piperine and Neoplasm-Metastasis

piperine has been researched along with Neoplasm-Metastasis* in 5 studies

Reviews

2 review(s) available for piperine and Neoplasm-Metastasis

ArticleYear
Piperine: role in prevention and progression of cancer.
    Molecular biology reports, 2019, Volume: 46, Issue:5

    Cancer is among the leading causes of death worldwide. Several pharmacological protocols have been developed in order to block tumor progression often showing partial efficacy and severe counterproductive effects. It is now conceived that a healthy lifestyle coupled with the consumption of certain phytochemicals can play a protective role against tumor development and progression. According to this vision, it has been introduced the concept of "chemoprevention". This term refers to natural agents with the capability to interfere with the tumorigenesis and metastasis, or at least, attenuate the cancer-related symptoms. Piperine (1-Piperoylpiperidine), a main extract of Piper longum and Piper nigrum, is an alkaloid with a long history of medicinal use. In fact, it exhibits a variety of biochemical and pharmaceutical properties, including chemopreventive activities without significant cytotoxic effects on normal cells, at least at doses < of 250 µg/ml. The aim of this review is to discuss the relevant molecular and cellular mechanisms underlying the chemopreventive action of this natural alkaloid.

    Topics: Alkaloids; Apoptosis; Benzodioxoles; Cell Proliferation; Chemoprevention; Disease Progression; Humans; Neoplasm Metastasis; Neoplasms; Piperidines; Plant Extracts; Polyunsaturated Alkamides

2019
Piperine as a Potential Anti-cancer Agent: A Review on Preclinical Studies.
    Current medicinal chemistry, 2018, Volume: 25, Issue:37

    Recently many studies showed anticancer activities of piperine, a pungent alkaloid found in black pepper and some other Piper species. We attempted to summarize acquired data that support anticancer potential of this natural agent. Piperine has been reported to possess effective chemopreventive activity. It has been studied to affect via several mechanisms of action, in brief enhancing antioxidant system, increasing level and activity of detoxifying enzymes and suppressing stem cell self-renewal. Moreover, piperine has been found to inhibit proliferation and survival of various cancerous cell lines via modulating cell cycle progression and exhibiting anti-apoptotic activity, respectively. This compound has been shown to modify activity of various enzymes and transcription factors to inhibit invasion, metastasis and angiogenesis. Interestingly, piperine has exhibited antimutagenic activity and also inhibited activity and expression of multidrug resistance transporters such as P-gp and MRP-1. Besides, about all reviewed studies have reported selective cytotoxic activity of piperine on cancerous cells in compared with normal cells. Altogether, the studies completely underline promising candidacy of piperine for further development. The collected preclinical data we provided in this article can be useful in the design of future researches especially clinical trials with piperine.

    Topics: Alkaloids; Animals; Anticarcinogenic Agents; Antimutagenic Agents; Antineoplastic Agents, Phytogenic; Antioxidants; Benzodioxoles; Biological Availability; Cell Proliferation; Cell Survival; Drug Evaluation, Preclinical; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Humans; Inactivation, Metabolic; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasms; Neovascularization, Pathologic; Piper; Piperidines; Polyunsaturated Alkamides; Stem Cells

2018

Other Studies

3 other study(ies) available for piperine and Neoplasm-Metastasis

ArticleYear
Piperine depresses the migration progression via downregulating the Akt/mTOR/MMP‑9 signaling pathway in DU145 cells.
    Molecular medicine reports, 2018, Volume: 17, Issue:5

    Piperine, an alkaloid derived from natural products, has been demonstrated to exert antitumor activities in vivo and in vitro. However, its anti‑tumor effect has not yet been illustrated in the prostate cancer (PCa) metastatic process. Thus, the present study explored the influence of piperine on PCa and the underlying molecular mechanism. Cell migration was detected via the Transwell chamber model. Total protein was identified by western blot analysis. The data revealed that piperine markedly repressed cell proliferation and migration, and induced apoptosis in PCa DU145. In addition, LY294002, an protein kinase B (Akt) inhibitor, greatly suppressed the expression level of phospho (p)‑Akt, matrix metalloproteinase (MMP)‑9 and p‑mammalian target of rapamycin (mTOR), suggesting that the activation of the Akt/mTOR/MMP‑9 signaling pathway may participate in regulating cell migration in PCa. Furthermore, piperine reduced the expression of p‑Akt, MMP‑9 and p‑mTOR. Together, these data indicated that piperine may serve as a promising novel therapeutic agent to better overcome PCa metastasis.

    Topics: Alkaloids; Apoptosis; Benzodioxoles; Cell Line, Tumor; Cell Movement; Chromones; Humans; Male; Matrix Metalloproteinase 9; Morpholines; Neoplasm Metastasis; Piperidines; Polyunsaturated Alkamides; Prostatic Neoplasms; Proto-Oncogene Proteins c-akt; Signal Transduction; TOR Serine-Threonine Kinases

2018
Piperine inhibits proliferation of human osteosarcoma cells via G2/M phase arrest and metastasis by suppressing MMP-2/-9 expression.
    International immunopharmacology, 2015, Volume: 24, Issue:1

    The piperidine alkaloid piperine, a major ingredient in black pepper, inhibits the growth and metastasis of cancer cells both in vivo and in vitro, although its mechanism of action is unclear. Furthermore, its anticancer activity against osteosarcoma cells has not been reported. In this study, we show that piperine inhibited the growth of HOS and U2OS cells in dose- and time-dependent manners but had a weaker effect on the growth of normal hFOB cells. Piperine inhibited osteosarcoma cell proliferation by causing G2/M phase cell cycle arrest associated with decreased expression of cyclin B1 and increased phosphorylation of Cyclin-dependent kinase-1(CDK1) and checkpoint kinase 2 (Chk2). In addition, piperine treatment inhibited phosphorylation of Akt and activated phosphorylation of c-Jun N-terminal kinase (c-JNK) and p38 mitogen-activated protein kinase (MAPK) in HOS and U2OS cells. Piperine induced colony formation in these two cell types. We proved that piperine could suppress the metastasis of osteosarcoma cells using scratch migration assays and Transwell chamber tests. Moreover, gelatin zymography showed that piperine inhibited the activity of matrix metalloproteinase (MMP)-2/-9 and increased the expression of tissue inhibitor of metalloproteinase (TIMP)-1/-2. Taken together, our results indicate that piperine inhibits proliferation, by inducing G2/M cell cycle arrest, and the migration and invasion of HOS and U2OS cells, via increased expression of TIMP-1/-2 and down-regulation of MMP-2/-9. These findings support further study of piperine as a promising therapeutic agent in the treatment of osteosarcoma.

    Topics: Alkaloids; Benzodioxoles; Bone Neoplasms; CDC2 Protein Kinase; Cell Line, Tumor; Cell Movement; Cell Proliferation; Checkpoint Kinase 2; Cyclin B1; Down-Regulation; Gene Expression Regulation, Neoplastic; Growth Inhibitors; Humans; M Phase Cell Cycle Checkpoints; MAP Kinase Signaling System; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Neoplasm Metastasis; Osteosarcoma; Piper nigrum; Piperidines; Polyunsaturated Alkamides; Tissue Inhibitor of Metalloproteinase-1; Up-Regulation

2015
Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model.
    Acta pharmacologica Sinica, 2012, Volume: 33, Issue:4

    To investigate the effects of piperine, a major pungent alkaloid present in Piper nigrum and Piper longum, on the tumor growth and metastasis of mouse 4T1 mammary carcinoma in vitro and in vivo, and elucidate the underlying mechanisms.. Growth of 4T1 cells was assessed using MTT assay. Apoptosis and cell cycle of 4T1 cells were evaluated with flow cytometry, and the related proteins were examined using Western blotting. Real-time quantitative PCR was applied to detect the expression of matrix metalloproteinases (MMPs). A highly malignant, spontaneously metastasizing 4T1 mouse mammary carcinoma model was used to evaluate the in vivo antitumor activity. Piperine was injected into tumors every 3 d for 3 times.. Piperine (35-280 μmol/L) inhibited the growth of 4T1 cells in time- and dose-dependent manners (the IC(50) values were 105 ± 1.08 and 78.52 ± 1.06 μmol/L, respectively, at 48 and 72 h). Treatment of 4T1 cells with piperine (70-280 μmol/L) dose-dependently induced apoptosis of 4T1 cells, accompanying activation of caspase 3. The cells treated with piperine (140 and 280 μmol/L) significantly increased the percentage of cells in G(2)/M phase with a reduction in the expression of cyclin B1. Piperine (140 and 280 μmol/L) significantly decreased the expression of MMP-9 and MMP-13, and inhibited 4T1 cell migration in vitro. Injection of piperine (2.5 and 5 mg/kg) dose-dependently suppressed the primary 4T1 tumor growth and injection of piperine (5 mg/kg) significantly inhibited the lung metastasis.. These results demonstrated that piperine is an effective antitumor compound in vitro and in vivo, and has the potential to be developed as a new anticancer drug.

    Topics: Alkaloids; Animals; Antineoplastic Agents, Phytogenic; Benzodioxoles; Breast; Breast Neoplasms; Cell Line, Tumor; Female; Gene Expression Regulation, Neoplastic; Mammary Neoplasms, Experimental; Matrix Metalloproteinase 13; Matrix Metalloproteinase 9; Mice; Mice, Inbred BALB C; Neoplasm Metastasis; Piper; Piperidines; Polyunsaturated Alkamides

2012