piplartine has been researched along with Stroke* in 2 studies
2 other study(ies) available for piplartine and Stroke
Article | Year |
---|---|
Identification of ligustrazine-based analogs of piperlongumine as potential anti-ischemic stroke agents.
Piper longum has a specific aroma and spicy taste. In addition to edible value, current studies have shown that piper longum also has pharmacological activities such as anti-platelet aggregation, anti-inflammation, anti-cancer, anti-diabetes and anti-depression. Piperlongumine is an alkaloid isolated from Piper longum. Based on our previous studies, four Piperlongumine analogs were synthesized, and their anti-platelet aggregation activities were evaluated. Among them, compound 8 has the strongest anti-platelet aggregation activity. Therefore, compound 8 was docked with stroke-related protein targets, and it was found that compound 8 had good binding affinity to MRTF-A complex and Bcl-2. Through animal experiments, it was found that compound 8 could significantly improve the pathological damage of brain tissue after ischemia and could increase the expression of MRTF-A and Bcl-2 in cerebral cortex in rats. These results suggest that compound 8 may have a good inhibitory effect on apoptosis and tissue structurel disorders induced by cerebral ischemia-reperfusion, so as to reduce the injury caused by ischemic stroke. Topics: Animals; Molecular Structure; Neuroprotective Agents; Proto-Oncogene Proteins c-bcl-2; Rats; Stroke | 2023 |
Piperlonguminine is neuroprotective in experimental rat stroke.
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Piperlonguminine (PE) has been proved to have anti-inflammatory actions. In this study, we investigated the effects of PE on cultured neuronal cell line, SH-SY5Y in vitro and experimental rat ischemic stroke in vivo. For oxygen-glucose deprivation (OGD) and tumor necrosis factor-α (TNF-α) stimulated SH-SY5Y cell line in vitro, SH-SY5Y cells were incubated with PE. In vivo, rats were subjected to middle cerebral artery occlusion (MACO) for 1h, followed by reperfusion for 23 h. The results of this study showed that treatment of SH-SY5Y cells with PE reduced the OGD-induced cytotoxicity and apoptosis and blocked TNF-α-induced activation of NF-κB and MAPK. Intraperitoneal injection of PE (2.4 mg/kg) produced a significant neuroprotective potential in rats with cerebral ischemia. PE attenuated neurological deficit scores, brain infarct volume and brain water content in rats, and inhibited activation of NF-κB and MAPK. These data show that PE protects the brain against ischemic cerebral injury via alleviating blood-brain barrier (BBB) breakdown, which may be mediated via inhibiting NF-κB and MAPK signaling pathways. Topics: Animals; Apoptosis; Blood-Brain Barrier; Blotting, Western; Cell Line; Cell Survival; Dioxolanes; Gene Expression Regulation; Glucose; Male; Neuroprotective Agents; NF-kappa B; Oxygen; p38 Mitogen-Activated Protein Kinases; Rats; Rats, Sprague-Dawley; Stroke | 2014 |