piperine has been researched along with Colitis* in 2 studies
2 other study(ies) available for piperine and Colitis
Article | Year |
---|---|
Administration of reconstituted polyphenol oil bodies efficiently suppresses dendritic cell inflammatory pathways and acute intestinal inflammation.
Polyphenols are natural compounds capable of interfering with the inflammatory pathways of several in vitro model systems. In this study, we developed a stable and effective strategy to administer polyphenols to treat in vivo models of acute intestinal inflammation. The in vitro suppressive properties of several polyphenols were first tested and compared for dendritic cells (DCs) production of inflammatory cytokines. A combination of the polyphenols, quercetin and piperine, were then encapsulated into reconstituted oil bodies (OBs) in order to increase their stability. Our results showed that administration of low dose reconstituted polyphenol OBs inhibited LPS-mediated inflammatory cytokine secretion, including IL-6, IL-23, and IL-12, while increasing IL-10 and IL-1Rα production. Mice treated with the polyphenol-containing reconstituted OBs (ROBs) were partially protected from dextran sodium sulfate (DSS)-induced colitis and associated weight loss, while mortality and inflammatory scores revealed an overall anti-inflammatory effect that was likely mediated by impaired DC immune responses. Our study indicates that the administration of reconstituted quercetin and piperine-containing OBs may represent an effective and potent anti-inflammatory strategy to treat acute intestinal inflammation. Topics: Acute Disease; Alkaloids; Animals; Benzodioxoles; Capsules; Colitis; Dendritic Cells; Dextran Sulfate; Dose-Response Relationship, Drug; Drug Stability; Inflammation; Interleukin-6; Intestinal Diseases; Lipopolysaccharides; Liposomes; Mice; Peptidoglycan; Piperidines; Polyphenols; Polyunsaturated Alkamides; Quercetin; Tumor Necrosis Factor-alpha | 2014 |
Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis.
Leukocyte infiltration, up-regulation of proinflammatory cytokines and severe oxidative stress caused by increased amounts of reactive oxygen species are characteristics of inflammatory bowel disease. The catechin (2R,3R)-2-(3,4,5-Trihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol-3-(3,4,5-trihydroxybenzoate), named epigallocatechin-3-gallate, EGCG, has been demonstrated to exert anti-inflammatory and antioxidative properties, reducing reactive oxygen species in the inflamed tissues. The aim of this study was to evaluate the therapeutic effects of EGCG in a murine model of colitis induced by oral administration of dextran sodium sulfate.. Mice received a daily oral administration of 6.9 mg/kg body weight EGCG or Piper nigrum (L.) alkaloid (2E,4E)-5-(1,3-benzodioxol-5-yl)-1-piperidin-1-ylpenta-2,4-dien-1-one, named piperine (2.9 mg/kg body weight) or the combination of the both - piperine was used in this combination to enhance the bioavailability of EGCG.. In vivo data revealed the combination of EGCG and piperine to significantly reduce the loss of body weight, improve the clinical course and increase overall survival in comparison to untreated groups. The attenuated colitis was associated with less histological damages to the colon and reduction of tissue concentrations of malondialdehyde, the final product of lipid peroxidation. Neutrophils accumulation indicator myeloperoxidase was found to be reduced in colon tissue, while antioxidant enzymes like superoxide dismutase and glutathione peroxidase showed an increased activity. In vitro, the treatment with EGCG plus piperine enhanced the expression of SOD as well as GPO and also reduced the production of proinflammatory cytokines.. These data support the concept of anti-inflammatory properties of EGCG being generally beneficial in the DSS-model of colitis, an effect that may be mediated by its strong antioxidative potential. Topics: Alkaloids; Analysis of Variance; Animals; Antioxidants; Benzodioxoles; Catechin; Colitis; Dextran Sulfate; Female; Glutathione Peroxidase; HT29 Cells; Humans; Interleukin-8; Malondialdehyde; Mice; Mice, Inbred C57BL; Oxidative Stress; Peroxidase; Piperidines; Polyunsaturated Alkamides; Reactive Oxygen Species; Superoxide Dismutase; Weight Loss | 2012 |