouching. Poor functioning of amygdala has also been associated with anxiety, autism, depression, narcolepsy, post-traumatic stress disorder, phobias, frontotemporal dementia, and schizophrenia. Impairment of emotional event memory in patients with Alzheimer's disease also correlates with the intensity of amygdalar damage. All these events speak out for the importance to preserve the normal function of the amygdala which can only be achieved by constant deepening of our knowledge about this unique structure. Topics: Alzheimer Disease; Amygdala; Anxiety Disorders; Autistic Disorder; Corticotropin-Releasing Hormone; Dementia; Emotions; gamma-Aminobutyric Acid; Humans; Neurotransmitter Agents; Oxytocin; Schizophrenia; Vasopressins | 2007 |
The neuroscience of affiliation: forging links between basic and clinical research on neuropeptides and social behavior.
Animal studies point to the role of two neuropeptides-oxytocin and vasopressin-in the regulation of affiliative behaviors including mating, pair-bond formation, maternal/parenting behavior, and attachment. These findings may have important implications for understanding and treating clinical disorders marked by social deficits and/or disrupted attachment. This review focuses on advances made to date in the effort to forge links between basic and clinical research in the area of neuropeptides and social behavior. The literature on oxytocin and its involvement in stress response, affiliation, and prosocial behavior is reviewed, and the implications of these findings for such disorders as autism as well as other social and stress-related disorders including social phobia, post-traumatic stress disorder, and some personality disorders are considered. Finally, unresolved issues and directions for future research are discussed. Topics: Animals; Autistic Disorder; Humans; Oxytocin; Personality Disorders; Phobic Disorders; Social Behavior; Stress Disorders, Post-Traumatic; Stress, Psychological; Vasopressins | 2006 |
Oxytocin, vasopressin and pair bonding: implications for autism.
Understanding the neurobiological substrates regulating normal social behaviours may provide valuable insights in human behaviour, including developmental disorders such as autism that are characterized by pervasive deficits in social behaviour. Here, we review the literature which suggests that the neuropeptides oxytocin and vasopressin play critical roles in modulating social behaviours, with a focus on their role in the regulation of social bonding in monogamous rodents. Oxytocin and vasopressin contribute to a wide variety of social behaviours, including social recognition, communication, parental care, territorial aggression and social bonding. The effects of these two neuropeptides are species-specific and depend on species-specific receptor distributions in the brain. Comparative studies in voles with divergent social structures have revealed some of the neural and genetic mechanisms of social-bonding behaviour. Prairie voles are socially monogamous; males and females form long-term pair bonds, establish a nest site and rear their offspring together. In contrast, montane and meadow voles do not form a bond with a mate and only the females take part in rearing the young. Species differences in the density of receptors for oxytocin and vasopressin in ventral forebrain reward circuitry differentially reinforce social-bonding behaviour in the two species. High levels of oxytocin receptor (OTR) in the nucleus accumbens and high levels of vasopressin 1a receptor (V1aR) in the ventral pallidum contribute to monogamous social structure in the prairie vole. While little is known about the genetic factors contributing to species-differences in OTR distribution, the species-specific distribution pattern of the V1aR is determined in part by a species-specific repetitive element, or 'microsatellite', in the 5' regulatory region of the gene encoding V1aR (avpr1a). This microsatellite is highly expanded in the prairie vole (as well as the monogamous pine vole) compared to a very short version in the promiscuous montane and meadow voles. These species differences in microsatellite sequence are sufficient to change gene expression in cell culture. Within the prairie vole species, intraspecific variation in the microsatellite also modulates gene expression in vitro as well as receptor distribution patterns in vivo and influences the probability of social approach and bonding behaviour. Similar genetic variation in the human AVPR1A may contribute to variations in hum Topics: Animals; Autistic Disorder; Humans; Oxytocin; Pair Bond; Vasopressins | 2006 |
Oxytocin, vasopressin, and autism: is there a connection?
Autism is a poorly understood developmental disorder characterized by social impairment, communication deficits, and compulsive behavior. The authors review evidence from animal studies demonstrating that the nonapeptides, oxytocin and vasopressin, have unique effects on the normal expression of species-typical social behavior, communication, and rituals. Based on this evidence, they hypothesize that an abnormality in oxytocin or vasopressin neurotransmission may account for several features of autism. As autism appears to be a genetic disorder, mutations in the various peptide, peptide receptor, or lineage-specific developmental genes could lead to altered oxytocin or vasopressin neurotransmission. Many of these genes have been cloned and sequenced, and several polymorphisms have been identified. Recent gene targeting studies that alter expression of either the peptides or their receptors in the rodent brain partially support the autism hypothesis. While previous experience suggests caution in hypothesizing a cause or suggesting a treatment for autism, the available preclinical evidence with oxytocin and vasopressin recommends the need for clinical studies using gene scanning, pharmacological and neurobiological approaches. Topics: Autistic Disorder; Chromosome Aberrations; Chromosome Disorders; Female; Gene Expression; Humans; Male; Oxytocin; Point Mutation; Polymorphism, Genetic; Social Behavior; Vasopressins | 1999 |
13 other study(ies) available for pituitrin and Autistic-Disorder
Article | Year |
---|---|
Correction of vasopressin deficit in the lateral septum ameliorates social deficits of mouse autism model.
Intellectual and social disabilities are common comorbidities in adolescents and adults with MAGE family member L2 (MAGEL2) gene deficiency characterizing the Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. The cellular and molecular mechanisms underlying the risk for autism in these syndromes are not understood. We asked whether vasopressin functions are altered by MAGEL2 deficiency and whether a treatment with vasopressin could alleviate the disabilities of social behavior. We used Magel2-knockout mice (adult males) combined with optogenetic or pharmacological tools to characterize disease modifications in the vasopressinergic brain system and monitor its impact on neurophysiological and behavioral functions. We found that the activation of vasopressin neurons and projections in the lateral septum were inappropriate for performing a social habituation/discrimination task. Mechanistically, the lack of vasopressin impeded the deactivation of somatostatin neurons in the lateral septum, which predicted social discrimination deficits. Correction of vasopressin septal content by administration or optogenetic stimulation of projecting axons suppressed the activity of somatostatin neurons and ameliorated social behavior. This preclinical study identified vasopressin in the lateral septum as a key factor in the pathophysiology of Magel2-related neurodevelopmental syndromes. Topics: Animals; Antigens, Neoplasm; Autistic Disorder; Behavior, Animal; Disease Models, Animal; Humans; Male; Mice; Mice, Knockout; Neurons; Proteins; Septal Nuclei; Social Behavior; Vasopressins | 2021 |
Postnatal AVP treatments prevent social deficit in adolescence of valproic acid-induced rat autism model.
Studies have shown that arginine-vasopressin (AVP) is an important neuropeptide regulating social behaviors. The present work aimed to detect changes in the AVP numbers and level in a valproic acid (VPA)-induced rat model of autism and the underlying mechanism of its pathogenesis. Our results indicated that infants exposed to VPA showed obviously impaired communication and repetitive behaviors with reduced number of AVP-ir cells in paraventricular nucleus (PVN) and cerebrospinal fluid (CSF). The postnatal subcutaneous injection of AVP can alleviate social preference deficits and stereotyped behaviors, accompanied with the increase of the AVP concentrations in the CSF. We concluded that AVP system was involved in etiology of VPA-induced autism-like symptoms and postnatal AVP treatment rescued the behavioral deficits,which could be a promising treatment for autism. Topics: Adolescent; Animals; Arginine Vasopressin; Autistic Disorder; Behavior, Animal; Disease Models, Animal; Female; Humans; Neurophysins; Paraventricular Hypothalamic Nucleus; Pregnancy; Prenatal Exposure Delayed Effects; Protein Precursors; Rats; Social Behavior; Stereotyped Behavior; Valproic Acid; Vasopressins | 2021 |
Neonatal CSF vasopressin concentration predicts later medical record diagnoses of autism spectrum disorder.
Topics: Arginine Vasopressin; Autism Spectrum Disorder; Autistic Disorder; Biomarkers; Female; Humans; Infant; Infant, Newborn; Male; Medical Records; Neuropeptides; Neurophysins; Oxytocin; Prospective Studies; Protein Precursors; Social Behavior; Vasopressins | 2020 |
BDNF levels are associated with autistic traits in the general population.
Evidence supports the notion that autistic symptoms and behaviors should be regarded as dimensional traits. The present study aimed to investigate the role of vasopressin (AVP), brain-derived neurotrophic factor (BDNF) and oxytocin (OXT) as potential biochemical correlates of subclinical autistic traits in a cohort of healthy young adults. One hundred and fifty-three subjects (80 males, 73 females) were recruited. Participants completed the Autism Spectrum Quotient (AQ), a widely used measure for the identification of autistic traits in the general population. Additionally, blood samples were obtained from all participants at the same time of the day to control for circadian variation. We conducted a multiple regression analysis using the AQ score as the dependent variable and age, sex, AVP, BDNF and OXT levels as the independent variables. The model explained approximately the 22% of the variance of the AQ score. Among the parameters included in the analysis, only BDNF levels were independent predictors of AQ score. Topics: Adult; Autism Spectrum Disorder; Autistic Disorder; Biomarkers; Brain-Derived Neurotrophic Factor; Female; Humans; Male; Oxytocin; Regression Analysis; Vasopressins; Young Adult | 2018 |
Cerebrospinal fluid vasopressin and symptom severity in children with autism.
Autism is a brain disorder characterized by social impairments. Progress in understanding autism has been hindered by difficulty in obtaining brain-relevant tissues (eg, cerebrospinal fluid [CSF]) by which to identify markers of disease and targets for treatment. Here, we overcome this barrier by providing evidence that mean CSF concentration of the "social" neuropeptide arginine vasopressin (AVP) is lower in children with autism versus controls. CSF AVP concentration also significantly differentiates individual cases from controls and is associated with greater social symptom severity in children with autism. These findings indicate that AVP may be a promising CSF marker of autism's social deficits. Ann Neurol 2018;84:611-615. Topics: Autistic Disorder; Biomarkers; Case-Control Studies; Child; Child, Preschool; Female; Humans; Male; Neurophysins; Protein Precursors; Severity of Illness Index; Vasopressins | 2018 |
Discovery of highly selective brain-penetrant vasopressin 1a antagonists for the potential treatment of autism via a chemogenomic and scaffold hopping approach.
From a micromolar high throughput screening hit 7, the successful complementary application of a chemogenomic approach and of a scaffold hopping exercise rapidly led to a low single digit nanomolar human vasopressin 1a (hV1a) receptor antagonist 38. Initial optimization of the mouse V1a activities delivered suitable tool compounds which demonstrated a V1a mediated central in vivo effect. This novel series was further optimized through parallel synthesis with a focus on balancing lipophilicity to achieve robust aqueous solubility while avoiding P-gp mediated efflux. These efforts led to the discovery of the highly potent and selective brain-penetrant hV1a antagonist RO5028442 (8) suitable for human clinical studies in people with autism. Topics: Animals; Antidiuretic Hormone Receptor Antagonists; ATP Binding Cassette Transporter, Subfamily B, Member 1; Autistic Disorder; Brain; Genomics; High-Throughput Screening Assays; Humans; Indoles; Male; Mice; Molecular Structure; Pruritus; Receptors, Vasopressin; Spiro Compounds; Vasoconstrictor Agents; Vasopressins | 2015 |
Oxytocin and vasopressin levels are decreased in the plasma of male schizophrenia patients.
Impaired social functioning and autistic symptoms are characteristics of schizophrenia. The social hormones oxytocin (OT) and arginine-vasopressin (AVP) both modulate social interaction and therefore may be involved in the pathogenesis of schizophrenia. We investigated whether men with schizophrenia show altered OT and AVP levels compared with healthy controls (HC) and whether autism symptoms are associated with OT levels.. Forty-one men with non-acute schizophrenia and 45 matched HC were enrolled. Schizophrenia was assessed with the Positive and Negative Syndrome Scale (PANSS). Blood samples were collected on 2 days, and plasma OT and AVP levels were measured by ELISA immunoassay.. The schizophrenia patients had significantly lower plasma OT levels than the HC; a similar trend was found for AVP. Plasma OT levels were associated with severe life events, fewer important attached persons, and a higher score on the PANSS negative scale; the most dominant PANSS items were 'preoccupation', 'emotional withdrawal', and 'passive/apathetic social withdrawal'.. These findings support an association between the social hormones OT and AVP and schizophrenia. We suggest that OT metabolism may be altered in schizophrenia, but other possible causes for decreased plasma OT levels in schizophrenia patients include decreased OT synthesis, mRNA expression, and translation. Especially the 'autistic' symptoms of schizophrenia seem to be closely linked to an altered metabolism of OT, the 'attachment' hormone. Topics: Adult; Autistic Disorder; Humans; Male; Oxytocin; Schizophrenia; Schizophrenic Psychology; Vasopressins | 2014 |
Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38.
Previously, we demonstrated that CD38, a transmembrane protein with ADP-ribosyl cyclase activity, plays a critical role in mouse social behavior by regulating the release of oxytocin (OXT), which is essential for mutual recognition. When CD38 was disrupted, social amnesia was observed in Cd38 knockout mice. The autism spectrum disorders (ASDs), characterized by defects in reciprocal social interaction and communication, occur either sporadically or in a familial pattern. However, the etiology of ASDs remains largely unknown. Therefore, the theoretical basis for pharmacological treatments has not been established. Hence, there is a rationale for investigating single nucleotide polymorphisms (SNPs) in the human CD38 gene in ASD subjects. We found several SNPs in this gene. The SNP rs3796863 (C>A) was associated with high-functioning autism (HFA) in American samples from the Autism Gene Resource Exchange. Although this finding was partially confirmed in low-functioning autism subjects in Israel, it has not been replicated in Japanese HFA subjects. The second SNP of interest, rs1800561 (4693C>T), leads to the substitution of an arginine (R) at codon 140 by tryptophan (W; R140W) in CD38. This mutation was found in four probands of ASD and in family members of three pedigrees with variable levels of ASD or ASD traits. The plasma levels of OXT in ASD subjects with the R140W allele were lower than those in ASD subjects lacking this allele. The OXT levels were unchanged in healthy subjects with or without this mutation. One proband with the R140W allele receiving intranasal OXT for approximately 3years showed improvement in areas of social approach, eye contact and communication behaviors, emotion, irritability, and aggression. Five other ASD subjects with mental deficits received nasal OXT for various periods; three subjects showed improved symptoms, while two showed little or no effect. These results suggest that SNPs in CD38 may be possible risk factors for ASD by abrogating OXT function and that some ASD subjects can be treated with OXT in preliminary clinical trials. Topics: Administration, Intranasal; ADP-ribosyl Cyclase; ADP-ribosyl Cyclase 1; Amnesia; Animals; Autistic Disorder; Brain; Exons; Humans; Introns; Memory; Mice; Mice, Knockout; NAD; Oxytocin; Polymorphism, Single Nucleotide; Vasopressins | 2012 |
Editorial comment: oxytocin, vasopressin and social behavior.
Topics: Animals; Autistic Disorder; Biological Evolution; Brain Chemistry; Cognition; Humans; Maternal Behavior; Oxytocin; Receptor Cross-Talk; Receptors, Oxytocin; Receptors, Vasopressin; Social Behavior; Substance-Related Disorders; Vasopressins | 2012 |
Do salt cravings in children with autistic disorders reveal low blood sodium depleting brain taurine and glutamine?
Because boys are four times more likely than girls to develop autism, the role of male hormones (androgens) has received considerable scrutiny. Some researchers implicate arginine vasopressin, an androgen-dependent hormone from the pituitary gland that elicits male behavior. Elevated vasopressin is also the most common cause of low blood sodium (hyponatremia)--most serious in the brains of children. Hyponatremia causes astrocytes to swell, then release the amino acids taurine and glutamine and their water to compensate. Taurin--the brain osmolyte/inhibitory neurotransmitter that suppresses vasopressin--was the amino acid most wasted or depleted in urine of autistic children. Glutamine is a critical metabolic fuel in brain neurons, astrocytes, endothelial cells, and the intestines, especially during hypoglycemia. Because glutamine is not thought to cross the blood-brain barrier significantly, the implications of low blood glutamine in these children are not recognized. Yet children with high brain glutamine from urea cycle disorders are rarely diagnosed with autistic disorders. Other common events in autistic children that release vasopressin are gastrointestinal inflammation, hypoglycemia, and stress. Signs of hyponatremia in these children are salt cravings reported online and anecdotally, deep yellow urine revealing concentration, and relief of autistic behavior by fluid/salt diets. Several interventions offer promise: (a) taurine to suppress vasopressin and replenish astrocytes; (b) glutamine as fuel for intestines and brain; (c) arginine to spare glutamine, detoxify ammonia, and increase brain blood flow; and (d) oral rehydration salts to compensate dilutional hyponatremia. This hypothesis appears eminently testable: Does your child crave salt? Is his urine deep yellow? Topics: Astrocytes; Autistic Disorder; Brain; Female; Glutamine; Humans; Hyponatremia; Male; Models, Biological; Sodium, Dietary; Taurine; Vasopressins | 2011 |
Olfactory bulb dysgenesis, mirror neuron system dysfunction, and autonomic dysregulation as the neural basis for autism.
Autism is a disorder characterized by social withdrawal, impoverished language and empathy, and a profound inability to adopt another's viewpoint - a failure to construct a "theory of mind" for interpreting another person's thoughts and intentions. We previously showed that these symptoms might be explained, in part, by a paucity of mirror neurons. Prompted by an MRI report of an individual with autism, we now suggest that there may be, in addition, a congenital aplasia/dysplasia of the olfactory bulbs with consequent reduction of vasopressin and oxytocin receptor binding. There may also be sub-clinical temporal lobe epilepsy affecting the recently discovered third visual system that is rich in "empathy" related mirror neurons (MNS) and projects (via the TOP junction - just below the inferior parietal lobule) to limbic structures that regulate autonomic outflow. This causes deranged autonomic feedback, resulting in additional deficiencies in MNS with loss of emotional empathy and introspection. Topics: Autistic Disorder; Epilepsy, Temporal Lobe; Humans; Neurons; Olfactory Bulb; Primary Dysautonomias; Receptors, Oxytocin; Vasopressins | 2010 |
Reduced plasma apelin levels in patients with autistic spectrum disorder.
Dysregulation of the vasopressin (AVP) system has been implicated in the pathogenesis of autistic spectrum disorder (ASD). Apelin is a recently discovered neuropeptide that could counteract AVP actions and whose receptors are colocalized with vasopressin in hypothalamic magnocellular neurons. Aims of the present study were to investigate circulating levels of apelin in patients with ASD and to assess their correlation with plasma AVP concentrations.. Plasma levels of apelin and AVP were measured in a total of 18 patients with ASD and 21 age- and gender-matched healthy comparison subjects. The Childhood Autism Rating Scale (CARS) was used to assess the severity of autistic symptoms.. Significantly reduced levels of apelin (p < 0.001) and elevated concentrations of AVP (p = 0.02) were found in ASD patients as compared to controls. Additionally, a significant inverse correlation between apelin and AVP levels was found within the ASD group (r = -0.61; p = 0.007), but not in healthy participants (r = -0.26; p = 0.25). Multivariate linear regression analysis showed that only AVP concentrations independently predicted apelin values in ASD individuals (beta = -0.42, t = 2.63, p = 0.014). No correlation was seen between apelin levels and CARS scores (r = -0.10; p = 0.68).. Our findings of a significantly reduced peripheral level of apelin coupled with elevated AVP point to a subtle but definite vasopressinergic dysfunction in autism that could play a role in the etiopathophysiology of this disorder in humans. Topics: Adolescent; Adult; Autistic Disorder; Case-Control Studies; Female; Humans; Intercellular Signaling Peptides and Proteins; Male; Vasopressins | 2007 |
Autonomic and neuroendocrine responses to a psychosocial stressor in adults with autistic spectrum disorder.
Objective of the study was to replicate in adults our previous findings of decreased heart rate and normal endocrine responses to stress in autistic children and to elucidate the discrepancy between autonomic and endocrine stress responses by including epinephrine, norepinephrine, oxytocin and vasopressin measurements. Ten autistic spectrum disorder (ASD) adults were compared to 14 healthy controls in their response to a psychosocial stressor (public speaking). ASD patients showed decreased heart rate, but normal cortisol responses, consistent with our prior findings in children. No differences in norepinephrine, epinephrine, oxytocin or vasopressin responses to stress were found. However, in contrast to previous findings in low functioning autistic children, ASD adults showed increased basal oxytocin levels, which may be related to developmental factors. Topics: Adrenocorticotropic Hormone; Adult; Autistic Disorder; Autonomic Nervous System; Epinephrine; Female; Humans; Male; Norepinephrine; Oxytocin; Psychology; Speech; Stress, Psychological; Vasopressins | 2006 |