piperidines has been researched along with Pulmonary-Eosinophilia* in 5 studies
5 other study(ies) available for piperidines and Pulmonary-Eosinophilia
Article | Year |
---|---|
The JAK-3 inhibitor CP-690550 is a potent anti-inflammatory agent in a murine model of pulmonary eosinophilia.
Janus kinase 3 (JAK-3) is a tyrosine kinase that has been shown to participate in the signaling of several cytokines that are believed to play a role in allergic airway disease, e.g. IL-2, 4 and 9. The current study describes the immunosuppressive effects of CP-690550, a novel, small molecule inhibitor of JAK-3, in a murine model of allergic pulmonary inflammation. In vitro, CP-690550 potently inhibited IL-4 induced upregulation of CD23 (IC(50)=57 nM) and class II major histocompatibility complex (MHCII) expression (IC(50)=71 nM) on murine B cells. Repeat aerosol exposure to ovalbumin in wild-type mice sensitized to the antigen resulted in preferential recruitment of Th2-like cells (IL-4+ and IL-5+) into bronchoalveolar lavage fluid (BAL). The importance of IL-4 in the development of pulmonary eosinophilia was supported by a marked (90%) reduction in the influx of these cells in IL-4KO mice similarly sensitized and ovalbumin exposed. Animals dosed with CP-690550 (15 mg/kg/d) during the period of antigen sensitization and boost demonstrated marked reductions in BAL eosinophils and levels of IL-13 and eotaxin following ovalbumin aerosol exposure. The JAK-3 inhibitor (1.5-15 mg/kg/d) also effectively reduced the same parameters when administered during the period of antigen challenge. In contrast, the calcineurin inhibitor tacrolimus (10 mg/kg) was effective only when administered during the period of ovalbumin aerosol exposure. These data support the participation of JAK-3 in processes that contribute to pulmonary eosinophilia in the allergic mouse model. CP-690550 represents an intriguing novel therapy for treatment of allergic conditions associated with airway eosinophilia including asthma and rhinitis. Topics: Analysis of Variance; Animals; Anti-Inflammatory Agents, Non-Steroidal; B-Lymphocytes; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Dose-Response Relationship, Drug; Eosinophils; Female; Flow Cytometry; Histocompatibility Antigens Class II; In Vitro Techniques; Interleukin-4; Janus Kinase 3; Mice; Mice, Inbred BALB C; Mice, Knockout; Ovalbumin; Piperidines; Pulmonary Eosinophilia; Pyrimidines; Pyrroles; Receptors, IgE; Th2 Cells | 2008 |
A dual antagonist for chemokine CCR3 receptor and histamine H1 receptor.
Eosinophilic chemokines and histamine play distinct but important roles in allergic diseases. Inhibition of both eosinophilic chemokines and histamine, therefore, is an ideal strategy for the treatment of allergic inflammation, such as asthma, allergic rhinitis, and atopic dermatitis. YM-344484 was found to potently inhibit both the CCL11-induced Ca2+ influx in human CCR3-expressing cells (Kb=1.8 nM) and histamine-induced Ca2+ influx in histamine H1 receptor-expressing PC3 cells (Kb=47 nM). YM-344484 also inhibited the CCL11-induced chemotaxis of human CCR3-expressing cells (IC50=6.2 nM) and CCL11-induced eosinophil-derived neurotoxin release from human eosinophils (IC50=19 nM). Orally administered YM-344484 inhibited the increase in histamine-induced vascular permeability in mice (82% inhibition at a dose of 10 mg/kg) and the accumulation of eosinophils in a mouse asthma model (74% at a dose of 300 mg/kg). These results indicate that YM-344484, a novel and functional dual antagonist for chemokine CCR3 receptor and histamine H1 receptor, is an attractive candidate for development as a novel anti-allergic inflammation drug. Topics: Animals; Anti-Allergic Agents; Anti-Inflammatory Agents; Asthma; Calcium Signaling; Capillary Permeability; Cell Line, Tumor; Chemotaxis; Disease Models, Animal; Dose-Response Relationship, Drug; Eosinophil-Derived Neurotoxin; Eosinophils; Female; Histamine; Histamine Antagonists; Humans; Mice; Mice, Inbred BALB C; Ovalbumin; Piperidines; Pneumonia; Pulmonary Eosinophilia; Pyridazines; Rats; Receptors, CCR3; Receptors, Chemokine; Receptors, Histamine H1; Skin; Transfection | 2007 |
Cutting edge: serotonin is a chemotactic factor for eosinophils and functions additively with eotaxin.
Elevated levels of serotonin (5-hydroxytryptamine, 5-HT) are observed in the serum of asthmatics. Herein, we demonstrate that 5-HT functions independently as an eosinophil chemoattractant that acts additively with eotaxin. 5-HT2A receptor antagonists (including MDL-100907 and cyproheptadine (CYP)) were found to inhibit 5-HT-induced, but not eotaxin-induced migration. Intravital microscopy studies revealed that eosinophils roll in response to 5-HT in venules under conditions of physiological shear stress, which could be blocked by pretreating eosinophils with CYP. OVA-induced pulmonary eosinophilia in wild-type mice was significantly inhibited using CYP alone and maximally in combination with a CCR3 receptor antagonist. Interestingly, OVA-induced pulmonary eosinophilia in eotaxin-knockout (Eot-/-) mice was inhibited by treatment with the 5-HT2A but not CCR3 receptor antagonist. These results suggest that 5-HT is a potent eosinophil-active chemoattractant that can function additively with eotaxin and a dual CCR3/5-HT2A receptor antagonist may be more effective in blocking allergen-induced eosinophil recruitment. Topics: Adjuvants, Immunologic; Allergens; Cell Migration Inhibition; Chemokine CCL11; Chemokines, CC; Chemotactic Factors, Eosinophil; Chemotaxis, Leukocyte; Cyproheptadine; Dose-Response Relationship, Immunologic; Eosinophils; Fluorobenzenes; Humans; Leukocyte Rolling; Piperidines; Pulmonary Eosinophilia; Receptors, CCR3; Receptors, Chemokine; Serotonin; Serotonin 5-HT2 Receptor Antagonists; Serotonin Antagonists | 2004 |
Tryptase inhibition blocks airway inflammation in a mouse asthma model.
Release of human lung mast cell tryptase may be important in the pathophysiology of asthma. We examined the effect of the reversible, nonelectrophilic tryptase inhibitor MOL 6131 on airway inflammation and hyper-reactivity in a murine model of asthma. MOL 6131 is a potent selective nonpeptide inhibitor of human lung mast cell tryptase based upon a beta-strand template (K(i) = 45 nM) that does not inhibit trypsin (K(i) = 1,061 nM), thrombin (K(i) = 23, 640 nM), or other serine proteases. BALB/c mice after i.p. OVA sensitization (day 0) were challenged intratracheally with OVA on days 8, 15, 18, and 21. MOL 6131, administered days 18-21, blocked the airway inflammatory response to OVA assessed 24 h after the last OVA challenge on day 22; intranasal delivery (10 mg/kg) had a greater anti-inflammatory effect than oral delivery (10 or 25 mg/kg) of MOL 6131. MOL 6131 reduced total cells and eosinophils in bronchoalveolar lavage fluid, airway tissue eosinophilia, goblet cell hyperplasia, mucus secretion, and peribronchial edema and also inhibited the release of IL-4 and IL-13 in bronchoalveolar lavage fluid. However, tryptase inhibition did not alter airway hyper-reactivity to methacholine in vivo. These results support tryptase as a therapeutic target in asthma and indicate that selective tryptase inhibitors can reduce allergic airway inflammation. Topics: Animals; Asthma; Bridged Bicyclo Compounds, Heterocyclic; Bronchial Diseases; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Cell Movement; Cytokines; Eosinophils; Humans; Inflammation; Lung; Mice; Mice, Inbred BALB C; Models, Molecular; Mucus; Ovalbumin; Piperidines; Pulmonary Edema; Pulmonary Eosinophilia; Serine Endopeptidases; Serine Proteinase Inhibitors; Tryptases; Vascular Cell Adhesion Molecule-1 | 2002 |
[A case of eosinophilic pneumonia possibly due to ifenprodil].
A 69-year-old woman with a history of subarachnoid hemorrhage was started on ifenprodil for dizziness. Three weeks later, fever, cough, chills, dyspnea and skin eruption developed. A chest radiograph showed bilateral ground-glass shadows. Blood tests showed a white cell count of 14,400/mm3 with 32% eosinophils and a C reactive protein (CRP) level of 20 mg/dl. The arterial blood gases on room air were as follows: pH 7.45, PaCO2 33 torr, and PaO2 56 torr (Table 1). Ifenprodil was withdrawn and intravenous meropenem and minocycline administration was started on admission. Her fever improved rapidly and the CRP decreased, but hypoxemia and hypereosinophilia persisted. On the third hospital day, she underwent bronchoscopy with bronchoalveolar lavage (BAL). The differential count of BAL cells was 63% eosinophils, 15% lymphocytes, 21% macrophages, and 1% neutrophils. Intravenous methylprednisolone 250 mg/day for 3 days was commenced, leading to a clinical improvement. She received oral prednisolone (30 mg/day) for the next 4 days, and was then discharged without any symptoms. She has had no recurrence since. Both the drug lymphocyte stimulation test and the skin test for ifenprodil were negative. Topics: Aged; Female; Humans; Piperidines; Pulmonary Eosinophilia; Vasodilator Agents | 2001 |