piperine has been researched along with Mouth-Neoplasms* in 3 studies
3 other study(ies) available for piperine and Mouth-Neoplasms
Article | Year |
---|---|
Quercetin and piperine enriched nanostructured lipid carriers (NLCs) to improve apoptosis in oral squamous cellular carcinoma (FaDu cells) with improved biodistribution profile.
Oral squamous cellular carcinoma (OSCC) is considered a life-threatening disease with detection in late stages, which forces us to opt for dangerous treatment with a combination of chemotherapy and radiotherapy. Herbal components such as piperine and quercetin are derived from edible sources, proving their anticancer potential against oral cancer cells in vitro. Encapsulation into lipid matrix-mediated nanostructured lipid carriers (NLCs) can make both drugs bio-accessible. NLCs were synthesised using the high shear homogenisation method and characterised for their physicochemical properties, followed by in vitro cellular evaluation in FaDu oral cancer cells. NLCs showed negatively charged particles smaller than 180 nm with a polydispersity index (PDI) of <0.3. Both drugs were found to encapsulate sufficiently, with >85% entrapment efficiency and an improved drug release profile compared to their pristine counterparts. Differential scanning calorimetry (DSC) thermograms showed conversion into an amorphous matrix in lyophilized NLCs, which was supported by X-ray diffraction (XRD) analysis. The cytotoxicity assay showed the IC Topics: Alkaloids; Animals; Apoptosis; Benzodioxoles; Drug Liberation; Drug Screening Assays, Antitumor; Fatty Acids; Humans; Membrane Potential, Mitochondrial; Mouth Neoplasms; Nanoparticle Drug Delivery System; Nanostructures; Particle Size; Piperidines; Polyunsaturated Alkamides; Quercetin; Rats; Squamous Cell Carcinoma of Head and Neck; Tissue Distribution | 2021 |
Piperine Triggers Apoptosis of Human Oral Squamous Carcinoma Through Cell Cycle Arrest and Mitochondrial Oxidative Stress.
Piperine is a nitrogenous pungent substance exhibiting multifunctional pharmacological properties. However, the mechanism underlying its anticancer potential is not well elucidated in human oral squamous carcinoma (KB) cell line. The anticancer potential of piperine was evaluated through potent biomarkers viz. reactive oxygen species (ROS), cellular apoptosis, and loss of mitochondrial membrane potential (MMP). In addition, cell cycle kinetics and caspases-3 activity were also carried out to confirm anticancer activity of piperine. Results showed that various concentrations (25-300 μM) of piperine exposure reduced the cell viability of KB cells significantly (P < 0.01). Piperine induced significant (P < 0.01) dose-related increment in ROS production and nuclear condensation. Moreover, piperine stimulated cell death by inducing loss of MMP, and caspase-3 activation. Cell cycle study revealed that piperine arrested the cells in G2/M phase and decreased the DNA content. Findings of this study suggest the efficacy of piperine in inducing cell death via the decrease in MMP and ROS liberation followed by caspase-3 activation and cell cycle arrest. Further assessment of the anticancer potency of piperine is needed for anticancer drug development. Topics: Alkaloids; Antineoplastic Agents; Apoptosis; Benzodioxoles; Carcinoma, Squamous Cell; Caspase 3; Cell Cycle Checkpoints; Cell Proliferation; Humans; KB Cells; Membrane Potential, Mitochondrial; Mitochondria; Mouth Neoplasms; Oxidative Stress; Piperidines; Polyunsaturated Alkamides; Reactive Oxygen Species | 2017 |
Chemopreventive efficacy of curcumin and piperine during 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis.
Oral carcinoma accounts for 40-50 percent of all cancers in India. Tobacco chewing, smoking and alcohol consumption are the major risk factors associated with the high incidence of oral cancer in India. Our aim was to investigate the chemopreventive potential of curcumin and piperine during 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch carcinogenesis.. Oral squamous cell carcinoma was developed in the buccal pouch of Syrian golden hamsters, by painting them with 0.5 percent DMBA in liquid paraffin, three times a week for 14 weeks. The tumour incidence, tumour volume and burden were determined in the buccal pouches. The status of phase II detoxification agents, lipid peroxidation and antioxidants were estimated by specific colorimetric methods.. We observed 100 percent tumour formation in DMBA-alone painted hamsters. Disturbances in the status of lipid peroxidation, antioxidants and phase II detoxification agents were noticed in DMBA-alone painted hamsters. Oral administration of curcumin (80 mg/kg body weight) and piperine (50 mg/kg body weight) to DMBA-painted hamsters on alternate days to DMBA painting for 14 weeks completely prevented the formation of oral carcinoma. Also, curcumin and piperine restored the status of lipid peroxidation, antioxidants and detoxifying agents in DMBA-painted hamsters.. The chemopreventive efficacy of curcumin and piperine is probably due to their antilipidperoxidative and antioxidant potential as well as their modulating effect on the carcinogen detoxification process. Topics: 9,10-Dimethyl-1,2-benzanthracene; Alkaloids; Animals; Anticarcinogenic Agents; Antioxidants; Benzodioxoles; Carcinogens; Carcinoma, Squamous Cell; Cheek; Colorimetry; Cricetinae; Curcumin; Humans; Lipid Peroxidation; Mesocricetus; Mouth Neoplasms; Piperidines; Polyunsaturated Alkamides | 2009 |