piperine and Parkinson-Disease--Secondary

piperine has been researched along with Parkinson-Disease--Secondary* in 2 studies

Other Studies

2 other study(ies) available for piperine and Parkinson-Disease--Secondary

ArticleYear
Neuroprotective Effect of Quercetin in Combination with Piperine Against Rotenone- and Iron Supplement-Induced Parkinson's Disease in Experimental Rats.
    Neurotoxicity research, 2020, Volume: 37, Issue:1

    Parkinson's disease (PD) is a neurodegenerative disorder caused by selective dopaminergic neuronal loss. Rotenone is a neurotoxin that selectively destroys dopaminergic neurons, leading to PD-like symptoms. Quercetin possesses antioxidant, anti-inflammatory, and neuroprotective properties but a major drawback is its low bioavailability. Therefore, the present study was designed to evaluate the neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplement-induced model of PD. Rotenone was administered at a dose of 1.5 mg/kg through an intraperitoneal route with iron supplement at a dose of 120 μg/g in diet from day 1 to day 28. Pre-treatment with quercetin (25 and 50 mg/kg, p.o.), piperine (2.5 mg/kg, p.o.) alone, quercetin (25 mg/kg, p.o.) in combination with piperine (2.5 mg/kg), and ropinirole (0.5 mg/kg, i.p.) was administered for 28 days 1 h prior to rotenone and iron supplement administration. All behavioral parameters were assessed on weekly basis. On the 29th day, all animals were sacrificed and striatum was isolated for biochemical (LPO, nitrite, GSH, mitochondrial complexes I and IV), neuroinflammatory (TNF-α, IL-1β, and IL-6), and neurotransmitter (dopamine, norepinephrine, serotonin, GABA, glutamate) estimation. Quercetin treatment attenuated rotenone- and iron supplement-induced motor deficits and biochemical and neurotransmitter alterations in experimental rats. However, combination of quercetin (25 mg/kg) with piperine (2.5 mg/kg) significantly enhanced its neuroprotective effect as compared with treatment with quercetin alone. The study concluded that combination of quercetin with piperine contributed to superior antioxidant, anti-inflammatory, and neuroprotective effect against rotenone- and iron supplement-induced PD in experimental rats.

    Topics: Alkaloids; Benzodioxoles; Corpus Striatum; Dietary Supplements; Drug Synergism; Electron Transport Complex I; Electron Transport Complex IV; Glutathione; Indoles; Interleukin-1beta; Interleukin-6; Iron; Lipid Peroxidation; Neuroprotective Agents; Neurotransmitter Agents; Nitrites; Parkinson Disease, Secondary; Piperidines; Polyunsaturated Alkamides; Quercetin; Rotenone; Tumor Necrosis Factor-alpha

2020
Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson's disease model.
    Oncotarget, 2016, Sep-20, Volume: 7, Issue:38

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but there are few treatments currently available. The autophagy pathway plays an important role in the pathogenesis of PD; modulating this pathway is considered to be a promising treatment strategy. Piperine (PIP) is a Chinese medicine with anti-inflammatory and antioxidant effects. The present study investigated the neuroprotective effects of PIP on rotenone-induced neurotoxicity in SK-N-SH cells, primary rat cortical neurons, and in a mouse model. Mice were administered rotenone (10mg/kg) for 6 weeks; PIP (25mg/kg, 50mg/kg) was subsequently administered for 4 weeks. We found that PIP treatment attenuated rotenone-induced motor deficits, and rescued the loss of dopaminergic neurons in the substantia nigra. PIP increased cell viability and restored mitochondrial functioning in SK-N-SH cells and primary neurons. In addition, PIP induced autophagy by inhibiting mammalian target of rapamycin complex 1(mTORC1) via activation of protein phosphotase 2A (PP2A). However, inhibiting PP2A activity with okadaic acid reduced these protective effects, suggesting that PP2A is a target of PIP. These findings demonstrate that PIP exerts neuroprotective effects in PD models via induction of autophagy, and may be an effective agent for PD treatment.

    Topics: Alkaloids; Animals; Anti-Inflammatory Agents; Antioxidants; Autophagy; Benzodioxoles; Cell Survival; Dopaminergic Neurons; Humans; Male; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Inbred C57BL; Mitochondria; Neuroprotective Agents; Parkinson Disease, Secondary; Piperidines; Polyunsaturated Alkamides; Protein Phosphatase 2; Rats; Rotenone; Substantia Nigra

2016