piperidines and Progeria

piperidines has been researched along with Progeria* in 26 studies

Reviews

5 review(s) available for piperidines and Progeria

ArticleYear
Lonafarnib: First Approval.
    Drugs, 2021, Volume: 81, Issue:2

    Lonafarnib (Zokinvy™) is an orally active farnesyltransferase inhibitor developed by Eiger BioPharmaceuticals under license from Merck & Co. for the treatment of hepatitis D virus (HDV) infections, and progeria and progeroid laminopathies. The drug was originally discovered by Merck & Co as an investigational drug in oncology. In progeria, lonafarnib inhibits farnesyltransferase to prevent farnesylation and subsequent accumulation of progerin and progerin-like proteins in the nucleus and cellular cytoskeleton. In November 2020, lonafarnib received its first approval in the USA to reduce the risk of mortality in Hutchinson-Gilford Progeria Syndrome (HGPS) and for the treatment of processing-deficient progeroid laminopathies (with either heterozygous LMNA mutation with progerin-like protein accumulation, or homozygous or compound heterozygous ZMPSTE24 mutations) in patients ≥ 12 months of age with a body surface area (BSA) of ≥ 0.39 m

    Topics: Antiviral Agents; Enzyme Inhibitors; Farnesyltranstransferase; Hepatitis D; Humans; Piperidines; Progeria; Pyridines

2021
Small-Molecule Therapeutic Perspectives for the Treatment of Progeria.
    International journal of molecular sciences, 2021, Jul-03, Volume: 22, Issue:13

    Hutchinson-Gilford progeria syndrome (HGPS), or progeria, is an extremely rare disorder that belongs to the class of laminopathies, diseases characterized by alterations in the genes that encode for the lamin proteins or for their associated interacting proteins. In particular, progeria is caused by a point mutation in the gene that codifies for the lamin A gene. This mutation ultimately leads to the biosynthesis of a mutated version of lamin A called progerin, which accumulates abnormally in the nuclear lamina. This accumulation elicits several alterations at the nuclear, cellular, and tissue levels that are phenotypically reflected in a systemic disorder with important alterations, mainly in the cardiovascular system, bones, skin, and overall growth, which results in premature death at an average age of 14.5 years. In 2020, lonafarnib became the first (and only) FDA approved drug for treating progeria. In this context, the present review focuses on the different therapeutic strategies currently under development, with special attention to the new small molecules described in recent years, which may represent the upcoming first-in-class drugs with new mechanisms of action endowed with effectiveness not only to treat but also to cure progeria.

    Topics: Aging; Aging, Premature; Cell Nucleus; Cellular Senescence; Fibroblasts; Humans; Lamin Type A; Laminopathies; Mutation; Nuclear Lamina; Phenotype; Piperidines; Progeria; Pyridines; Skin; Small Molecule Libraries

2021
Hutchinson-Gilford Progeria Syndrome: Cardiovascular Pathologies and Potential Therapies.
    Trends in biochemical sciences, 2019, Volume: 44, Issue:7

    Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare and fatal disease with features of premature aging and cardiovascular diseases (atherosclerosis, myocardial infarction, and stroke). Several landmark studies in 2018-2019 have revealed novel mechanisms underlying cardiovascular pathologies in HGPS, and implicate future potential therapies for HGPS, and possibly physiological aging.

    Topics: Cardiovascular Diseases; Humans; Piperidines; Progeria; Pyridines

2019
Progeria: a rare genetic premature ageing disorder.
    The Indian journal of medical research, 2014, Volume: 139, Issue:5

    Progeria is characterized by clinical features that mimic premature ageing. Although the mutation responsible for this syndrome has been deciphered, the mechanism of its action remains elusive. Progeria research has gained momentum particularly in the last two decades because of the possibility of revealing evidences about the ageing process in normal and other pathophysiological conditions. Various experimental models, both in vivo and in vitro, have been developed in an effort to understand the cellular and molecular basis of a number of clinically heterogeneous rare genetic disorders that come under the umbrella of progeroid syndromes (PSs). As per the latest clinical trial reports, Lonafarnib, a farnesyltranferase inhibitor, is a potent 'drug of hope' for Hutchinson-Gilford progeria syndrome (HGPS) and has been successful in facilitating weight gain and improving cardiovascular and skeletal pathologies in progeroid children. This can be considered as the dawn of a new era in progeria research and thus, an apt time to review the research developments in this area highlighting the molecular aspects, experimental models, promising drugs in trial and their implications to gain a better understanding of PSs.

    Topics: Aging; Child; Clinical Trials as Topic; Humans; Lamin Type A; Longevity; Mutation; Piperidines; Prenylation; Progeria; Pyridines; Rare Diseases

2014
Lonafarnib for cancer and progeria.
    Expert opinion on investigational drugs, 2012, Volume: 21, Issue:7

    Lonafarnib is a non-peptidomimetic inhibitor of farnesyl transferase, an enzyme responsible for the post-translational lipid modification of a wide variety of cellular proteins that are involved in the pathogenic pathways of various diseases including cancer and progeria. Although extensive clinical research indicates limited activity of lonafarnib in solid tumors, there is recent interest in combinations of farnesyl transferase inhibitors with imatinib or bortezomib in hematological malignancies and to investigate the role of lonafarnib in progeria.. This review examines the in vitro and in vivo pharmacology of lonafarnib and the available clinical data for lonafarnib monotherapy and combination therapy in the treatment of solid and hematological malignancies as well as progeria, using studies identified from the PubMed database supplemented by computerized search of relevant abstracts from major cancer and hematology conferences.. There is no evidence to support the use of lonafarnib in solid tumors. There is ongoing interest to explore lonafarnib for progeria and to investigate other farnesyl transferase inhibitors for chronic and acute leukemias.

    Topics: Apoptosis; Cell Line, Tumor; Cell Proliferation; Clinical Trials as Topic; Enzyme Inhibitors; Farnesyltranstransferase; Humans; Neoplasms; Piperidines; Progeria; Protein Prenylation; Pyridines; Treatment Outcome; Xenograft Model Antitumor Assays

2012

Trials

3 trial(s) available for piperidines and Progeria

ArticleYear
Clinical Trial of the Protein Farnesylation Inhibitors Lonafarnib, Pravastatin, and Zoledronic Acid in Children With Hutchinson-Gilford Progeria Syndrome.
    Circulation, 2016, Jul-12, Volume: 134, Issue:2

    Hutchinson-Gilford progeria syndrome is an extremely rare, fatal, segmental premature aging syndrome caused by a mutation in LMNA yielding the farnesylated aberrant protein progerin. Without progerin-specific treatment, death occurs at an average age of 14.6 years from an accelerated atherosclerosis. A previous single-arm clinical trial demonstrated that the protein farnesyltransferase inhibitor lonafarnib ameliorates some aspects of cardiovascular and bone disease. This present trial sought to further improve disease by additionally inhibiting progerin prenylation.. Thirty-seven participants with Hutchinson-Gilford progeria syndrome received pravastatin, zoledronic acid, and lonafarnib. This combination therapy was evaluated, in addition to descriptive comparisons with the prior lonafarnib monotherapy trial.. No participants withdrew because of side effects. Primary outcome success was predefined by improved per-patient rate of weight gain or carotid artery echodensity; 71.0% of participants succeeded (P<0.0001). Key cardiovascular and skeletal secondary variables were predefined. Secondary improvements included increased areal (P=0.001) and volumetric (P<0.001-0.006) bone mineral density and 1.5- to 1.8-fold increases in radial bone structure (P<0.001). Median carotid artery wall echodensity and carotid-femoral pulse wave velocity demonstrated no significant changes. Percentages of participants with carotid (5% to 50%; P=0.001) and femoral (0% to 12%; P=0.13) artery plaques and extraskeletal calcifications (34.4% to 65.6%; P=0.006) increased. Other than increased bone mineral density, no improvement rates exceeded those of the prior lonafarnib monotherapy treatment trial.. Comparisons with lonafarnib monotherapy treatment reveal additional bone mineral density benefit but likely no added cardiovascular benefit with the addition of pravastatin and zoledronic acid.. URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00879034 and NCT00916747.

    Topics: Bone and Bones; Carotid Arteries; Child, Preschool; Diphosphonates; Drug Therapy, Combination; Female; Humans; Imidazoles; Infant; Male; Piperidines; Pravastatin; Progeria; Prospective Studies; Protein Prenylation; Pyridines; Zoledronic Acid

2016
Neurologic features of Hutchinson-Gilford progeria syndrome after lonafarnib treatment.
    Neurology, 2013, Jul-30, Volume: 81, Issue:5

    The objective of this study was to retrospectively evaluate neurologic status pre- and posttreatment with the oral farnesyltransferase inhibitor lonafarnib in children with Hutchinson-Gilford progeria syndrome (HGPS), a rare, fatal disorder of segmental premature aging that results in early death by myocardial infarction or stroke.. The primary outcome measure for intervention with lonafarnib was to assess increase over pretherapy in estimated annual rate of weight gain. In this study, neurologic signs and symptoms were compared pre- and posttreatment with lonafarnib.. Twenty-six participants were treated for a minimum of 2 years. Frequency of clinical strokes, headaches, and seizures was reduced from pretrial rates. Three patients with a history of frequent TIAs and average clinical stroke frequency of 1.75/year during the year before treatment experienced no new events during treatment. One patient with a history of stroke died due to large-vessel hemispheric stroke after 5 months on treatment. Headache prevalence and frequency were reduced. Four patients exhibited pretherapy seizures and no patients experienced recurrent or new-onset seizures.. This study provides preliminary evidence that lonafarnib therapy may improve neurologic status of children with HGPS. To address this question, we have incorporated prospective neuroimaging and neurologic assessments as measures in subsequent studies involving children with HGPS.. This study provides Class IV evidence that lonafarnib 115-150 mg/m(2) for 24 to 29 months reduces the prevalence of stroke and TIA and the prevalence and frequency of headache over the treatment period.

    Topics: Adolescent; Child; Child, Preschool; Female; Humans; Male; Nervous System Diseases; Piperidines; Progeria; Pyridines; Retrospective Studies; Treatment Outcome

2013
Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome.
    Proceedings of the National Academy of Sciences of the United States of America, 2012, Oct-09, Volume: 109, Issue:41

    Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare, fatal, segmental premature aging syndrome caused by a mutation in LMNA that produces the farnesylated aberrant lamin A protein, progerin. This multisystem disorder causes failure to thrive and accelerated atherosclerosis leading to early death. Farnesyltransferase inhibitors have ameliorated disease phenotypes in preclinical studies. Twenty-five patients with HGPS received the farnesyltransferase inhibitor lonafarnib for a minimum of 2 y. Primary outcome success was predefined as a 50% increase over pretherapy in estimated annual rate of weight gain, or change from pretherapy weight loss to statistically significant on-study weight gain. Nine patients experienced a ≥50% increase, six experienced a ≥50% decrease, and 10 remained stable with respect to rate of weight gain. Secondary outcomes included decreases in arterial pulse wave velocity and carotid artery echodensity and increases in skeletal rigidity and sensorineural hearing within patient subgroups. All patients improved in one or more of these outcomes. Results from this clinical treatment trial for children with HGPS provide preliminary evidence that lonafarnib may improve vascular stiffness, bone structure, and audiological status.

    Topics: Adolescent; Carotid Arteries; Child; Child, Preschool; Diarrhea; Dose-Response Relationship, Drug; Drug Administration Schedule; Enzyme Inhibitors; Farnesyltranstransferase; Fatigue; Female; Humans; Male; Piperidines; Progeria; Pulse Wave Analysis; Pyridines; Treatment Outcome; Vomiting; Weight Gain

2012

Other Studies

18 other study(ies) available for piperidines and Progeria

ArticleYear
FDA approval summary for lonafarnib (Zokinvy) for the treatment of Hutchinson-Gilford progeria syndrome and processing-deficient progeroid laminopathies.
    Genetics in medicine : official journal of the American College of Medical Genetics, 2023, Volume: 25, Issue:2

    The U.S. Food and Drug Administration recently approved lonafarnib as the first treatment for Hutchinson-Gilford progeria syndrome (HGPS) and processing-deficient progeroid laminopathies. This approval was primarily based on a comparison of patients with HGPS treated with lonafarnib in 2 open-label trials with an untreated patient cohort. With up to 11 years of follow-up, it was found that the lonafarnib treated patients with HGPS had a survival benefit of 2.5 years compared with the untreated patients with HGPS. This large treatment effect on the objective endpoint of mortality using a well-matched comparator group mitigated potential sources of bias and together with other evidence, established compelling evidence of a drug effect with benefits that outweighed the risks. This approval is an example of U.S. Food and Drug Administration's regulatory flexibility for a rare disease while ensuring that standards for drug approval are met.

    Topics: Humans; Lamin Type A; Piperidines; Progeria; Pyridines; United States

2023
Lonafarnib improves cardiovascular function and survival in a mouse model of Hutchinson-Gilford progeria syndrome.
    eLife, 2023, 03-17, Volume: 12

    Clinical trials have demonstrated that lonafarnib, a farnesyltransferase inhibitor, extends the lifespan in patients afflicted by Hutchinson-Gilford progeria syndrome, a devastating condition that accelerates many characteristics of aging and results in premature death due to cardiovascular sequelae. The US Food and Drug Administration approved Zokinvy (lonafarnib) in November 2020 for treating these patients, yet a detailed examination of drug-associated effects on cardiovascular structure, properties, and function has remained wanting. In this paper, we report encouraging outcomes of daily post-weaning treatment with lonafarnib on the composition and biomechanical phenotype of elastic and muscular arteries as well as associated cardiac function in a well-accepted mouse model of progeria that exhibits severe perimorbid cardiovascular disease. Lonafarnib resulted in 100% survival of the treated progeria mice to the study end-point (time of 50% survival of untreated mice), with associated improvements in arterial structure and function working together to significantly reduce pulse wave velocity and improve left ventricular diastolic function. By contrast, neither treatment with the mTOR inhibitor rapamycin alone nor dual treatment with lonafarnib plus rapamycin improved outcomes over that achieved with lonafarnib monotherapy.

    Topics: Animals; Lamin Type A; Mice; Piperidines; Progeria; Pulse Wave Analysis; Sirolimus

2023
New Drugs for Rare Disorders.
    The American journal of nursing, 2021, 02-01, Volume: 121, Issue:2

    Several new drugs have been approved to treat rare genetic disorders: setmelanotide for certain conditions causing obesity; lumasiran for primary hyperoxaluria type 1, a kidney disorder; and lonafarnib for two diseases that cause premature aging.

    Topics: alpha-MSH; Anti-Obesity Agents; Humans; Piperidines; Progeria; Pyridines; Rare Diseases

2021
Baricitinib, a JAK-STAT Inhibitor, Reduces the Cellular Toxicity of the Farnesyltransferase Inhibitor Lonafarnib in Progeria Cells.
    International journal of molecular sciences, 2021, Jul-12, Volume: 22, Issue:14

    Hutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare multisystem premature aging disorder that leads to early death (mean age of 14.7 years) due to myocardial infarction or stroke. Most cases have a de novo point mutation at position G608G within exon 11 of the

    Topics: Adolescent; Azetidines; Cells, Cultured; Child, Preschool; Enzyme Inhibitors; Farnesyltranstransferase; Female; Humans; Janus Kinase 1; Janus Kinase Inhibitors; Male; Piperidines; Progeria; Purines; Pyrazoles; Pyridines; STAT1 Transcription Factor; Sulfonamides

2021
Evaluation of musculoskeletal phenotype of the G608G progeria mouse model with lonafarnib, pravastatin, and zoledronic acid as treatment groups.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 06-02, Volume: 117, Issue:22

    Hutchinson-Gilford progeria syndrome (HGPS) is a uniformly fatal condition that is especially prevalent in skin, cardiovascular, and musculoskeletal systems. A wide gap exists between our knowledge of the disease and a promising treatment or cure. The aim of this study was to first characterize the musculoskeletal phenotype of the homozygous G608G BAC-transgenic progeria mouse model, and to determine the phenotype changes of HGPS mice after a five-arm preclinical trial of different treatment combinations with lonafarnib, pravastatin, and zoledronic acid. Microcomputed tomography and CT-based rigidity analyses were performed to assess cortical and trabecular bone structure, density, and rigidity. Bones were loaded to failure with three-point bending to assess strength. Contrast-enhanced µCT imaging of mouse femurs was performed to measure glycosaminoglycan content, thickness, and volume of the femoral head articular cartilage. Advanced glycation end products were assessed with a fluorometric assay. The changes demonstrated in the cortical bone structure, rigidity, stiffness, and modulus of the HGPS G608G mouse model may increase the risk for bending and deformation, which could result in the skeletal dysplasia characteristic of HGPS. Cartilage abnormalities seen in this HGPS model resemble changes observed in the age-matched WT controls, including early loss of glycosaminoglycans, and decreased cartilage thickness and volume. Such changes might mimic prevalent degenerative joint diseases in the elderly. Lonafarnib monotherapy did not improve bone or cartilage parameters, but treatment combinations with pravastatin and zoledronic acid significantly improved bone structure and mechanical properties and cartilage structural parameters, which ameliorate the musculoskeletal phenotype of the disease.

    Topics: Aging; Animals; Bone and Bones; Bone Density Conservation Agents; Cartilage; Disease Models, Animal; Femur; Glycosaminoglycans; Joints; Lamin Type A; Mice; Mice, Transgenic; Mutation; Osteoarthritis; Phenotype; Piperidines; Pravastatin; Progeria; Protein Processing, Post-Translational; Pyridines; X-Ray Microtomography; Zoledronic Acid

2020
Extraskeletal Calcifications in Hutchinson-Gilford Progeria Syndrome.
    Bone, 2019, Volume: 125

    Children with Hutchinson-Gilford progeria syndrome (HGPS), a rare premature aging disease, exhibit extraskeletal calcifications detected by radiographic analysis and on physical examination. The aim of this study was to describe the natural history and pathophysiology of these abnormal calcifications in HGPS, and to determine whether medications and/or supplements tested in clinical trials alter their development.. Children from two successive clinical trials administering 1) lonafarnib (n = 26) and 2) lonafarnib + pravastatin + zoledronic acid (n = 37) were studied at baseline (pre-therapy), one year on therapy, and at end-of-therapy (3.3-4.3 years after the baseline visit). Calcium supplementation (oral calcium carbonate) was administered during the first year of the second trial and was subsequently discontinued. Information on calcifications was obtained from physical examinations, radiographs, and serum and urinary biochemical measures. The mineral content of two skin-derived calcifications was determined by x-ray diffraction.. Extraskeletal calcifications were detected radiographically in 12/39 (31%) patients at baseline. The odds of exhibiting calcifications increased with age (p = 0.045). The odds were unaffected by receipt of lonafarnib, pravastatin, and zoledronate therapies. However, administration of calcium carbonate supplementation, in conjunction with all three therapeutic agents, significantly increased the odds of developing calcifications (p = 0.009), with the odds plateauing after the supplement's discontinuation. Composition analysis of calcinosis cutis showed hydroxyapatite similar to bone. Although serum calcium, phosphorus, and parathyroid hormone (PTH) were within normal limits at baseline and on-therapy, PTH increased significantly after lonafarnib initiation (p < 0.001). Both the urinary calcium/creatinine ratio and tubular reabsorption of phosphate (TRP) were elevated at baseline in 22/39 (56%) and 31/37 (84%) evaluable patients, respectively, with no significant changes while on-therapy. The mean calcium × phosphorus product (Ca × Pi) was within normal limits, but plasma magnesium decreased over both clinical trials. Fibroblast growth factor 23 (FGF23) was lower compared to age-matched controls (p = 0.03).. Extraskeletal calcifications increased with age in children with HGPS and were composed of hydroxyapatite. The urinary calcium/creatinine ratio and TRP were elevated for age while FGF23 was decreased. Magnesium decreased and PTH increased after lonafarnib therapy which may alter the ability to mobilize calcium. These findings demonstrate that children with HGPS with normal renal function and an unremarkable Ca × Pi develop extraskeletal calcifications by an unidentified mechanism that may involve decreased plasma magnesium and FGF23. Calcium carbonate accelerated their development and is, therefore, not recommended for routine supplementation in these children.

    Topics: Calcinosis; Calcium; Child; Child, Preschool; Creatinine; Female; Fibroblast Growth Factor-23; Humans; In Vitro Techniques; Lamin Type A; Male; Parathyroid Hormone; Piperidines; Pravastatin; Progeria; Pyridines; Zoledronic Acid

2019
Transient introduction of human telomerase mRNA improves hallmarks of progeria cells.
    Aging cell, 2019, Volume: 18, Issue:4

    Hutchinson-Gilford progeria syndrome (HGPS) is characterized by accelerated senescence due to a de novo mutation in the LMNA gene. The mutation produces an abnormal lamin A protein called progerin that lacks the splice site necessary to remove a farnesylated domain. Subsequently, progerin accumulates in the nuclear envelope, disrupting nuclear architecture, chromatin organization, and gene expression. These alterations are often associated with rapid telomere erosion and cellular aging. Here, we further characterize the cellular and molecular abnormalities in HGPS cells and report a significant reversal of some of these abnormalities by introduction of in vitro transcribed and purified human telomerase (hTERT) mRNA. There is intra-individual heterogeneity of expression of telomere-associated proteins DNA PKcs/Ku70/Ku80, with low-expressing cells having shorter telomeres. In addition, the loss of the heterochromatin marker H3K9me3 in progeria is associated with accelerated telomere erosion. In HGPS cell lines characterized by short telomeres, transient transfections with hTERT mRNA increase telomere length, increase expression of telomere-associated proteins, increase proliferative capacity and cellular lifespan, and reverse manifestations of cellular senescence as assessed by β-galactosidase expression and secretion of inflammatory cytokines. Unexpectedly, mRNA hTERT also improves nuclear morphology. In combination with the farnesyltransferase inhibitor (FTI) lonafarnib, hTERT mRNA promotes HGPS cell proliferation. Our findings demonstrate transient expression of human telomerase in combination with FTIs could represent an improved therapeutic approach for HGPS.

    Topics: Adolescent; Adult; Aged; Cell Line; Cellular Senescence; Child; Child, Preschool; Enzyme Inhibitors; Farnesyltranstransferase; Female; Fibroblasts; Humans; Infant; Infant, Newborn; Lamin Type A; Male; Piperidines; Progeria; Pyridines; RNA, Messenger; Telomerase; Telomere; Telomere Homeostasis; Transfection

2019
Survey of plasma proteins in children with progeria pre-therapy and on-therapy with lonafarnib.
    Pediatric research, 2018, Volume: 83, Issue:5

    BackgroundHutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare, fatal, segmental premature aging syndrome caused by the aberrant lamin A protein, progerin. The protein farnesyltransferase inhibitor, lonafarnib, ameliorates some aspects of cardiovascular and bone disease.MethodsWe performed a prospective longitudinal survey of plasma proteins in 24 children with HGPS (an estimated 10% of the world's population at the time) at baseline and on lonafarnib therapy, compared with age- and gender-matched controls using a multi-analyte, microsphere-based immunofluorescent assay.ResultsThe mean levels for 23/66 (34.8%) proteins were significantly lower and 7/66 (10.6%) were significantly higher in HGPS samples compared with those in controls (P≤0.05). Six proteins whose concentrations were initially lower normalized with lonafarnib therapy: interleukins 1α, 7, and 13, beta-2 microglobulin, C-reactive protein, and myoglobin. Alpha-2 macroglobulin, a protease inhibitor associated with stroke, was elevated at baseline and subsequently normalized with lonafarnib therapy.ConclusionThis is the first study to employ a multi-analyte array platform in HGPS. Novel potential biomarkers identified in this study should be further validated by correlations with clinical disease status, especially proteins associated with cardiovascular disease and those that normalized with lonafarnib therapy.

    Topics: Adolescent; beta 2-Microglobulin; Biomarkers; Blood Proteins; C-Reactive Protein; Case-Control Studies; Child; Child, Preschool; Enzyme Inhibitors; Female; Humans; Interleukin-13; Interleukin-1alpha; Interleukin-7; Lamin Type A; Longitudinal Studies; Male; Mutation; Myoglobin; Piperidines; Progeria; Prospective Studies; Pyridines

2018
Progeria: case report and new drugs perspectives.
    Journal of the European Academy of Dermatology and Venereology : JEADV, 2018, Volume: 32, Issue:7

    Topics: Cell Nucleus; Child, Preschool; Enzyme Inhibitors; Farnesyltranstransferase; Female; Humans; Lamin Type A; Mutation; Piperidines; Progeria; Pyridines

2018
Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome.
    JAMA, 2018, 04-24, Volume: 319, Issue:16

    Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare fatal premature aging disease. There is no approved treatment.. To evaluate the association of monotherapy using the protein farnesyltransferase inhibitor lonafarnib with mortality rate in children with HGPS.. Cohort study comparing contemporaneous (birth date ≥1991) untreated patients with HGPS matched with treated patients by age, sex, and continent of residency using conditional Cox proportional hazards regression. Treatment cohorts included patients from 2 single-group, single-site clinical trials (ProLon1 [n = 27; completed] and ProLon2 [n = 36; ongoing]). Untreated patients originated from a separate natural history study (n = 103). The cutoff date for patient follow-up was January 1, 2018.. Treated patients received oral lonafarnib (150 mg/m2) twice daily. Untreated patients received no clinical trial medications.. The primary outcome was mortality. The primary analysis compared treated patients from the first lonafarnib trial with matched untreated patients. A secondary analysis compared the combined cohorts from both lonafarnib trials with matched untreated patients.. Among untreated and treated patients (n = 258) from 6 continents, 123 (47.7%) were female; 141 (54.7%) had a known genotype, of which 125 (88.7%) were classic (c.1824C>T in LMNA). When identified (n = 73), the primary cause of death was heart failure (79.4%). The median treatment duration was 2.2 years. Median age at start of follow-up was 8.4 (interquartile range [IQR], 4.8-9.5) years in the first trial cohort and 6.5 (IQR, 3.7-9.0) years in the combined cohort. There was 1 death (3.7%) among 27 patients in the first trial group and there were 9 deaths (33.3%) among 27 patients in the matched untreated group. Treatment was associated with a lower mortality rate (hazard ratio, 0.12; 95% CI, 0.01-0.93; P = .04). In the combined cohort, there were 4 deaths (6.3%) among 63 patients in the treated group and 17 deaths (27.0%) among 63 patients in the matched untreated group (hazard ratio, 0.23; 95% CI, 0.06-0.90; P = .04).. Among patients with HGPS, lonafarnib monotherapy, compared with no treatment, was associated with a lower mortality rate after 2.2 years of follow-up. Study interpretation is limited by its observational design.

    Topics: Adolescent; Adult; Cause of Death; Child; Cohort Studies; Enzyme Inhibitors; Female; Humans; Kaplan-Meier Estimate; Lamin Type A; Male; Phosphotransferases (Phosphate Group Acceptor); Piperidines; Progeria; Protein Processing, Post-Translational; Pyridines; Young Adult

2018
Computational Exploration for Lead Compounds That Can Reverse the Nuclear Morphology in Progeria.
    BioMed research international, 2017, Volume: 2017

    Progeria is a rare genetic disorder characterized by premature aging that eventually leads to death and is noticed globally. Despite alarming conditions, this disease lacks effective medications; however, the farnesyltransferase inhibitors (FTIs) are a hope in the dark. Therefore, the objective of the present article is to identify new compounds from the databases employing pharmacophore based virtual screening. Utilizing nine training set compounds along with lonafarnib, a common feature pharmacophore was constructed consisting of four features. The validated Hypo1 was subsequently allowed to screen Maybridge, Chembridge, and Asinex databases to retrieve the novel lead candidates, which were then subjected to Lipinski's rule of 5 and ADMET for drug-like assessment. The obtained 3,372 compounds were forwarded to docking simulations and were manually examined for the key interactions with the crucial residues. Two compounds that have demonstrated a higher dock score than the reference compounds and showed interactions with the crucial residues were subjected to MD simulations and binding free energy calculations to assess the stability of docked conformation and to investigate the binding interactions in detail. Furthermore, this study suggests that the Hits may be more effective against progeria and further the DFT studies were executed to understand their orbital energies.

    Topics: Drug Design; Enzyme Inhibitors; Farnesyltranstransferase; Humans; Molecular Docking Simulation; Molecular Dynamics Simulation; Piperidines; Progeria; Pyridines

2017
Progeria and the early aging in children: a case report.
    Dermatology online journal, 2016, Feb-17, Volume: 22, Issue:2

    The Hutchinson-Gilford syndrome or progeria is a rare autosomal dominant syndrome characterized by premature aging and involvement of internal systems, such as the circulatory and locomotor. The diagnosis is essentially clinical and the manifestations become more evident from the first year of life. Long term outcome data from Progeria Research Foundation clinical trials have demonstrated an increase in survival in recent years. Even though new trials are ongoing, the recognition of this syndrome is essential to prevent cardiovascular and cerebrovascular complications. A patient, initially asymptomatic, who developed characteristic signs of the syndrome at the age of 6 months is reported. She was referred for evaluation only when she was two years and eleven months old. The diagnosis of Hutchinson-Gilford syndrome was suspected owing to clinical characteristics. The diagnosis was confirmed by genetic testing. A mutation c.1824C> T in exon 11 of the LMNA gene was detected. She was registered in the Progeria Research Foundation and was invited to participate in the weighing and supplementation program. She was included in the lonafarnib protocol study. This medication is a farnesyl transferase inhibitor that prevents the production of progerina and slows cardiovascular and neurological complications of the syndrome. This case highlights the importance of diagnosing progeria patients because they may be referred to the Progeria Research Foundation, which offers genetic screening and inclusion in clinical and therapeutic follow-up protocols without any costs. Progeria trials and research may also contribute to new drug developments related to prevention of aging and atherosclerosis in the near future.

    Topics: Aging; Body Height; Body Weight; Child; Child, Preschool; Enzyme Inhibitors; Female; Humans; Infant; Lamin Type A; Piperidines; Progeria; Pyridines

2016
Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome.
    Circulation, 2014, Jul-01, Volume: 130, Issue:1

    Hutchinson-Gilford progeria syndrome is an ultrarare segmental premature aging disease resulting in early death from heart attack or stroke. There is no approved treatment, but starting in 2007, several recent single-arm clinical trials administered inhibitors of protein farnesylation aimed at reducing toxicity of the disease-producing protein progerin. No study assessed whether treatments influence patient survival. The key elements necessary for this analysis are a robust natural history of survival and comparison with a sufficiently large patient population that has been treated for a sufficient time period with disease-targeting medications.. We generated Kaplan-Meier survival analyses for the largest untreated Hutchinson-Gilford progeria syndrome cohort to date. Mean survival was 14.6 years. Comparing survival for treated versus age- and sex-matched untreated cohorts, hazard ratio was 0.13 (95% confidence interval, 0.04-0.37; P<0.001) with median follow-up of 5.3 years from time of treatment initiation. There were 21 of 43 deaths in untreated versus 5 of 43 deaths among treated subjects. Treatment increased mean survival by 1.6 years.. This study provides a robust untreated disease survival profile that can be used for comparisons now and in the future to assess changes in survival with treatments for Hutchinson-Gilford progeria syndrome. The current comparisons estimating increased survival with protein farnesylation inhibitors provide the first evidence of treatments influencing survival for this fatal disease.. http://www.clinicaltrials.gov. Unique Indentifiers: NCT00425607, NCT00879034, and NCT00916747.

    Topics: Adolescent; Adult; Alkyl and Aryl Transferases; Atherosclerosis; Cause of Death; Child; Child, Preschool; Clinical Trials as Topic; Cohort Studies; Dimethylallyltranstransferase; Diphosphonates; Drug Therapy, Combination; Female; Genes, Dominant; Genotype; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Imidazoles; Kaplan-Meier Estimate; Lamin Type A; Male; Multicenter Studies as Topic; Nuclear Proteins; Piperidines; Pravastatin; Progeria; Proportional Hazards Models; Protein Precursors; Protein Prenylation; Pyridines; Treatment Outcome; Young Adult; Zoledronic Acid

2014
An encouraging progress report on the treatment of progeria and its implications for atherogenesis.
    Circulation, 2014, Jul-01, Volume: 130, Issue:1

    Topics: Diphosphonates; Female; Humans; Imidazoles; Lamin Type A; Male; Nuclear Proteins; Piperidines; Pravastatin; Progeria; Protein Precursors; Protein Prenylation; Pyridines; Zoledronic Acid

2014
Drug development for progeria yields insights into normal aging.
    Nature medicine, 2013, Volume: 19, Issue:5

    Topics: Aging; Child; Clinical Trials as Topic; Diphosphonates; Drug Discovery; Humans; Imidazoles; Lamin Type A; Mutation; Piperidines; Pravastatin; Progeria; Pyridines; Time Factors; Zoledronic Acid

2013
Moving from gene discovery to clinical trials in Hutchinson-Gilford progeria syndrome.
    Neurology, 2013, Jul-30, Volume: 81, Issue:5

    Topics: Female; Humans; Male; Nervous System Diseases; Piperidines; Progeria; Pyridines

2013
Medicine. Drug trial offers uncertain start in race to save children with progeria.
    Science (New York, N.Y.), 2012, Sep-28, Volume: 337, Issue:6102

    Topics: Animals; Child, Preschool; Clinical Trials as Topic; Enzyme Inhibitors; Farnesyltranstransferase; Foundations; Humans; Lamin Type A; Mice; Mutation; Patient Selection; Piperidines; Progeria; Pyridines; Uncertainty; United States; United States Public Health Service

2012
New cures sought from old drugs.
    Nature, 2012, Oct-04, Volume: 490, Issue:7418

    Topics: Child; Crowdsourcing; Drug Repositioning; Humans; National Institutes of Health (U.S.); Piperidines; Progeria; Pyridines; United States

2012