piperine has been researched along with Fatty-Liver* in 4 studies
4 other study(ies) available for piperine and Fatty-Liver
Article | Year |
---|---|
Piperine attenuates hepatic steatosis and insulin resistance in high-fat diet-induced obesity in Sprague-Dawley rats.
Substantial evidence suggests that pepper consumption is associated with a reduced risk of obesity-related complications. However, whether piperine, the main component of pepper, improves obesity-induced hepatic lipid accumulation and insulin resistance and the action mechanism of piperine still remain unclear. We hypothesized that piperine attenuates high-fat diet (HFD)-induced obesity and improves the related metabolic complications in HFD-induced obese rats. Adult Sprague-Dawley (SD) male rats were fed a control diet (CON) or an HFD for 16 weeks. Obese rats were divided into 4 groups: HFD and HFD with daily gavage of piperine 2.7 mg/kg body weight (PIP-Low), 13.5 mg/kg body weight (PIP-Medium), and 27 mg/kg body weight (PIP-High) for another 8 weeks. Rats were euthanized after an 8-hour fast, and the liver, heart, kidney, and white adipose tissue were collected and stored at -80 °C. Piperine administration significantly reduced weight gain, plasma insulin, and glucose concentration. For oral piperine at a dose of 27 mg/kg body weight, body weight significantly decreased by 5.7% compared with that in the HFD group. Additionally, oral piperine administration considerably reduced serum triglyceride concentration. Furthermore, piperine administration reversed the HFD-induced downregulation of adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling molecules and increased the plasma levels of adiponectin and the messenger RNA expression of the adiponectin receptor; additionally, it increased the phosphorylation of phosphatidylinositol-3 kinase (PI3K) and protein kinase B. Overall, oral piperine administration reversed HFD-induced liver lipid accumulation and insulin resistance, possibly via the inactivation of adiponectin-AMPK and PI3K-Akt signaling. These findings imply that piperine could serve as an effective agent for healthy weight loss. Topics: Adiponectin; Animals; Body Weight; Diet, High-Fat; Fatty Liver; Insulin; Insulin Resistance; Lipids; Liver; Male; Obesity; Phosphatidylinositol 3-Kinases; Rats; Rats, Sprague-Dawley | 2022 |
Comparative effects of piperine and simvastatin in fat accumulation and antioxidative status in high fat-induced hyperlipidemic rats.
The present study investigated the comparative effects of piperine (PIP) - the active ingredient of black and long peppers - and simvastatin (SIM) on hepatic steatosis in hyperlipidemic rats. Male Wistar rats were fed a cholesterol mixture daily by intragastric gavage for 8 weeks. Piperine was given by oral gavage 8 h after cholesterol feeding. The animals were divided into 4 groups: control, high fat (HF), high fat plus 40 mg PIP/kg, and high fat plus 2 mg SIM/kg. At the end of the treatment, liver cholesterol, triglyceride, thiobaribituric reacting substances, superoxide dismutase (SOD), serum aminotransferase (AST), and alanine transferase (ALT) were measured. The result demonstrated that PIP and SIM significantly reduced the accumulation of cholesterol, triglyceride, and lipid peroxidation in the liver, while elevation of SOD was observed. The activities of AST and ALT significantly decreased in PIP when compared with the HF group. Our in vitro study of pancreatic lipase also showed the inhibitory effect of PIP higher than 30% at 5 mmol/L. These results demonstrate that PIP has beneficial effects in the treatment and (or) prevention of fat accumulation in the liver and that this mechanism is due to the inhibition of pancreatic lipase and the improvement of oxidative status. Topics: Adipose Tissue; Alkaloids; Animals; Antioxidants; Benzodioxoles; Diet, High-Fat; Dietary Fats; Fatty Liver; Hyperlipidemias; Male; Oxidative Stress; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Simvastatin | 2016 |
Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice.
This study examined the effect of piperine on hepatic steatosis and insulin resistance induced in mice by feeding a high-fat diet (HFD) for 13 weeks and elucidated potential underlying molecular mechanisms. Administration of piperine (50 mg/kg body weight) to mice with HFD-induced hepatic steatosis resulted in a significant increase in plasma adiponectin levels. Also, elevated plasma concentrations of insulin and glucose and hepatic lipid levels induced by feeding a HFD were reversed in mice when they were administered piperine. However, piperine did not reduce body weight and other biochemical markers to an extent where they became equal to the levels found in the CD-fed mice. Piperine reversed HFD-induced down-regulation of adiponecitn-AMP-activated protein kinase (AMPK) signalling molecules which play an important role in mediating lipogenesis, fatty acid oxidation and insulin signalling in the livers of mice. The expressions of lipogenic target genes were decreased, whereas the expression of carnitine palmitoyltransferase 1 (CPT1) gene involved in fatty acid oxidation was increased in the livers of the Pin50 group. Piperine significantly decreased the phosphorylation of insulin receptor substrate-1 (IRS-1) compared with the HFD-fed mice. Administration of piperine appeared to reverse preexisting HFD-induced hepatic steatosis and insulin resistance, probably by activation of adiponectin-AMPK signalling in mice. Topics: Adiponectin; Alkaloids; AMP-Activated Protein Kinases; Animals; Benzodioxoles; Diet, High-Fat; Fatty Liver; Humans; Insulin Resistance; Lipogenesis; Male; Mice; Mice, Inbred C57BL; Piper nigrum; Piperidines; Plant Extracts; Polyunsaturated Alkamides; Triglycerides | 2013 |
Piperine, an LXRα antagonist, protects against hepatic steatosis and improves insulin signaling in mice fed a high-fat diet.
This study investigated the role of piperine in the transcriptional regulation of liver X receptor α (LXRα) and the effects of dietary piperine on high-fat diet (HFD)-induced hepatic steatosis and insulin resistance in mice. Furthermore, we explored the potential molecular mechanisms through which the protective effects of piperine may work. In the present study, piperine significantly reduced ligand-induced LXRα activity in a dose-dependent manner and gradually disrupted the interaction between ligand-bound LXRα and GST-CBP. In mice, an HFD supplemented with 0.05% piperine (PSD) significantly decreased body and liver weight as well as plasma and hepatic lipid levels. In agreement with our in vitro study, in mice fed an HFD, dietary piperine markedly decreased LXRα mRNA expression and its lipogenic target genes (i.e., SREBP1c, ChREBPα, FAS, and CD36). Piperine also significantly decreased plasma insulin and glucose concentrations, while increasing insulin sensitivity in mice fed an HFD. In addition, piperine downregulated the expression of genes involved in ER stress, including GRP78, activating transcription factor 6, and eukaryotic translation initiation factor 2α, and upregulated GLUT2 translocation from the cytosol to the plasma membrane in the livers of PSD mice. Piperine antagonized LXRα transcriptional activity by abolishing the interaction of ligand-bound LXRα with the co-activator CBP. The effects of piperine on hepatic lipid accumulation were likely regulated via alterations in LXRα-mediated lipogenesis in mice fed an HFD. Dietary piperine also led to reduced ER stress and increased insulin sensitivity and prevented hepatic insulin resistance in mice fed the HFD. Topics: Alkaloids; Animals; Base Sequence; Benzodioxoles; Blotting, Western; Dietary Fats; DNA Primers; Endoplasmic Reticulum Chaperone BiP; Fatty Liver; HEK293 Cells; Humans; Insulin; Mice; Piperidines; Polymerase Chain Reaction; Polyunsaturated Alkamides; Signal Transduction | 2012 |