piplartine and Glioma

piplartine has been researched along with Glioma* in 2 studies

Other Studies

2 other study(ies) available for piplartine and Glioma

ArticleYear
Natural borneol serves as an adjuvant agent to promote the cellular uptake of piperlongumine for improving its antiglioma efficacy.
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2023, Feb-01, Volume: 181

    Piperlongumine (PL) can selectively inhibit the proliferation of various cancer cells by increasing reactive oxygen species (ROS) level to cause a redox imbalance in cancer cells rather than in normal cells. However, the clinical application of PL is limited by its poor cellular uptake. Natural borneol (NB) is extracted from the fresh branches and leaves of Cinnamomum camphora (L.) Presl. with the purity of (+)-borneol no less than 96.0%. NB has been often used as an adjuvant agent to promote the cellular uptake of other drugs. This study aims to investigate the effect of NB on the cellular uptake of PL for improving its antiglioma efficacy and underlying mechanism. NB obviously promoted the cellular uptake of PL with a 1.3-fold increase in the maximum peak concentration and an earlier peak time of 30 min in C6 glioma cells. The cellular uptake of PL was enhanced by NB through down-regulating the expression levels of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). The combination of NB and PL significantly induced higher levels of ROS, which increased apoptosis and enhanced G2/M cycle arrest of C6 glioma cells, compared to PL alone administration. NB-enhanced antiglioma efficacy of PL without side effects was confirmed in tumor-bearing mice, which was attributed to the improved cellular uptake of PL. The distribution of PL in the tumor tissue of combined group increased 2.39 times than that of PL-treated group. We firstly report NB as an adjuvant agent to improve the antiglioma efficacy of PL in a ROS-dependent manner, which is due to the enhanced cellular uptake of PL by NB though down-regulating the expression levels of ABCB1 and ABCG2. This work provides a new strategy to promote the cellular uptake of PL with great potential for the treatment of glioma.

    Topics: Adjuvants, Immunologic; Animals; Apoptosis; ATP Binding Cassette Transporter, Subfamily G, Member 2; Cell Line, Tumor; Dioxolanes; Glioma; Mice; Neoplasm Proteins; Reactive Oxygen Species

2023
Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells.
    Neuro-oncology, 2014, Volume: 16, Issue:10

    Piperlongumine, a natural plant product, kills multiple cancer types with little effect on normal cells. Piperlongumine raises intracellular levels of reactive oxygen species (ROS), a phenomenon that may underlie the cancer-cell killing. Although these findings suggest that piperlongumine could be useful for treating cancers, the mechanism by which the drug selectively kills cancer cells remains unknown.. We treated multiple high-grade glioma (HGG) sphere cultures with piperlongumine and assessed its effects on ROS and cell-growth levels as well as changes in downstream signaling. We also examined the levels of putative piperlongumine targets and their roles in HGG cell growth.. Piperlongumine treatment increased ROS levels and preferentially killed HGG cells with little effect in normal brain cells. Piperlongumine reportedly increases ROS levels after interactions with several redox regulators. We found that HGG cells expressed higher levels of the putative piperlongumine targets than did normal neural stem cells (NSCs). Furthermore, piperlongumine treatment in HGG cells, but not in normal NSCs, increased oxidative inactivation of peroxiredoxin 4 (PRDX4), an ROS-reducing enzyme that is overexpressed in HGGs and facilitates proper protein folding in the endoplasmic reticulum (ER). Moreover, piperlongumine exacerbated intracellular ER stress, an effect that was mimicked by suppressing PRDX4 expression.. Our results reveal that the mechanism by which piperlongumine preferentially kills HGG cells involves PRDX4 inactivation, thereby inducing ER stress. Therefore, piperlongumine treatment could be considered as a novel therapeutic option for HGG treatment.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Brain Neoplasms; Databases, Factual; Dioxolanes; Endoplasmic Reticulum Stress; Glioma; Humans; Mice; Peroxiredoxins; Reactive Oxygen Species; Survival Analysis; Tumor Cells, Cultured

2014