piperine and Periodontitis

piperine has been researched along with Periodontitis* in 2 studies

Other Studies

2 other study(ies) available for piperine and Periodontitis

ArticleYear
Systemic administration of curcumin or piperine enhances the periodontal repair: a preliminary study in rats.
    Clinical oral investigations, 2019, Volume: 23, Issue:8

    Studies have documented the anti-inflammatory effects of spices, which may be related to treatment of chronic diseases. The purpose of this study was to evaluate the influence of curcumin and piperine and their association on experimental periodontal repair in rats.. Periodontitis was induced via the installation of a ligature around the first molar. After 15 days, the ligatures were removed, and the rats were separated into groups (12 animals per group): (i) curcumin, (ii) piperine, (iii) curcumin+piperine, (iv) corn oil vehicle, and (v) control group (animals had ligature-induced periodontitis but were not treated). The compounds were administered daily, for 15 days by oral gavage. Animals were euthanized at 5 and 15 days, and hemimaxillae and gingival tissues were harvested. Bone repair was assessed by μCT (microcomputer tomography). Histological sections were stained with hematoxylin/eosin (H/E) for the assessment of cellular infiltrate or picrosirius red for quantification of collagen content, and subjected to immunohistochemistry for detecting NF-ĸB. Gingival tissues were used to evaluate levels of TGF-β and IL-10 (ELISA).. Curcumin and piperine increased the TGF-β level, significantly improved the collagen repair, and decreased the cellularity and activation of NF-ĸB in the periodontal tissues, but only curcumin caused a significant increase in early bone repair.. Curcumin and piperine promoted a substantive effect on tissue repair; however, there was not synergistic effect of compounds administered in combination.. Curcumin and piperine stimulates the tissue repair and may be potential candidates for the treatment of periodontal disease.

    Topics: Alkaloids; Animals; Benzodioxoles; Cats; Curcumin; Male; Periodontitis; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Wistar

2019
Piperine inhibit inflammation, alveolar bone loss and collagen fibers breakdown in a rat periodontitis model.
    Journal of periodontal research, 2015, Volume: 50, Issue:6

    Piperine exhibits anti-inflammatory activity, and has a long history of medicinal use. The objective of this study was to investigate the protective effects of piperine on inflammation, alveolar bone and collagen fibers in experimental periodontitis. We evaluated the related expression of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, matrix metalloproteinase (MMP)-8 and MMP-13 to enhance insight into these effects.. Thirty-two Wistar rats were divided into four groups of eight animals each: control group, periodontitis group, periodontitis plus 50 mg/kg piperine group and periodontitis plus 100 mg/kg piperine group. Histopathologic changes were detected by hematoxylin and eosin staining. Alveolar bone loss and trabecula microstructures were evaluated by micro-computed tomography. Changes in collagen fibers were assessed by picrosirius red staining. Western blot analysis was conducted to determine the levels of IL-1β, TNF-α, MMP-8 and MMP-13.. Piperine clearly inhibited alveolar bone loss and reformed trabecula microstructures in a dose-dependent manner. Histological staining showed that piperine significantly reduced the infiltration of inflammation in soft tissues. Both doses of piperine limited the fractions of degraded areas in collagen fibers. Piperine (100 mg/kg) significantly downregulated the expressions of IL-1β, MMP-8 and MMP-13 in periodontitis, but not that of TNF-α.. Piperine displays significantly protective effects on inflammation, alveolar bone loss, bone microstructures and collagen fiber degradation in experimental periodontitis. The effects may be ascribed to its inhibitory activity on the expressions of IL-1β, MMP-8 and MMP-13.

    Topics: Alkaloids; Alveolar Bone Loss; Animals; Benzodioxoles; Blotting, Western; Collagen; Cytochrome P-450 Enzyme Inhibitors; Disease Models, Animal; Histocytochemistry; Inflammation; Interleukin-1beta; Male; Matrix Metalloproteinase 13; Matrix Metalloproteinase 8; Periodontitis; Piperidines; Polyunsaturated Alkamides; Proteolysis; Rats, Wistar; Treatment Outcome; Tumor Necrosis Factor-alpha; X-Ray Microtomography

2015