piplartine and Inflammation

piplartine has been researched along with Inflammation* in 15 studies

Other Studies

15 other study(ies) available for piplartine and Inflammation

ArticleYear
Piperlongumine mitigates LPS-induced inflammation and lung injury via targeting MD2/TLR4.
    Biochemical and biophysical research communications, 2023, 01-29, Volume: 642

    Acute lung injury (ALI) is a fatal acute inflammatory illness with restricted therapeutic choices clinically. Piperlongumine (PL) is recognized as an alkaloid separated from Piper longum L, which was suggested to exhibit multiple pharmacological activities (e.g., anti-inflammatory activity). However, the effects of PL on LPS-triggered ALI and its anti-inflammatory target remain unclear. This paper intended to assess the roles of PL in LPS-triggered ALI, as well as its underlying mechanism and target.. In vivo, ALI was induced by intratracheal injection of LPS to evaluate protective effects of PL and assessed by the changes of histopathological. In vitro, the anti-inflammatory activity and mechanism of PL were investigated by ELISA, RT-qPCR, transcription factor enrichment analysis, Western blotting and Immunofluorescence assay. The binding affinity of PL to MD2 was analyzed using computer docking, surface plasmon resonance, ELISA and immunoprecipitation assay.. It was reported here that PL treatment alleviated LPS-induced pulmonary damage, inflammatory cells infiltration and inflammatory response in mice. In culture cells, PCR array showed that PL significantly inhibited LPS-induced inflammatory cytokines, chemokines, and type I IFNs genetic expression, along with the inhibition of TAK1 and TBK1 pathway. It is noteworthy that PL is capable of straightly binding to MD2 and inhibiting MD2/TLR4 complex formation and TLR4 dimerization.. As revealed from this study, PL directly binding to MD2 to block cytokines expression by inhibiting the activation of TAK1 and TBK1 pathway, which then exerted its pulmonary protective activity. Accordingly, PL may act as an underlying candidate for treating LPS-triggered ALI.

    Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Cytokines; Inflammation; Lipopolysaccharides; Lung; Mice; NF-kappa B; Toll-Like Receptor 4

2023
Piperlongumine as a Neuro-Protectant in Chemotherapy Induced Cognitive Impairment.
    International journal of molecular sciences, 2022, Feb-11, Volume: 23, Issue:4

    Advances in the early diagnosis and treatment have led to increases in breast cancer survivorship. Survivors report cognitive impairment symptoms such as loss of concentration and learning and memory deficits which significantly reduce the patient's quality of life. Additional therapies are needed to prevent these side effects and, the precise mechanisms of action responsible are not fully elucidated. However, increasing evidence points toward the use of neuroprotective compounds with antioxidants and anti-inflammatory properties as tools for conserving learning and memory. Here, we examine the ability of piperlongumine (PL), an alkaloid known to have anti-inflammatory and antioxidant effects, to play a neuroprotective role in 16-week-old female C57BL/6J mice treated with a common breast cancer regimen of doxorubicin, cyclophosphamide, and docetaxel (TAC). During social memory testing, TAC-treated mice exhibited impairment, while TAC/PL co-treated mice did not exhibit measurable social memory deficits. Proteomics analysis showed ERK1/2 signaling is involved in TAC and TAC/PL co-treatment. Reduced Nrf2 mRNA expression was also observed. mRNA levels of Gria2 were increased in TAC treated mice and reduced in TAC/PL co-treated mice. In this study, PL protects against social memory impairment when co-administered with TAC via multifactorial mechanisms involving oxidative stress and synaptic plasticity.

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Breast Neoplasms; Chemotherapy-Related Cognitive Impairment; Cognitive Dysfunction; Dioxolanes; Female; Inflammation; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Quality of Life; RNA, Messenger; Signal Transduction

2022
Evaluation of Hepatoprotective Effects of Piperlongumine Derivative PL 1-3-Loaded Albumin Nanoparticles on Lipopolysaccharide/d-Galactosamine-Induced Acute Liver Injury in Mice.
    Molecular pharmaceutics, 2022, 12-05, Volume: 19, Issue:12

    In recent years, piperlongumine (PL) having specific cytotoxicity has attracted considerable attention for anticancer activity. Through structural modification, the active derivative PL 1-3 shows potential anti-inflammatory activity and low cytotoxicity, but its water solubility is low. Here, PL 1-3-loaded bovine serum albumin nanoparticles (1-3 NPs) were prepared and characterized, which can improve the dissolution. 1-3 NPs exhibited effective hepatoprotective effects on lipopolysaccharide/d-galactosamine-induced acute liver injury of mice, which was similar to liver injury in clinical settings. 1-3 NPs treatment can inhibit inflammation, oxidative stress, and apoptosis via the downregulation of NF-κB signaling pathways, the activation of Nrf2/HO-1 signaling pathways, and the inhibition of expression of Bax and caspase 3 proteins. The above results demonstrated that PL 1-3-loaded bovine serum albumin nanoparticles possessed potential value in intervention of inflammation-based liver injury.

    Topics: Animals; Chemical and Drug Induced Liver Injury; Galactosamine; Inflammation; Lipopolysaccharides; Liver; Mice; Nanoparticles; NF-E2-Related Factor 2; NF-kappa B; Serum Albumin, Bovine

2022
Protective effect of piperlongumine on inflammation and oxidative stress against ischemia-reperfusion injury in animal kidney.
    Bratislavske lekarske listy, 2022, Volume: 123, Issue:12

    Piperlongumine (PL), an alkaloid from the Piper longum plant, is acknowledged for various biological properties. The study aimed to explore the protective effect of PL on ischemia reperfusion injury (I/R) in rat kidney.. 24 adult male Sprague-Dawley rats (200 to 250 mg) were randomly allocated to four groups (n = 6/group): Group I: sham control, Group II: (I/R) renal ischemia/reperfusion kidney renal blocked for 1hour using clamps, followed by 2hr reperfusion. Group III: PL (25 μg/kg) + I/R group and Group IV: PL (50 μg/kg) + I/R group. Rat kidneys were exposed to 60 min of two-sided deep ischemia followed by 120 min of reperfusion. PL (25 and 50 μg/kg bw) was administered intraperitoneally half an hour before the ischemia. Creatinine, urea, and few renal markers activity in serum were assessed. Oxidative stress and inflammatory markers were also evaluated. In addition, the expressions of COX-2 and eNOS in animal kidneys were tested by western blotting.. Pre-treatment with PL in ischemia‑reperfused rats significantly reduced the pathological damage in the kidney and declined the levels of serum creatinine and other renal parameters. PL treatment diminished the serum levels of TNF-α, IL-6, and IL-1β, as well as messenger RNA expressions. Important biological defence parameters such as superoxide dismutase and glutathione levels were upregulated while malondialdehyde levels were down-regulated in PL ischemia rats.. PL exhibits a protective effect against inflammation and oxidation in ischemia reperfusion animals (Fig. 5, Ref. 32).

    Topics: Animals; Apoptosis; Creatinine; Inflammation; Ischemia; Kidney; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reperfusion Injury

2022
Piperlongumine alleviates corneal allograft rejection
    Frontiers in immunology, 2022, Volume: 13

    Neovascularization and inflammatory response are two essential features of corneal allograft rejection. Here, we investigated the impact of Piperlongumine (PL) on alleviating corneal allograft rejection, primarily focusing on pathological angiogenesis and inflammation.. A murine corneal allograft transplantation model was utilized to investigate the role of PL in preventing corneal allograft rejection. PL (10 mg/kg) or vehicle was intraperitoneally injected daily into BALB/c recipients from day -3 to day 14. The clinical signs of the corneal grafts were monitored for 30 days. Corneal neovascularization and inflammatory cell infiltration were detected by immunofluorescence staining and immunohistochemistry. The proportion of CD4. The current study demonstrated that PL could exhibit both anti-angiogenic and anti-inflammatory effects in preventing corneal allograft rejection, highlighting the potential therapeutic applications of PL in clinical strategy.

    Topics: Animals; Corneal Diseases; Corneal Transplantation; Hypoxia; Inflammation; Mice; Neovascularization, Pathologic; Tumor Necrosis Factor-alpha

2022
Meta-substituted piperlongumine derivatives attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis.
    Bioorganic chemistry, 2021, Volume: 117

    Piperlongumine (PL) has been showed to have multiple pharmacological activities. In this study, we reported the synthesis of three series of PL derivatives, and evaluation of their anti-inflammatory effects in both lipopolysaccharide (LPS)-induced Raw264.7 macrophages and a dextran sulfate sodium (DSS)-induced mouse model of colitis. Our results presented that two meta-substituent containing derivatives 1-3 and 1-6, in which γ-butyrolactam replaced α,β-unsaturated δ-valerolactam ring of PL, displayed low cytotoxicity and effective anti-inflammatory activity. Molecular docking also showed that the meta-substituted derivative, compared with the corresponding ortho- or para-substituted derivative, had significant interactions with the amino acid residues of CD14, which was the core receptors recognizing LPS. In vitro and in vivo studies, 1-3 and 1-6 could inhibit the expression of pro-inflammatory cytokines, and the excessive production of reactive nitrogen species and reactive oxygen species. Oral administration of 100 mg/kg/day of 1-3 or 1-6 alleviated the severity of clinical symptoms of colitis in mice, and significantly reduced the colonic tissue damage to protect the colonic tissue from the DSS-induced colitis. These results suggested that meta-substituted derivatives 1-3 and 1-6 were potential anti-inflammatory agents, which may lead to future pharmaceutical development.

    Topics: Animals; Cells, Cultured; Colitis; Dextran Sulfate; Dioxolanes; Disease Models, Animal; Dose-Response Relationship, Drug; Inflammation; Lipopolysaccharides; Macrophages; Male; Mice; Mice, Inbred BALB C; Molecular Docking Simulation; Molecular Structure; Nitric Oxide; RAW 264.7 Cells; Structure-Activity Relationship

2021
Piperlongumine attenuates oxidative stress, inflammatory, and apoptosis through modulating the GLUT-2/4 and AKT signaling pathway in streptozotocin-induced diabetic rats.
    Journal of biochemical and molecular toxicology, 2021, Volume: 35, Issue:6

    The current study was done to measure the role of piperlongumine (PL) on hyperglycemia interrelated oxidative stress-mediated inflammation and apoptosis, inflammatory stress, and the diabetic insulin receptor substrate 2 (IRS2), protein kinase B (AKT), and glucose transporter 2 (GLUT-2)/4 signaling pathway in streptozotocin (STZ)-persuaded diabetic animals. Diabetes was initiated in experimental animals via a single dose intraperitoneal inoculation of STZ. Diabetic rats revealed an augmented blood-glucose level with drastically diminished plasma-insulin status. The functions of antioxidants were diminished with enhanced lipid peroxidation, conjugated dienes, and protein carbonyls noticed in diabetic rats'  plasma and pancreatic tissues. An elevation of nuclear factor-κB (NF-κB), tumor necrosis factor-α, and interleukin-6 proteins was noticed in pancreatic tissues as well as IRS2, AKT, GLUT-2, and GLUT-4 marker expressions were quantified in the hepatic tissue of control and diabetic rats. Oral administration of PL for 30 days drastically lowered glucose and higher insulin status in STZ-induced diabetic rats. Impressively, PL oral supplementation considerably restored the antioxidant levels and reduced inflammation and diabetic marker expressions in STZ-diabetic rats. These results were supported through a histological study. Moreover, PL also augmented the level of B-cell lymphoma 2 and diminished the level of Bcl-2-associated X protein in STZ-treated rat's hepatic tissues. Thus, we concluded that PL excellently rescued pancreatic β cells through mitigating hyperglycemia via dynamic insulin secretion, activating antioxidants, and inhibiting inflammation and apoptosis in the pancreatic and hepatic tissue of diabetic rats.

    Topics: Animals; Apoptosis; Diabetes Mellitus, Experimental; Dioxolanes; Glucose Transporter Type 2; Glucose Transporter Type 4; Inflammation; Male; Oxidative Stress; Proto-Oncogene Proteins c-akt; Rats; Rats, Wistar; Signal Transduction

2021
Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation.
    Cell death & disease, 2020, 01-10, Volume: 11, Issue:1

    Psoriasis is an autoimmune skin disease, where chronic immune responses due to exaggerated cytokine signaling, abnormal differentiation, and evasion of keratinocytes apoptosis plays a crucial role in mediating abnormal keratinocytes hyperproliferation. From the therapeutic perspective, the molecules with strong anti-proliferative and anti-inflammatory properties could have tremendous relevance. In this study, we demonstrated that piperlongumine (PPL) treatment effectively abrogated the hyperproliferation and differentiation of keratinocytes by inducing ROS-mediated late apoptosis with loss of mitochondrial membrane potential. Besides, the arrest of cell cycle was found at Sub-G1 phase as a result of DNA fragmentation. Molecularly, inhibition of STAT3 and Akt signaling was observed with a decrease in proliferative markers such as PCNA, ki67, and Cyclin D1 along with anti-apoptotic Bcl-2 protein expression. Keratin 17 is a critical regulator of keratinocyte differentiation, and it was found to be downregulated with PPL significantly. Furthermore, prominent anti-inflammatory effects were observed by inhibition of lipopolysaccharide (LPS)/Imiquimod (IMQ)-induced p65 NF-κB signaling cascade and strongly inhibited the production of cytokine storm involved in psoriasis-like skin inflammation, thus led to the restoration of normal epidermal architecture with reduction of epidermal hyperplasia and splenomegaly. In addition, PPL epigenetically inhibited histone-modifying enzymes, which include histone deacetylases (HDACs) of class I (HDAC1-4) and class II (HDAC6) evaluated by immunoblotting and HDAC enzyme assay kit. In addition, our results show that PPL effectively inhibits the nuclear translocation of p65 and a histone modulator HDAC3, thus sequestered in the cytoplasm of macrophages. Furthermore, PPL effectively enhanced the protein-protein interactions of HDAC3 and p65 with IκBα, which was disrupted by LPS stimulation and were evaluated by Co-IP and molecular modeling. Collectively, our findings indicate that piperlongumine may serve as an anti-proliferative and anti-inflammatory agent and could serve as a potential therapeutic option in treating psoriasis.

    Topics: Animals; Apoptosis; Cell Proliferation; Chemokines; Dioxolanes; Epidermis; Epigenesis, Genetic; HaCaT Cells; Histone Deacetylase Inhibitors; Histone Deacetylases; Histones; Humans; Imiquimod; Inflammation; Keratin-17; Keratinocytes; Lipopolysaccharides; Mice; Mice, Inbred BALB C; Models, Biological; Phosphorylation; Protein Binding; Psoriasis; RAW 264.7 Cells; Skin; STAT3 Transcription Factor

2020
Effect of piperlongumine during exposure to cigarette smoke reduces inflammation and lung injury.
    Pulmonary pharmacology & therapeutics, 2020, Volume: 61

    Chronic obstructive pulmonary disease (COPD) is related to smoking and anti-inflammatory therapy is indicated. Among the mediators with anti-inflammatory properties, we highlight piperlongumine (PL), an alkaloid/amide of Piper longum. Here we evaluated the PL administration on an experimental model of respiratory inflammation resulting from exposure to cigarette smoke. Male Balb/c mice were exposed to burning of 10 commercial cigarettes, 2x/day, for five weeks on specific equipment. PL efficacy was evaluated in control, exposed to smoke without treatment and PL treated (2.0 mg/kg, 3x/week) groups. Animals were weighed and plethysmographic analyses performed at the end of the exposure protocol. Inflammatory cells were evaluated in the bronchoalveolar lavage (BAL) and hemoglobin and glucose in the blood. Lung fragments were processed for histopathological studies and AnxA1, COX-2, NF-kB and neutrophil elastase expressions. Plethysmography revealed that PL maintained pulmonary frequency, volume and ventilation parameters similar to controls, with respiratory volume reduction compared to untreated animals. Final weight was reduced in both exposed groups. PL decreased hemoglobin concentration, attenuated the reduction of glucose levels and reduced influx of lymphocytes, neutrophils and macrophages in BAL. Histopathologically occured infiltration of inflammatory cells, increase of the interalveolar septa and intra-alveolar spaces in untreated animals. But, PL administration recovered lung tissues and, immunohistochemically, promoted increased expression of AnxA1 and reduction of COX-2, NF-kB and neutrophil elastase. Together the results indicate that PL attenuates systemic and pulmonary inflammatory changes, partially by modulating the expression the endogenous AnxA1, and may represent a promising therapy in preventing the inflammation induced by cigarette smoke.

    Topics: Animals; Annexin A1; Anti-Inflammatory Agents; Cyclooxygenase 2; Dioxolanes; Inflammation; Lung Injury; Lymphocytes; Macrophages, Alveolar; Male; Mice; Mice, Inbred BALB C; Neutrophils; NF-kappa B; Pulmonary Disease, Chronic Obstructive; Tobacco Smoking

2020
Biological and physical approaches on the role of piplartine (piperlongumine) in cancer.
    Scientific reports, 2020, 12-17, Volume: 10, Issue:1

    Chronic inflammation provides a favorable microenvironment for tumorigenesis, which opens opportunities for targeting cancer development and progression. Piplartine (PL) is a biologically active alkaloid from long peppers that exhibits anti-inflammatory and antitumor activity. In the present study, we investigated the physical and chemical interactions of PL with anti-inflammatory compounds and their effects on cell proliferation and migration and on the gene expression of inflammatory mediators. Molecular docking data and physicochemical analysis suggested that PL shows potential interactions with a peptide of annexin A1 (ANXA1), an endogenous anti-inflammatory mediator with therapeutic potential in cancer. Treatment of neoplastic cells with PL alone or with annexin A1 mimic peptide reduced cell proliferation and viability and modulated the expression of MCP-1 chemokine, IL-8 cytokine and genes involved in inflammatory processes. The results also suggested an inhibitory effect of PL on tubulin expression. In addition, PL apparently had no influence on cell migration and invasion at the concentration tested. Considering the role of inflammation in the context of promoting tumor initiation, the present study shows the potential of piplartine as a therapeutic immunomodulator for cancer prevention and progression.

    Topics: Alkaloids; Annexin A1; Anti-Inflammatory Agents; Antineoplastic Agents; Carcinogenesis; Cell Line, Tumor; Cell Movement; Cell Proliferation; Chemokine CCL2; Gene Expression Regulation, Neoplastic; Humans; Inflammation; Neoplasm Invasiveness; Neoplasms; Piper; Piperidones; Tumor Microenvironment

2020
Piperlongumine reduces ovalbumin‑induced asthma and airway inflammation by regulating nuclear factor‑κB activation.
    International journal of molecular medicine, 2019, Volume: 44, Issue:5

    Asthma is a common chronic airway inflammatory disease, characterized by airway inflammation and remodeling. Piperlongumine (PL) has a number of physiological and pharmacological properties. However, the anti‑asthmatic effect of PL has not been reported to date. In the present study, ovalbumin (OVA) was used to sensitize and challenge mice to induce asthma. The results revealed that PL pretreatment reduced OVA‑induced airway inflammatory cell infiltration, reduced Th2 cytokine expression, both in the bronchoalveolar lavage fluid and in lung tissues, reduced the serum IgE level, pro‑inflammatory cytokine [tumor necrosis factor (TNF)‑α and interleukin (IL)‑6] and intercellular adhesion molecule expression, as well as nuclear factor (NF)‑κB activation. In addition, PL also mitigated OVA‑induced goblet cell metaplasia, inhibited mucus protein secretion, mitigated airway fibrosis and downregulated fibrosis marker expression. It was also demonstrated that PL inhibited TNF‑α induced inflammatory cytokine expression and NF‑κB activation in vitro. Taken together, the findings of the present study indicated that PL can reduce OVA‑induced airway inflammation and remodeling in asthmatic mice, and that these effects may be mediated by inhibiting NF‑κB signaling.

    Topics: Animals; Asthma; Bronchoalveolar Lavage Fluid; Cell Line; Cytokines; Dioxolanes; Fibrosis; Humans; Inflammation; Interleukin-6; Lung; Male; Mice; Mice, Inbred C57BL; Mucus; NF-kappa B; Ovalbumin; Signal Transduction; Th2 Cells

2019
Piperlongumine Improves Lipopolysaccharide-Induced Amyloidogenesis by Suppressing NF-KappaB Pathway.
    Neuromolecular medicine, 2018, Volume: 20, Issue:3

    Amyloidogenesis is known to cause Alzheimer's disease. Our previous studies have found that lipopolysaccharide (LPS) causes neuroinflammation and amyloidogenesis through activation of nuclear factor kappaB (NF-κB). Piperlongumine (PL) is an alkaloid amide found naturally in long pepper (Piper longum) isolates; it was reported to have inhibitory effects on NF-κB activity. We therefore investigated whether PL exhibits anti-inflammatory and anti-amyloidogenic effects by inhibiting NF-κB. A murine model of LPS-induced memory impairment was made via the intraperitoneal (i.p.) injection of LPS (0.25 mg/kg/day, i.p.). We then injected PL (1.5 or 3.0 mg/kg/day, i.p.) for 7 days in three groups of mice to observe effects on memory. We also conducted an in vitro study with astrocytes and microglial BV-2 cells, which were treated with LPS (1 µg/mL) or PL (0.5 or 1.0 or 2.5 µM). Results from our behavioral tests showed that PL inhibited LPS-induced memory. PL also prevented LPS-induced beta-amyloid (Aβ) accumulation and inhibited the activities of β- and γ-secretases. The expression of inflammatory proteins also was decreased in PL-treated mice, cultured BV-2, and primary astrocyte cells. These effects were associated with the inhibition of NF-κB activity. A docking model analysis and pull-down assay showed that PL binds to p50. Taken together, our findings suggest that PL diminishes LPS-induced amyloidogenesis and neuroinflammation by inhibiting NF-κB signaling; PL therefore demonstrates potential for the treatment of Alzheimer's disease.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Astrocytes; Cell Death; Cells, Cultured; Cytokines; Dioxolanes; Disease Models, Animal; Inflammation; Lipopolysaccharides; Male; Memory; Mice; Microglia; NF-kappa B p50 Subunit; Piper

2018
Synthesis and biological evaluation of piperlongumine derivatives as potent anti-inflammatory agents.
    Bioorganic & medicinal chemistry letters, 2014, Dec-15, Volume: 24, Issue:24

    Piperlongumine (PL) and its derivatives were synthesized by the direct reaction between acid chloride of 3,4,5-trimethoxycinnamic acid and various amides/lactams. Later their anti-inflammatory effects were evaluated in lipopolysaccharide (LPS)-induced RAW-264.7 macrophages. Of the piperlogs prepared in this study, the maximum (91%) inhibitory activity was observed with PL (IC50=3 μM) but showed cytotoxicity whereas compound 3 (IC50=6 μM) which possess α,β-unsaturated γ-butyrolactam moiety offered good level (65%) of activity with no cytotoxicity. This study revealed that amide/lactam moiety connected to cinnamoyl group with minimum 3 carbon chain length and α,β-unsaturation is fruitful to show potent anti-inflammatory activity.

    Topics: Animals; Anti-Inflammatory Agents; Cell Proliferation; Cells, Cultured; Dioxolanes; Inflammation; Lipopolysaccharides; Macrophages; Mice; Molecular Structure; Nitric Oxide

2014
Barrier protective effects of piperlonguminine in LPS-induced inflammation in vitro and in vivo.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2013, Volume: 58

    Piperlonguminine (PL), an important component of Piper longum fruits, is well known to possess potent anti-hyperlipidemic, anti-platelet and anti-melanogenesis activities. In this study, we first investigated the possible barrier protective effects of piperlonguminine against proinflammatory responses induced by lipopolysaccharide (LPS) and the associated signaling pathways in vitro and in vivo. The barrier protective activities of PL were determined by measuring permeability, monocytes adhesion and migration, and activation of proinflammatory proteins in LPS-activated human umbilical vein endothelial cells (HUVECs) and in mice. We found that PL inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs) and adhesion/transendothelial migration of monocytes to human endothelial cells. PL also suppressed LPS-induced hyperpermeability and leukocytes migration in vivo. Further studies revealed that PL suppressed the production of tumor necrosis factor-α (TNF-α) or Interleukin (IL)-6 and activation of nuclear factor-κB (NF-κB) or extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, treatment with PL resulted in reduced LPS-induced septic mortality. Collectively, these results suggest that PL protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.

    Topics: Animals; Capillary Permeability; Cells, Cultured; Dioxolanes; Endothelium, Vascular; Extracellular Signal-Regulated MAP Kinases; Humans; In Vitro Techniques; Inflammation; Interleukin-6; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Tumor Necrosis Factor-alpha

2013
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
    Current protocols in cytometry, 2010, Volume: Chapter 13

    This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening.

    Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature

2010