piperidines and Sciatica

piperidines has been researched along with Sciatica* in 8 studies

Other Studies

8 other study(ies) available for piperidines and Sciatica

ArticleYear
Interaction between piperine and genes associated with sciatica and its mechanism based on molecular docking technology and network pharmacology.
    Molecular diversity, 2021, Volume: 25, Issue:1

    Piperine is the main active component of Piper longum L., which is also the main component of anti-sciatica Mongolian medicine Naru Sanwei pill. It has many pharmacological activities such as anti-inflammatory and immune regulation. This paper aims to preliminarily explore the potential mechanism of piperine in the treatment of sciatica through network pharmacology and molecular docking. TCMSP, ETCM database and literature mining were used to collect the active compounds of Piper longum L. Swiss TargetPrediction and SuperPred server were used to find the targets of compounds. At the same time, CTD database was used to collect the targets of sciatica. Then the above targets were compared and analyzed to select the targets of anti-sciatica in Piper longum L. The Go (gene ontology) annotation and KEGG pathway of the targets were enriched and analyzed by Metascape database platform. The molecular docking between the effective components and the targets was verified by Autodock. After that, the sciatica model of rats was established and treated with piperine. The expression level of inflammatory factors and proteins in the serum and tissues of rat sciatic nerve were detected by ELISA and Western blot. HE staining and immunohistochemistry were carried out on the sciatica tissues of rats. The results showed that Piper longum L. can regulate the development of sciatica and affect the expressions of PPARG and NF-kB1 through its active ingredient piperine, and there is endogenous interaction between PPARG and NF-kB1.

    Topics: Alkaloids; Animals; Benzodioxoles; Drugs, Chinese Herbal; Male; Molecular Docking Simulation; Piper; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Sciatic Nerve; Sciatica; Technology

2021
Piperine treating sciatica through regulating inflammation and MiR-520a/P65 pathway.
    Chinese journal of natural medicines, 2021, Volume: 19, Issue:6

    Although the etiology of sciatica remains uncertain, there is increasing evidence that the disease process of sciatica is associated with the levels of inflammatory factors. Piperine, an alkaloid isolated from Piper nigrum, has previously been demonstrated to inhibit inflammation and analgesic effects. The purpose of this study is to verify the regulatory relationship between miR-520a and p65 and to explore how miR-520a/P65 affects the level of cytokines under the action of piperine, so as to play a therapeutic role in sciatica. Through ELISA experiment, we confirmed that four inflammatory factors (IL-1β, TNF-α, IL-10, TGF-β1) can be used as evaluation indexes of sciatica. The differentially expressed miRNA was screened as miR-520a, by microarray technology, and the downstream target of miR-520a was P65 by bioinformatics. Real-time fluorescence quantitative PCR confirmed that the expression of miR-520a was negatively correlated with pro-inflammatory cytokines, positively correlated with anti-inflammatory cytokines and negatively correlated with p65 expression at mRNA level. The expression of p65 was positively correlated with pro-inflammatory cytokines and negatively correlated with anti-inflammatory cytokines at the protein level verified by ELISA and Western blot. HE staining analysis showed that the nerve fibers were repaired by piprine, the vacuoles were significantly reduced, and the degree of nerve fiber damage was also improved. Immunohistochemical analysis showed that the expression of p65 decreased after administration of piperine. Dual-luciferase reporter gene assay confirmed that the luciferase signal decreased significantly after cotransfection of miR-520a mimics and p65 3'UTR recombinant plasmid. To sum up, in the rat model of non-compressed lumbar disc herniation, piperine plays a significant role in analgesia. MiR-520a can specifically and directly target P65, and piperine can promote the expression of miR-520a, then inhibit the expression of p65, down-regulate the pro-inflammatory factors IL-1β and TNF-α, and up-regulate the effects of anti-inflammatory factors IL-10 and TGF-β1, so as to treat sciatica.

    Topics: Alkaloids; Animals; Benzodioxoles; Inflammation; MicroRNAs; Piperidines; Polyunsaturated Alkamides; Rats; Sciatica

2021
Cannabidiol in the prelimbic cortex modulates the comorbid condition between the chronic neuropathic pain and depression-like behaviour in rats: The role of medial prefrontal cortex 5-HT
    Brain research bulletin, 2021, Volume: 174

    Topics: Animals; Cannabidiol; Chronic Disease; Cobalt; Depression; Limbic System; Microinjections; Neuralgia; Piperazines; Piperidines; Prefrontal Cortex; Pyrazoles; Pyridines; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Serotonin, 5-HT1A; Sciatica; Serotonin 5-HT1 Receptor Antagonists; Swimming; Synapses

2021
Use of Posterior Root-Muscle Reflexes in Peripheral Nerve Surgery: A Case Report.
    The Neurodiagnostic journal, 2016, Volume: 56, Issue:3

    It is well established that a mixed-agent general anesthetic regimen of volatile gas and intravenous anesthetic or total intravenous anesthetic (TIVA) is required to obtain adequate transcranial motor-evoked potentials (TcMEPs) to detect and hopefully prevent injury during brain, spinal cord, and peripheral nerve surgery. But even under ideal general anesthetic conditions, TcMEPs are not always detectable in every muscle monitored, and are prone to anesthetic fade, especially when neuropathic or injured tissue is monitored. TcMEP sensitivity to general anesthesia can be especially problematic during peripheral nerve surgery where there is often only one or a few essential muscles required to provide adequate monitoring; thus, maximum fidelity is essential. However, there is an anesthetic-resistant high-fidelity modality available to successfully monitor the motor component of distant peripheral nerves originating from the cauda equina. Percutaneus transabdominal electrical stimulation elicits a relatively anesthetic-resistant, robust motor response in muscles innervated by cauda equina nerve roots. We report the successful use of posterior root-muscle (PRM) reflex to monitor the decompression of the sciatic nerve at its bifurcation in a 22-year-old female with a history of severe sciatic nerve neuropathic pain and muscle weakness following benign thigh tumor resection.

    Topics: Anesthesia, General; Anesthetics, General; Decompression, Surgical; Electric Stimulation; Evoked Potentials, Motor; Female; H-Reflex; Humans; Intraoperative Neurophysiological Monitoring; Methyl Ethers; Neuralgia; Neurosurgical Procedures; Piperidines; Propofol; Remifentanil; Sciatica; Sevoflurane; Spinal Nerve Roots; Young Adult

2016
Parathyroid hormone 2 receptor is a functional marker of nociceptive myelinated fibers responsible for neuropathic pain.
    Journal of neurochemistry, 2010, Volume: 112, Issue:2

    We have previously demonstrated that parathyroid hormone 2 (PTH2) receptors are expressed in dorsal root ganglion (DRG) neurons and that its endogenous agonist tuberoinfundibular peptide of 39 residues (TIP39) causes nociceptive paw flexor responses after intraplantar administration. Here we found that the PTH2 receptor is selectively localized on myelinated A-, but not unmyelinated C-fibers using immunohistochemical labeling, based on PTH2 receptor expression on antibody N52-positive medium/large-sized DRG neurons, but not on TRPV1, substance P, P2X(3) receptor or isolectin B4-binding protein-positive small-sized DRG neurons. Pharmacological studies showed that TIP39-induced nociceptive responses were mediated by activation of G(s) and cAMP-dependent protein kinase. We also found that nociceptive responses induced by TIP39- or the cAMP analog 8-bromo-cAMP were significantly greater following partial sciatic nerve injury induced neuropathic pain, without changes in PTH2 receptor expression. Together these data suggest that activation of PTH2 receptors stimulates nociceptive A-fiber through G(s)-cAMP-dependent protein kinase signaling, and this pathway has elevated sensitization following nerve injury.

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Animals; Behavior, Animal; Capsaicin; Disease Models, Animal; Dizocilpine Maleate; Dose-Response Relationship, Drug; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Ganglia, Spinal; Gene Expression Regulation; Glutamic Acid; Male; Mice; Mice, Inbred C57BL; Nerve Fibers, Myelinated; Neurons; Neuropeptides; Pain; Pain Measurement; Piperidines; Receptor, Parathyroid Hormone, Type 2; Reflex; Sciatica; Signal Transduction; Time Factors; TRPV Cation Channels

2010
Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism.
    Nature neuroscience, 2010, Volume: 13, Issue:10

    Peripheral cannabinoid receptors exert a powerful inhibitory control over pain initiation, but the endocannabinoid signal that normally engages this intrinsic analgesic mechanism is unknown. To address this question, we developed a peripherally restricted inhibitor (URB937) of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the endocannabinoid anandamide. URB937 suppressed FAAH activity and increased anandamide levels outside the rodent CNS. Despite its inability to access brain and spinal cord, URB937 attenuated behavioral responses indicative of persistent pain in rodent models of peripheral nerve injury and inflammation and prevented noxious stimulus-evoked neuronal activation in spinal cord regions implicated in nociceptive processing. CB₁ cannabinoid receptor blockade prevented these effects. These results suggest that anandamide-mediated signaling at peripheral CB₁ receptors controls the access of pain-related inputs to the CNS. Brain-impenetrant FAAH inhibitors, which strengthen this gating mechanism, might offer a new approach to pain therapy.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Cannabinoids; Carrageenan; Chromatography, Liquid; Disease Models, Animal; Drug Administration Routes; Drug Administration Schedule; Endocannabinoids; Enzyme Inhibitors; Escape Reaction; Ethylene Glycols; Feeding Behavior; Formaldehyde; Gene Expression Regulation; Hyperalgesia; Indoles; Male; Mass Spectrometry; Mice; Mice, Inbred C57BL; Mice, Knockout; Monoacylglycerol Lipases; Motor Activity; Oncogene Proteins v-fos; Pain; Pain Measurement; Pain Threshold; Peripheral Nervous System Diseases; Piperidines; Polyunsaturated Alkamides; PPAR alpha; Pyrazoles; Rats; Rats, Sprague-Dawley; Rimonabant; Sciatica; Spinal Cord; Statistics, Nonparametric; Time Factors; Tissue Distribution; Tritium

2010
Actions of N-arachidonyl-glycine in a rat neuropathic pain model.
    Neuropharmacology, 2008, Volume: 54, Issue:1

    While cannabinoid receptor agonists reduce the abnormal pain sensations associated with animal models of neuropathic pain states they also produce CB(1) receptor mediated side effects. Recently, a number of arachidonic acid-amino acid conjugates, including N-arachidonyl-glycine (NAGly), have been identified which are structurally related to the endocannabinoid arachidonyl ethanolamide (anandamide). In the present study we examined the effect of NAGly in a rat model of neuropathic pain. Intrathecal administration of NAGly (700 nmol) and the pan-cannabinoid receptor agonist HU-210 (30 nmol) reduced the mechanical allodynia induced by partial ligation of the sciatic nerve. The NAGly induced anti-allodynia was dose dependent and, unlike HU-210, was unaffected by the cannabinoid CB(1) and CB(2) receptor antagonists, AM251 and SR144528 (30 nmol). The NAGly degradation products, arachidonic acid and glycine (700 nmol), did not reduce allodynia. HU-210, but not NAGly produced a reduction in rotarod latency. These findings suggest that NAGly may provide a novel analgesic approach to alleviate neuropathic pain.

    Topics: Analgesics; Animals; Arachidonic Acids; Area Under Curve; Camphanes; Disease Models, Animal; Dose-Response Relationship, Drug; Dronabinol; Glycine; Hyperalgesia; Male; Pain Measurement; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Sciatica

2008
The role of central and peripheral Cannabinoid1 receptors in the antihyperalgesic activity of cannabinoids in a model of neuropathic pain.
    Pain, 2001, Volume: 92, Issue:1-2

    We have examined the effects of cannabinoid agonists on hyperalgesia in a model of neuropathic pain in the rat and investigated the possible sites of action. The antihyperalgesic activity of the cannabinoids was compared with their ability to elicit behavioural effects characteristic of central cannabinoid activity. WIN55,212-2 (0.3-10 mg kg(-1)), CP-55,940 (0.03-1 mg kg(-1)) and HU-210 (0.001-0.03 mg kg(-1)) were all active in a 'tetrad' of tests consisting of tail-flick, catalepsy, rotarod and hypothermia following subcutaneous administration, with a rank order of potency in each of HU-210 > CP-55,940 > WIN55,212-2. The effects of WIN55,212-2 in each assay were blocked by the Cannabinoid1 (CB1) antagonist SR141716A. In the partial sciatic ligation model of neuropathic pain WIN55,212-2, CP-55,940 and HU-210 produced complete reversal of mechanical hyperalgesia within 3 h of subcutaneous administration with D50 values of 0.52, 0.08 and 0.005 mg kg(-1), respectively. In this model WIN55,212-2 was also effective against thermal hyperalgesia and mechanical allodynia. WIN55,212-2 produced pronounced reversal of mechanical hyperalgesia following intrathecal administration that was blocked by the CB1 antagonist SR141716A. Following intraplantar administration into the ipsilateral hindpaw, WIN55,212-2 produced up to 70% reversal of mechanical hyperalgesia, although activity was also observed at high doses following injection into the contralateral paw. The antihyperalgesic effect of WIN55,212-2 injected into the ipsilateral paw was blocked by subcutaneously administered SR141716A, but was not affected by intrathecally administered SR141716A. These data show that cannabinoids are highly potent and efficacious antihyperalgesic agents in a model of neuropathic pain. This activity is likely to be mediated via an action in both the CNS and in the periphery.

    Topics: Analgesics; Animals; Benzoxazines; Cannabinoids; Cyclohexanols; Disease Models, Animal; Dronabinol; Hyperalgesia; Morpholines; Naphthalenes; Pain Measurement; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Sciatica

2001