piperidines has been researched along with Pancreatic-Neoplasms* in 63 studies
5 review(s) available for piperidines and Pancreatic-Neoplasms
Article | Year |
---|---|
[Homologous recombination deficiency and PARP inhibitors in therapeutics].
PARP inhibitors are effective in different types of tumors such as ovarian, breast, prostate and pancreatic cancer. Many studies are in progress and may lead to prescription evolution. PARP inhibitors prescription is almost reserved to patients with a constitutional BRCA mutation or a somatic BRCA alteration or a tumor with a deficiency in homologous recombination. Nowadays, the diagnosis of homologous recombination deficit, HRD, is possible with the prescription of a myChoice CDx (Myriad) test. PARP inhibitors are studied in association with chemotherapy and targeted therapies but also with radiotherapy and with immune checkpoint inhibitors. Access to PARP inhibitors is challenged with the emergence of resistance mechanism. Various trials are now studying the possibility of reversing these resistance mechanisms. Topics: Breast Neoplasms; DNA Damage; DNA Repair-Deficiency Disorders; Drug Resistance, Neoplasm; Female; Genes, BRCA1; Genes, BRCA2; Homologous Recombination; Humans; Indazoles; Indoles; Male; Ovarian Neoplasms; Pancreatic Neoplasms; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Prostatic Neoplasms; Recombinational DNA Repair | 2022 |
Pancreatic Cancer Metabolism: Molecular Mechanisms and Clinical Applications.
Pancreatic adenocarcinoma is a leading cause of cancer mortality in western countries with a uniformly poor prognosis. Unfortunately, there has been little in the way of novel therapeutics for this malignancy over the last several decades. Derangements in metabolic circuitry favoring excess glycolysis are increasingly recognized as a key hallmark of cancer.. The role of alterations in glutamine metabolism in pancreatic tumor progression has been elucidated in animal models and human cells lines, and there has been considerable interest in exploiting these aberrations for the treatment of pancreatic cancer. Other strategies targeting NQO1/GLS1 inhibition, NAD+ synthesis, and TCA cycle intermediates are being actively studied in the clinic. Aberrant metabolism in pancreatic cancer poses a unique therapeutic strategy. We review preclinical and clinical studies looking to exploit alterations in the metabolic circuitry of pancreatic cancer. Topics: Acrylamides; Adenocarcinoma; Antineoplastic Agents; Citric Acid Cycle; Glutaminase; Glutamine; Humans; Mitochondria; Molecular Targeted Therapy; NAD; NAD(P)H Dehydrogenase (Quinone); Pancreatic Neoplasms; Piperidines | 2018 |
Gemcitabine mono-therapy versus gemcitabine plus targeted therapy in advanced pancreatic cancer: a meta-analysis of randomized phase III trials.
Prognosis of advanced pancreatic cancer is dismal and the novel targeted therapies, albeit successfully used to treat many advanced tumors, have shown modest results. We performed a meta-analysis in order to quantify the effect size on survival of adding targeted therapy to single agent gemcitabine.. Randomized phase III trials comparing gemcitabine mono-therapy versus gemcitabine plus a targeted agent in first-line treatment of advanced pancreatic cancer designed on survival as primary outcome were selected. Search was done through Medline and the registry of the NIH. Keywords used for searching were 'pancreas', 'pancreatic', 'gemcitabine'. Study quality was assessed with MERGE criteria. Findings were depicted in classical Forest plots. Publication bias was evaluated by the construction of funnel plot.. Nine studies met the meta-analysis inclusion criteria including 4564 patients. The target therapies were: erlotinib, cetuximab, rigosertib, elpamotide, bevacizumab, aflibercept, axitinib, masitinib and ganitumab. There was no statistically significant heterogeneity among the nine trials (p = 0.77). The hazard ratio (HR) of the pooled analysis was 0.998 (CI 95%: 0.932-1.068). Subgroup meta-analysis was also performed in anti-EGFR and anti-angiogenesis trials: the pooled HR were 0.94 (CI 95%: 0.705-1.175) and 1.055 (CI 95%: 0.913-1.197), respectively.. The present meta-analysis does not show significant improvements in survival for targeted drugs in advanced pancreatic cancer. The possible reason of these results could be linked to the biology of pancreatic cancer as well as to the absence of predictive factors. Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antimetabolites, Antineoplastic; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Clinical Trials, Phase III as Topic; Deoxycytidine; Disease Progression; Gemcitabine; Humans; Molecular Targeted Therapy; Pancreatic Neoplasms; Piperidines; Pyridines; Randomized Controlled Trials as Topic; Survival Analysis; Thiazoles | 2017 |
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
[Targeted therapies, prognostic and predictive factors in endocrine oncology].
A better understanding of molecular mechanisms responsible for tumorigenesis has allowed the development of targeted drugs designed to improve the outcome of cancer. In endocrine tumors, several molecules have demonstrated efficacy in terms of progression free survival during phase III trials such as vandetanib and cabozantinib in medullary thyroid carcinoma, sorafenib in differentiated thyroid carcinoma and everolimus or sunitinib for pancreatic neuroendocrine tumors. Rare cancer network has allowed ongoing phase III trials in malignant pheochromocytoma and adrenocortical carcinoma. However, to date no specific predictive biomarker has yet been identified for a personalized cancer medicine. We review recent advances in endocrine oncology concerning molecular targets identification, targeted therapies and predictive or prognostic markers. Topics: Antineoplastic Agents; Carcinoma, Neuroendocrine; Clinical Trials, Phase III as Topic; Disease-Free Survival; Endocrine Gland Neoplasms; Everolimus; Humans; Indoles; Molecular Targeted Therapy; Neuroendocrine Tumors; Niacinamide; Pancreatic Neoplasms; Phenylurea Compounds; Piperidines; Prognosis; Pyrroles; Quinazolines; Sirolimus; Sorafenib; Sunitinib; Thyroid Neoplasms; Treatment Outcome | 2013 |
10 trial(s) available for piperidines and Pancreatic-Neoplasms
Article | Year |
---|---|
Niraparib plus nivolumab or niraparib plus ipilimumab in patients with platinum-sensitive advanced pancreatic cancer: a randomised, phase 1b/2 trial.
Establishing alternatives to lifelong chemotherapy for patients with advanced pancreatic cancer has been proposed to address chemotherapy resistance and cumulative toxicity. Poly(ADP-ribose) polymerase (PARP) inhibitors have shown efficacy in this setting, and concurrent immune checkpoint blockade could offer synergistic tumour control. The aim of this study was to test the safety and antitumour activity of maintenance with PARP inhibition combined with immune checkpoint blockade in patients with advanced pancreatic cancer who had a stable response to platinum-based chemotherapy.. We conducted an open-label, randomised, phase 1b/2 study of niraparib plus anti-PD-1 (nivolumab) or anti-CTLA-4 (ipilimumab) therapy for patients with advanced pancreatic cancer whose cancer had not progressed after at least 16 weeks of platinum-based therapy. Patients were randomly assigned (1:1) via permuted block randomisation (block sizes 2 and 4) to niraparib 200 mg orally per day plus either nivolumab 240 mg intravenously every 2 weeks (later changed to 480 mg intravenously every 4 weeks based on manufacturer update) or ipilimumab 3 mg/kg intravenously every 4 weeks for four doses. The primary endpoints were safety and progression-free survival at 6 months. Treatment groups were not compared for activity, which was assessed in each group against a clinically meaningful progression-free survival at 6 months of 44% (null hypothesis). Superiority of a treatment regimen could be declared if 6-month progression-free survival was 60%, and inferiority if 6-month progression-free survival was 27%. All patients who received at least one dose of study treatment and had at least one post-treatment assessment of response according to Response Evaluation Criteria in Solid Tumours version 1.1 were included in the efficacy population. The safety population consisted of all patients who received at least one dose of study treatment. This study is registered with ClinicalTrials.gov, NCT03404960, and enrolment is completed and follow-up is ongoing.. 91 patients were enrolled between Feb 7, 2018, and Oct 5, 2021 and were randomly assigned to niraparib plus nivolumab (n=46) or niraparib plus ipilimumab (n=45). Of these patients, 84 were evaluable for the progression-free survival endpoint (niraparib plus nivolumab=44; niraparib plus ipilimumab=40). Median follow-up was 23·0 months (IQR 15·0-31·5). 6-month progression-free survival was 20·6% (95% CI 8·3-32·9; p=0·0002 vs the null hypothesis of 44%) in the niraparib plus nivolumab group; and 59·6% (44·3-74·9; p=0·045) in the niraparib plus ipilimumab group. Ten (22%) of 46 patients in the niraparib plus nivolumab group and 23 (50%) of 45 patients in the niraparib plus ipilimumab group had a grade 3 or worse treatment-related adverse event. The most common grade 3 or worse adverse events in the niraparib plus nivolumab group were hypertension (in four [8%] patients), anaemia (two [4%]), and thrombocytopenia (two [4%]) whereas in the niraparib plus ipilimumab group these were fatigue (in six [14%]), anaemia (five [11%]), and hypertension (four [9%]). There were no treatment-related deaths.. The primary endpoint of 6-month progression-free survival was met in the niraparib plus ipilimumab maintenance group, whereas niraparib plus nivolumab yielded inferior progression-free survival. These findings highlight the potential for non-cytotoxic maintenance therapies in patients with advanced pancreatic cancer.. Bristol Myers Squibb, GlaxoSmithKline, the Basser Center Young Leadership Council, The Konner Foundation, The Pearl and Philip Basser Innovation Research Award, the Anonymous Foundation, and the US National Institutes of Health. Topics: Antineoplastic Combined Chemotherapy Protocols; Humans; Hypertension; Immune Checkpoint Inhibitors; Indazoles; Ipilimumab; Nivolumab; Pancreatic Neoplasms; Piperidines; Platinum; Poly(ADP-ribose) Polymerase Inhibitors | 2022 |
A Phase Ib Study to Evaluate the MEK Inhibitor Cobimetinib in Combination with the ERK1/2 Inhibitor GDC-0994 in Patients with Advanced Solid Tumors.
Despite strong preclinical rationale, combined cobimetinib-mediated MEK inhibition and GDC-0994-mediated ERK inhibition was not tolerable on two 28-day dosing schedules in which GDC-0994 was given for 21 days continuously and cobimetinib administered over 21 days either continuously or intermittently. Adverse events were as expected for mitogen-activated protein kinase pathway inhibition, but overlapping and cumulative toxicities could not be managed on either dosing schedule. Pharmacokinetic parameters of cobimetinib and GDC-0994 given in combination were similar to those previously observed in monotherapy studies, so that there was no evidence of drug-drug interaction. Cycle 1 metabolic responses were observed by 18F-fluorodeoxyglucose-positron emission tomography but were not predictive of outcome measured by RECIST 1.1.. Simultaneous targeting of multiple nodes in the mitogen-activated protein kinase (MAPK) pathway offers the prospect of enhanced activity in RAS-RAF-mutant tumors. This phase Ib trial evaluated the combination of cobimetinib (MEK inhibitor) and GDC-0994 (ERK inhibitor) in patients with locally advanced or metastatic solid tumors.. Cobimetinib and GDC-0994 were administered orally on two separate dosing schedules. Arm A consisted of concurrent cobimetinib and GDC-0994 once daily for 21 days of a 28-day cycle; Arm B consisted of intermittent dosing of cobimetinib on a 28-day cycle concurrent with GDC-0994 daily for 21 days of a 28-day cycle.. In total, 24 patients were enrolled. For Arm A, owing to cumulative grade 1-2 toxicity, the dose of cobimetinib was decreased. For Arm B, dose increases of GDC-0994 and cobimetinib were intolerable with grade 3 dose-limiting toxicities of myocardial infarction and rash. Pharmacokinetic data did not show evidence of a drug-drug interaction. Overall, seven patients had a best overall response of stable disease (SD) and one patient with pancreatic adenocarcinoma had an unconfirmed partial response.. The safety profile of MEK and ERK inhibition demonstrated classic MAPK inhibitor-related adverse events (AEs). However, overlapping AEs and cumulative toxicity could not be adequately managed on either dosing schedule, restricting the ability to further develop this combination. Topics: Adenocarcinoma; Azetidines; Humans; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase Kinases; Neoplasms; Pancreatic Neoplasms; Piperidines; Protein Kinase Inhibitors | 2020 |
A Phase II Study of Ibrutinib in Advanced Neuroendocrine Neoplasms.
Ibrutinib is an orally administered inhibitor of Bruton's tyrosine kinase (Btk). Preclinical data suggest that mast cells are recruited within neuroendocrine neoplasms (NENs) where they stimulate angiogenesis and tumor growth. Ibrutinib inhibits mast cell degranulation and has been associated with regression of tumors in a mouse insulinoma model.. A prospective, phase II trial evaluated patients with advanced gastrointestinal (GI)/lung NENs and pancreatic NENs (pNENs) who had evidence of progression within 12 months of study entry on at least one prior therapy. Patients received ibrutinib 560 mg daily until unacceptable toxicity, progression of disease, or withdrawal of consent. The primary endpoint was objective response rate.. Twenty patients were enrolled on protocol from November 2015 to December 2017 (15 advanced GI/lung NENs and 5 pNENs). No patient reached an objective response. Median PFS was 3.0 months. A total of 44 drug-related adverse events (AEs) were captured as probably or definitely associated with ibrutinib. Five patients experienced probably or definitely related grade 3 AEs, and 1 patient experienced a probably related grade 4 AE. Five patients discontinued treatment prior to radiographic assessment.. Ibrutinib does not show significant evidence of activity in well-differentiated gastroenteropancreatic and lung NENs. Topics: Adenine; Adult; Agammaglobulinaemia Tyrosine Kinase; Aged; Carcinoid Tumor; Female; Gastrointestinal Neoplasms; Humans; Lung Neoplasms; Male; Middle Aged; Neuroendocrine Tumors; Pancreatic Neoplasms; Piperidines; Prospective Studies; Protein Kinase Inhibitors; Treatment Failure | 2020 |
Vandetanib plus gemcitabine versus placebo plus gemcitabine in locally advanced or metastatic pancreatic carcinoma (ViP): a prospective, randomised, double-blind, multicentre phase 2 trial.
Erlotinib is an EGFR tyrosine kinase inhibitor that has shown a significant but only marginally improved median overall survival when combined with gemcitabine in patients with locally advanced and metastatic pancreatic cancer. Vandetanib is a novel tyrosine kinase inhibitor of VEGFR2, RET, and EGFR, all of which are in involved in the pathogenesis of pancreatic cancer. We investigated the clinical efficacy of vandetanib when used in combination with gemcitabine in patients with advanced pancreatic cancer.. The Vandetanib in Pancreatic Cancer (ViP) trial was a phase 2 double-blind, multicentre, randomised placebo-controlled trial in previously untreated adult patients (aged ≥18 years) diagnosed with locally advanced or metastatic carcinoma of the pancreas confirmed by cytology or histology. Patients had to have an Eastern Cooperative Oncology Group (ECOG) score of 0-2 and a documented life expectancy of at least 3 months. Patients were randomly assigned 1:1 to receive vandetanib plus gemcitabine (vandetanib group) or placebo plus gemcitabine (placebo group) according to pre-generated sequences produced on the principle of randomly permuted blocks with variable block sizes of two and four. Patients were stratified at randomisation by disease stage and ECOG performance status. All patients received gemcitabine 1000 mg/m. Patients were screened and enrolled between Oct 24, 2011, and Oct 7, 2013. Of 381 patients screened, 142 eligible patients were randomly assigned to treatment (72 to the vandetanib group and 70 to the placebo group). At database lock on July 15, 2015, at a median follow-up of 24·9 months (IQR 24·3 to not attainable), 131 patients had died: 70 (97%) of 72 in the vandetanib group and 61 (87%) of 70 in the placebo group. The median overall survival was 8·83 months (95% CI 7·11-11·58) in the vandetanib group and 8·95 months (6·55-11·74) in the placebo group (hazard ratio 1·21, 80·8% CI 0·95-1·53; log rank χ. The addition of vandetanib to gemcitabine monotherapy did not improve overall survival in advanced pancreatic cancer. Tyrosine kinase inhibitors might still have potential in the treatment of pancreatic cancer but further development requires the identification of biomarkers to specifically identify responsive cancer subtypes.. Cancer Research UK and AstraZeneca. Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Pancreatic Ductal; Deoxycytidine; Double-Blind Method; Female; Follow-Up Studies; Gemcitabine; Humans; Lymphatic Metastasis; Male; Middle Aged; Neoplasm Staging; Pancreatic Neoplasms; Piperidines; Prognosis; Quinazolines; Survival Rate | 2017 |
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
Phase I trial of vandetanib in combination with gemcitabine and capecitabine in patients with advanced solid tumors with an expanded cohort in pancreatic and biliary cancers.
Vandetanib is a multitargeted tyrosine kinase inhibitor that affects vascular endothelial growth factor receptor (VEGF), epidermal growth factor (EGF), and rearranged during transfection (RET) mediated receptors which are important for growth and invasion of biliary and pancreatic cancers. This phase I study evaluated the safety profile of vandetanib in combination with standard doses of gemcitabine and capecitabine in order to determine the maximum tolerated dose (MTD).. In this single center phase I trial, patients received gemcitabine intravenously (i.v.) at 1000 mg/m2 days 1, 8, 15 in a 28 day cycle, capecitabine orally at 850 mg/m2 twice daily on days 1-21, and escalating doses of vandetanib (200 or 300 mg orally daily). Once the MTD was defined, an expansion cohort of patients with advanced biliary cancers and locally advanced or metastatic pancreatic cancer was enrolled. Blood samples were also collected at predetermined time points for biomarker analysis.. Twenty-three patients were enrolled: 9 in the dose escalation and 14 in the dose expansion cohort. One dose limiting toxicity (DLT), of grade 4 neutropenia, occurred in the 200 mg vandetanib cohort. The most common adverse effects were diarrhea (39 %), nausea and vomiting (34%), and rash (33%). There were 3 partial responses and stable disease of >2 months (range 2-45, median 5) was observed in 15/23 patients. There was no association between changes in biomarker analytes and disease response.. The combination of gemcitabine, capecitabine and vandetanib is well tolerated at the recommended phase II dose of gemcitabine 1000 mg/m2 weekly for three consecutive weeks, capecitabine 850 mg/m2 BID days 1-21, and vandetanib 300 mg daily, every 28 days. This combination demonstrated promising activity in pancreaticobiliary cancers and further evaluation is warranted in these diseases. NCT00551096. Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Biliary Tract Neoplasms; Capecitabine; Cohort Studies; Deoxycytidine; Female; Gemcitabine; Humans; Male; Middle Aged; Neoplasm Staging; Pancreatic Neoplasms; Piperidines; Quinazolines; Treatment Outcome | 2016 |
A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer.
Masitinib is a selective oral tyrosine-kinase inhibitor. The efficacy and safety of masitinib combined with gemcitabine was compared against single-agent gemcitabine in patients with advanced pancreatic ductal adenocarcinoma (PDAC).. Patients with inoperable, chemotherapy-naïve, PDAC were randomized (1 : 1) to receive gemcitabine (1000 mg/m(2)) in combination with either masitinib (9 mg/kg/day) or a placebo. The primary endpoint was overall survival (OS) in the modified intent-to-treat population. Secondary OS analyses aimed to characterize subgroups with poor survival while receiving single-agent gemcitabine with subsequent evaluation of masitinib therapeutic benefit. These prospectively declared subgroups were based on pharmacogenomic data or a baseline characteristic.. Three hundred and fifty-three patients were randomly assigned to receive either masitinib plus gemcitabine (N = 175) or placebo plus gemcitabine (N = 178). Median OS was similar between treatment-arms for the overall population, at respectively, 7.7 and 7.1 months, with a hazard ratio (HR) of 0.89 (95% CI [0.70; 1.13]. Secondary analyses identified two subgroups having a significantly poor survival rate when receiving single-agent gemcitabine; one defined by an overexpression of acyl-CoA oxidase-1 (ACOX1) in blood, and another via a baseline pain intensity threshold (VAS > 20 mm). These subgroups represent a critical unmet medical need as evidenced from median OS of 5.5 months in patients receiving single-agent gemcitabine, and comprise an estimated 63% of patients. A significant treatment effect was observed in these subgroups for masitinib with median OS of 11.7 months in the 'ACOX1' subgroup [HR = 0.23 (0.10; 0.51), P = 0.001], and 8.0 months in the 'pain' subgroup [HR = 0.62 (0.43; 0.89), P = 0.012]. Despite an increased toxicity of the combination as compared with single-agent gemcitabine, side-effects remained manageable.. The present data warrant initiation of a confirmatory study that may support the use of masitinib plus gemcitabine for treatment of PDAC patients with overexpression of ACOX1 or baseline pain (VAS > 20mm). Masitinib's effect in these subgroups is also supported by biological plausibility and evidence of internal clinical validation.. ClinicalTrials.gov:NCT00789633. Topics: Adult; Aged; Aged, 80 and over; Antimetabolites, Antineoplastic; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Biomarkers, Tumor; Carcinoma, Pancreatic Ductal; Deoxycytidine; Europe; Female; Gemcitabine; Humans; Intention to Treat Analysis; Male; Middle Aged; Oxidoreductases; Pancreatic Neoplasms; Pharmacogenetics; Piperidines; Precision Medicine; Predictive Value of Tests; Proportional Hazards Models; Prospective Studies; Protein Kinase Inhibitors; Pyridines; Risk Factors; Thiazoles; Time Factors; Treatment Outcome; United States | 2015 |
Phase I dose-finding study of vandetanib in combination with gemcitabine in locally advanced unresectable or metastatic pancreatic adenocarcinoma.
Vandetanib is an oral inhibitor of vascular endothelial growth factor receptor, epidermal growth factor receptor and RET (REarranged during Transfection) signaling. The primary objective of this open-label phase I trial was to determine the maximum tolerated dose (MTD) and recommended dose (RD) of vandetanib in combination with gemcitabine in patients with unresectable, locally advanced or metastatic pancreatic adenocarcinoma (PAC).. Patients received vandetanib (100 or 300 mg/day) plus gemcitabine (1,000 mg/m(2) i.v. on days 1, 8 and 15 per 28-day cycle) until disease progression, unacceptable toxicity or withdrawal of patient consent. The MTD was determined by the assessment of dose-limiting toxicity (DLT) during the first 28 days of treatment.. Fifteen patients were treated. No DLTs occurred in the first cohort of vandetanib 100 mg (n = 3) and recruitment continued at the 300-mg dose level. At the 300-mg dose, 3 out of 12 patients (including 2 in the expansion cohort) experienced DLTs (aphasia, elevated liver enzymes and neutropenia; all of them grade 3), thus exceeding the MTD. No objective responses were observed, with stable disease being the best response in 78% of evaluable patients.. Vandetanib 100 mg/day is the RD in combination with gemcitabine in the treatment of patients with advanced PAC. Topics: Adenocarcinoma; Aged; Antineoplastic Combined Chemotherapy Protocols; Deoxycytidine; Female; Gemcitabine; Humans; Lymphatic Metastasis; Male; Maximum Tolerated Dose; Middle Aged; Pancreatic Neoplasms; Piperidines; Quinazolines; Survival Rate; Treatment Outcome | 2011 |
Safety and activity of masitinib in combination with gemcitabine in patients with advanced pancreatic cancer.
To evaluate the efficacy and safety of masitinib combined with gemcitabine in patients with advanced pancreatic cancer.. Twenty-two non-randomised patients with unresectable, locally advanced (n = 9) or metastatic pancreatic cancer (n = 13) received oral masitinib (9 mg/kg/day) combined with standard gemcitabine. All patients were naive to systemic chemotherapy or radiotherapy. The primary endpoint was time-to-progression (TTP) with efficacy and safety analyses performed on the intent-to-treat population. Secondary endpoints included overall survival (OS), as well as, subgroup analyses according to baseline disease, and performance status.. Overall median TTP was 6.4 months (95% CI [2.7-11.7]); 8.3 and 2.7 months, respectively, for locally advanced and metastatic patients; 6.4 and 0.8 months, respectively, for patients with KPS [80-100] or KPS [70]. Median OS was 7.1 months (95% CI [4.8-17.0]); 8.4 and 6.8 months for locally advanced or metastatic patients, respectively; 8.0 and 4.4 months in patients with KPS [80-100] or KPS [70], respectively. The 18-month observed survival rate was similar for locally advanced (22%) and metastatic patients (23%) and reached 28% for KPS [80-100] patients. The most common suspected adverse events were nausea, vomiting, rash, diarrhoea, peripheral oedema, anaemia, lymphopenia, thrombocytopenia, pyrexia, neutropenia, asthenia, leucopenia, and abdominal pain, and most were of grades 1-2 severity.. The efficacy and safety of masitinib combined with gemcitabine are encouraging, with extended survival and median TTP that support initiation of a phase 3 trial. Topics: Aged; Antimetabolites, Antineoplastic; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Deoxycytidine; Disease Progression; Dose-Response Relationship, Drug; Endpoint Determination; Female; Gemcitabine; Hematologic Diseases; Humans; Male; Middle Aged; Pancreatic Neoplasms; Piperidines; Pyridines; Survival Analysis; Thiazoles | 2010 |
A phase II study of flavopiridol (Alvocidib) in combination with docetaxel in refractory, metastatic pancreatic cancer.
Pancreatic adenocarcinoma (PC) harbors frequent alterations in p16, resulting in cell cycle dysregulation. A phase I study of docetaxel and flavopiridol, a pan-cyclin-dependent kinase inhibitor, demonstrated encouraging clinical activity in PC. This phase II study was designed to further define the efficacy and toxicity of this regimen in patients with previously treated PC.. Patients with gemcitabine-refractory, metastatic PC were treated with docetaxel 35 mg/m(2) followed by flavopiridol 80 mg/m(2) on days 1, 8, and 15 of a 28-day cycle. Tumor measurements were performed every two cycles. A Simon two-stage design was used to evaluate the primary endpoint of response.. Ten patients were enrolled, and 9 were evaluable for response. No objective responses were observed; however, 3 patients (33%) achieved transient stable disease, with one of these patients achieving a 20% reduction in tumor size. Median survival was 4.2 months, with no patients alive at the time of analysis. Adverse events were significant, with 7 patients (78%) requiring >or=1 dose reduction for transaminitis (11%), grade 4 neutropenia (33%), grade 3 fatigue (44%), and grade 3 diarrhea (22%).. The combination of flavopiridol and docetaxel has minimal activity and significant toxicity in this patient population. These results reflect the challenges of treating patients with PC in a second-line setting where the risk/benefit equation is tightly balanced. Topics: Adenocarcinoma; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Docetaxel; Female; Flavonoids; Humans; Male; Middle Aged; Pancreatic Neoplasms; Piperidines; Taxoids; Treatment Outcome | 2009 |
49 other study(ies) available for piperidines and Pancreatic-Neoplasms
Article | Year |
---|---|
Activating Immune Recognition in Pancreatic Ductal Adenocarcinoma via Autophagy Inhibition, MEK Blockade, and CD40 Agonism.
Patients with pancreatic ductal adenocarcinoma (PDA) have not yet benefitted from the revolution in cancer immunotherapy due in large part to a dominantly immunosuppressive tumor microenvironment. MEK inhibition combined with autophagy inhibition leads to transient tumor responses in some patients with PDA. We examined the functional effects of combined MEK and autophagy inhibition on the PDA immune microenvironment and the synergy of combined inhibition of MEK and autophagy with CD40 agonism (aCD40) against PDA using immunocompetent model systems.. We implanted immunologically "cold" murine PDA cells orthotopically in wide type C57BL/6J mice. We administered combinations of inhibitors of MEK1/2, inhibitors of autophagy, and aCD40 and measured anticancer efficacy and immune sequelae using mass cytometry and multiplexed immunofluorescence imaging analysis to characterize the tumor microenvironment. We also used human and mouse PDA cell lines and human macrophages in vitro to perform functional assays to elucidate the cellular effects induced by the treatments.. We find that coinhibition of MEK (using cobimetinib) and autophagy (using mefloquine), but not either treatment alone, activates the STING/type I interferon pathway in tumor cells that in turn activates paracrine tumor associated macrophages toward an immunogenic M1-like phenotype. This switch is further augmented by aCD40. Triple therapy (cobimetinib + mefloquine + aCD40) achieved cytotoxic T-cell activation in an immunologically "cold" mouse PDA model, leading to enhanced antitumor immunity.. MEK and autophagy coinhibition coupled with aCD40 invokes immune repolarization and is an attractive therapeutic approach for PDA immunotherapy development. Topics: Animals; Autophagy; Azetidines; Carcinoma, Pancreatic Ductal; CD40 Antigens; Cell Line, Tumor; Drug Synergism; Humans; Hydroxychloroquine; Immunotherapy; Interferon Type I; Macrophages; MAP Kinase Kinase 1; MAP Kinase Kinase 2; Mefloquine; Membrane Proteins; Mice; Pancreatic Neoplasms; Paracrine Communication; Piperidines; Protein Kinase Inhibitors; Tumor Escape; Tumor Microenvironment; Tumor-Associated Macrophages | 2022 |
Exceptional Clinical Response to Alectinib in Pancreatic Acinar Cell Carcinoma With a Novel ALK-KANK4 Gene Fusion.
Topics: Anaplastic Lymphoma Kinase; Ankyrin Repeat; Carbazoles; Carcinoma, Acinar Cell; Gene Fusion; Humans; Male; Middle Aged; Pancreatic Neoplasms; Piperidines; Treatment Outcome | 2022 |
Synthetic adiponectin-receptor agonist, AdipoRon, induces glycolytic dependence in pancreatic cancer cells.
Obesity creates a localized inflammatory reaction in the adipose, altering secretion of adipocyte-derived factors that contribute to pathologies including cancer. We have previously shown that adiponectin inhibits pancreatic cancer by antagonizing leptin-induced STAT3 activation. Yet, the effects of adiponectin on pancreatic cancer cell metabolism have not been addressed. In these studies, we have uncovered a novel metabolic function for the synthetic adiponectin-receptor agonist, AdipoRon. Treatment of PDAC cells with AdipoRon led to mitochondrial uncoupling and loss of ATP production. Concomitantly, AdipoRon-treated cells increased glucose uptake and utilization. This metabolic switch further correlated with AMPK mediated inhibition of the prolipogenic factor acetyl coenzyme A carboxylase 1 (ACC1), which is known to initiate fatty acid catabolism. Yet, measurements of fatty acid oxidation failed to detect any alteration in response to AdipoRon treatment, suggesting a deficiency for compensation. Additional disruption of glycolytic dependence, using either a glycolysis inhibitor or low-glucose conditions, demonstrated an impairment of growth and survival of all pancreatic cancer cell lines tested. Collectively, these studies provide evidence that pancreatic cancer cells utilize metabolic plasticity to upregulate glycolysis in order to adapt to suppression of oxidative phosphorylation in the presence of AdipoRon. Topics: Adiponectin; Fatty Acids; Glycolysis; Humans; Pancreatic Neoplasms; Piperidines; Receptors, Adiponectin; Receptors, Artificial | 2022 |
VPA and TSA Interrupt the Interplay between mutp53 and HSP70, Leading to CHK1 and RAD51 Down-Regulation and Sensitizing Pancreatic Cancer Cells to AZD2461 PARP Inhibitor.
HDAC inhibitors (HDACi) represent promising anti-cancer treatments, as the acetylation of histone and non-histone proteins is often dysregulated in cancer and contributes to cancer onset and progression. HDACi have been also reported to increase the cytotoxicity of DNA-damaging agents, such as radiation or cisplatin. In this study, we found that TSA and, even more effectively, VPA synergized with AZD2461, PARP1, 2 and 3 inhibitor (PARPi) to induce DNA damage and reduce pancreatic cancer cell survival. At a molecular level, VPA and TSA down-regulated CHK1 and RAD51, which is correlated with the interruption of the cross-talk between mutp53 and HSP70. Moreover, VPA and to a lesser extent TSA reactivated wtp53 in these cells, which contributed to CHK1 and RAD51 reduction. These findings suggest that the combination of HDACi and PARPi might improve the treatment of pancreatic cancer, which remains one of the most aggressive and therapy-resistant cancers. Topics: Antineoplastic Combined Chemotherapy Protocols; Benzopyrans; Cell Line, Tumor; Cell Survival; Checkpoint Kinase 1; DNA Damage; Down-Regulation; Doxorubicin; HSP70 Heat-Shock Proteins; Humans; Pancreatic Neoplasms; Phenols; Phthalazines; Piperidines; Podophyllotoxin; Poly(ADP-ribose) Polymerase Inhibitors; Rad51 Recombinase | 2022 |
Identification of new FK866 analogues with potent anticancer activity against pancreatic cancer.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases for which chemotherapy has not been very successful yet. FK866 ((E)-N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) is a well-known NAMPT (nicotinamide phosphoribosyltransferase) inhibitor with anti-cancer activities, but it failed in phase II clinical trials. We found that FK866 shows anti-proliferative activity in three PDAC cell lines, as well as in Jurkat T-cell leukemia cells. More than 50 FK866 analogues were synthesized that introduce substituents on the phenyl ring of the piperidine benzamide group of FK866 and exchange its buta-1,4-diyl tether for 1-oxyprop-3-yl, (E)-but-2-en-1,4-diyl and 2- and 3-carbon tethers. The pyridin-3-yl moiety of FK866 was exchanged for chlorinated and fluorinated analogues and for pyrazin-2-yl and pyridazin-4-yl groups. Several compounds showed low nanomolar or sub-nanomolar cell growth inhibitory activity. Our best cell anti-proliferative compounds were the 2,4,6-trimethoxybenzamide analogue of FK866 ((E)-N-(4-(1-(2,4,6-trimethoxybenzoyl)piperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) (9), the 2,6-dimethoxybenzamide (8) and 2-methoxybenzamide (4), which exhibited an IC Topics: Acrylamides; Antineoplastic Agents; Carcinoma, Pancreatic Ductal; Cytokines; Humans; Pancreatic Neoplasms; Piperidines | 2022 |
Design and synthesis of novel pipernonaline derivatives as anti-austerity agents against human pancreatic cancer PANC-1 cells.
Pipernonaline (1), one of the components of the spice pepper, preferentially reduced the survival of human pancreatic cancer PANC-1 cells under nutrient-deprived conditions witha PC Topics: Alkaloids; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Drug Screening Assays, Antitumor; Humans; Pancreatic Neoplasms; Piperidines | 2022 |
Irinotecan and vandetanib create synergies for treatment of pancreatic cancer patients with concomitant TP53 and KRAS mutations.
The most frequently mutated gene pairs in pancreatic adenocarcinoma (PAAD) are KRAS and TP53, and our goal is to illustrate the multiomics and molecular dynamics landscapes of KRAS/TP53 mutation and also to obtain prospective novel drugs for KRAS- and TP53-mutated PAAD patients. Moreover, we also made an attempt to discover the probable link amid KRAS and TP53 on the basis of the abovementioned multiomics data.. We utilized TCGA & Cancer Cell Line Encyclopedia data for the analysis of KRAS/TP53 mutation in a multiomics manner. In addition to that, we performed molecular dynamics analysis of KRAS and TP53 to produce mechanistic descriptions of particular mutations and carcinogenesis.. We discover that there is a significant difference in the genomics, transcriptomics, methylomics, and molecular dynamics pattern of KRAS and TP53 mutation from the matching wild type in PAAD, and the prognosis of pancreatic cancer is directly linked with a particular mutation of KRAS and protein stability. Screened drugs are potentially effective in PAAD patients.. KRAS and TP53 prognosis of PAAD is directly associated with a specific mutation of KRAS. Irinotecan and vandetanib are prospective drugs for PAAD patients with KRASG12Dmutation and TP53 mutation. Topics: Adenocarcinoma; Antineoplastic Combined Chemotherapy Protocols; Disease-Free Survival; Drug Synergism; Female; Humans; Irinotecan; Male; Mutation; Pancreatic Neoplasms; Piperidines; Proto-Oncogene Proteins p21(ras); Quinazolines; Survival Rate; Tumor Suppressor Protein p53 | 2021 |
Appended Aromatic Moieties in Flexible Bis-3-chloropiperidines Confer Tropism against Pancreatic Cancer Cells.
Nitrogen mustards (NMs) are an old but still largely diffused class of anticancer drugs. However, spreading mechanisms of resistance undermine their efficacy and therapeutic applicability. To expand their antitumour value, we developed bis-3-chloropiperidines (B-CePs), a new class of mustard-based alkylating agent, and we recently reported the striking selectivity for BxPC-3 pancreatic tumour cells of B-CePs bearing aromatic moieties embedded in the linker. In this study, we demonstrate that such tropism is shared by bis-3-chloropiperidines bearing appended aromatic groups in flexible linkers, whereas esters substituted by aliphatic groups or by efficient DNA-interacting groups are potent but nonselective cytotoxic agents. Besides, we describe how the critical balance between water stability and DNA reactivity can affect the properties of bis-3-chloropiperidines. Together, these findings support the exploitation of B-CePs as potential antitumour clinical candidates. Topics: Antineoplastic Agents; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Humans; Molecular Structure; Pancreatic Neoplasms; Piperidines; Structure-Activity Relationship; Tumor Cells, Cultured | 2021 |
Repurposing antitussive benproperine phosphate against pancreatic cancer depends on autophagy arrest.
Pancreatic cancer (PC) is one of the most common human malignancies worldwide and remains a major clinical challenge. Here, we found that benproperine phosphate (BPP), a cough suppressant, showed a significant anticancer effect on PC both in vitro and in vivo via the induction of autophagy-mediated cell death. Mechanistic studies revealed that BPP triggered AMPK/mTOR-mediated autophagy initiation and disturbed Ras-related protein Rab-11A (RAB11A)-mediated autophagosome-lysosome fusion, resulting in excessive accumulation of autophagosomes. Inhibition of autophagy or overexpression of RAB11A partially reversed BPP-induced growth inhibition in PC cells, suggesting that BPP might induce lethal autophagy arrest in PC cells. In conclusion, our results identify BPP as a potent antitumor agent for PC via the induction of autophagy arrest, therefore providing a new potential therapeutic strategy for the treatment of PC. Topics: Animals; Antitussive Agents; Autophagy; Benzhydryl Compounds; Cell Line, Tumor; Drug Repositioning; Humans; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Pancreatic Neoplasms; Piperidines; Xenograft Model Antitumor Assays | 2021 |
Obesity reduces the anticancer effect of AdipoRon against orthotopic pancreatic cancer in diet-induced obese mice.
The antidiabetic adiponectin receptor agonist AdipoRon has been shown to suppress the tumour growth of human pancreatic cancer cells. Because obesity and diabetes affect pancreatic cancer progression and chemoresistance, we investigated the effect of AdipoRon on orthotopic tumour growth of Panc02 pancreatic cancer cells in DIO (diet-induced obese) prediabetic mice. Administration of AdipoRon into DIO mice fed high-fat diets, in which prediabetic conditions were alleviated to some extent, did not reduce either body weight or tumour growth. However, when the DIO mice were fed low-fat diets, body weight and the blood leptin level gradually decreased, and importantly, AdipoRon became effective in suppressing tumour growth, which was accompanied by increases in necrotic areas and decreases in Ki67-positive cells and tumour microvessels. AdipoRon inhibited cell growth and induced necrotic cell death of Panc02 cells and suppressed angiogenesis of endothelial MSS31 cells. Insulin and IGF-1 only slightly reversed the AdipoRon-induced suppression of Panc02 cell survival but had no effect on the AdipoRon-induced suppression of MSS31 cell angiogenesis. Leptin significantly ameliorated AdipoRon-induced suppression of angiogenesis through inhibition of ERK1/2 activation. These results suggest that obesity-associated factors weaken the anticancer effect of AdipoRon, which indicates the importance of weight loss in combating pancreatic cancer. Topics: Animals; Cell Line, Tumor; Diet, High-Fat; Disease Models, Animal; Drug Resistance, Neoplasm; Humans; Male; Mice; Obesity; Pancreatic Neoplasms; Piperidines; Receptors, Adiponectin | 2021 |
Targeting B cells in pancreatic adenocarcinoma: does RESOLVE resolve the question?
Topics: Adenine; Adenocarcinoma; Albumins; B-Lymphocytes; Deoxycytidine; Gemcitabine; Humans; Paclitaxel; Pancreatic Neoplasms; Piperidines | 2021 |
SWATH-MS proteomics of PANC-1 and MIA PaCa-2 pancreatic cancer cells allows identification of drug targets alternative to MEK and PI3K inhibition.
Pancreatic cancer remains one of the most lethal diseases with dismal five-year survival rates. Although mutant KRas protein-driven activation of downstream MAPK Raf/MEK/ERK and PI3K/Akt signaling pathways represent major oncogenic alterations, signaling blockade with MEK and PI3K inhibitors has shown that intrinsic resistance may hamper the effectiveness of this targeted approach. However, there have been no mass spectrometry-based proteomic studies for in-depth comparison of protein expression differences between pancreatic cancer cells with sensitivity and resistance to MEK and PI3K kinase inhibitors. In this work, we compared PANC-1 and MIA PaCa-2 pancreatic cancer cells which are, respectively, resistant and sensitive to MEK- and PI3K-targeted therapy. We conducted a label-free data-independent acquisition mass spectrometry (SWATH-MS) study with extensive peptide fractionation to quantitate 4808 proteins and analyze differential expression of 743 proteins between resistant and sensitive cells. This allowed identification of the tumor suppressor protein phosphatase 2A (PP2A) and proteins from mitochondrial respiratory complex I implicated in oxidative phosphorylation as alternative candidate drug targets for cells resistant to MEK and PI3K inhibition. PP2A activator DT-061 decreased viability of PANC-1 cells and this was accompanied by reduced expression of c-Myc. PANC-1 cells also showed response to metformin and the novel complex I inhibitor IACS-010759. These findings provide insights into the distinct cellular proteomes and point out alternative pharmacological targets for MEK and PI3K inhibition-resistant pancreatic cancer cells. Topics: Cell Line, Tumor; Cell Survival; Drug Resistance, Neoplasm; Humans; Indazoles; Mass Spectrometry; Mitogen-Activated Protein Kinase Kinases; Oxadiazoles; Pancreatic Neoplasms; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Piperidines; Protein Kinase Inhibitors; Proteome; Proteomics; Signal Transduction; Sulfonamides | 2021 |
Nuclear Factor Erythroid 2-Related Factor 2 Depletion Sensitizes Pancreatic Cancer Cells to Gemcitabine via Aldehyde Dehydrogenase 3a1 Repression.
As the central regulator of the oxidative stress response, nuclear factor erythroid 2-related factor 2 (Nrf2) is attracting great interest as a therapeutic target for various cancers, and the possible clinical applications of novel Nrf2 inhibitors have been explored in Nrf2-activated cancers. In the present study, we specifically investigated halofuginone, which is derived from a natural plant alkaloid. We found that halofuginone administration decreased the number of pancreatic intraepithelial neoplasias in pancreas-specific Topics: Aldehyde Dehydrogenase; Animals; Antimetabolites, Antineoplastic; Cell Line, Tumor; Deoxycytidine; Dose-Response Relationship, Drug; Gemcitabine; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; NF-E2-Related Factor 2; Pancreatic Neoplasms; Piperidines; Quinazolinones | 2021 |
The effect of ibrutinib on radiosensitivity in pancreatic cancer cells by targeting EGFR/AKT/mTOR signaling pathway.
Radiotherapy is an effective treatment for pancreatic cancer. However, radio-resistance often resulted in poor prognostic. Ibrutinib is an orally small molecule drug in B cell malignancies. Here, we investigated for the first time the effect of ibrutinib on radio-sensitivity of human pancreatic cancer cells in vitro and the potential mechanism involved in it. Human BXPC3 and Capan2 cell lines were treated with ibrutinib, and cell viability was conducted with CCK-8 assay. Cell clone formation was observed after treated with ibrutinib and (or) radiation by clone formation assay. The cell cycle and cell apoptosis were measured by flow cytometry. Protein levels was analyzed by western blot. The results revealed that ibrutinib inhibited the proliferation of pancreatic cancer cells. Ibrutinib enhanced the effect of radiation with a sensitization enhancement ratio (SER) of 1.34, 1.68 in BXPC3 and Capan2 cells respectively. Ibrutinib combined with radiation induced G2/M arrest and cell apoptosis. Further investigations revealed that ibrutinib decreased the phosphorylation of EGFR, then reversed the upregulation of p-AKT and downstream genes by radiation. In conclusion, these results suggested that ibrutinib might be an excellent radiosensitizer in pancreatic cancer. Topics: Adenine; Apoptosis; Cell Line, Tumor; Cell Proliferation; ErbB Receptors; G2 Phase Cell Cycle Checkpoints; Humans; Pancreatic Neoplasms; Phosphorylation; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Radiation Tolerance; Radiation-Sensitizing Agents; Signal Transduction; TOR Serine-Threonine Kinases | 2020 |
Antifibrotic Therapy Disrupts Stromal Barriers and Modulates the Immune Landscape in Pancreatic Ductal Adenocarcinoma.
Pancreatic ductal adenocarcinoma (PDA) remains one of the deadliest forms of cancer, in part, because it is largely refractory to current therapies. The failure of most standard therapies in PDA, as well as promising immune therapies, may be largely ascribed to highly unique and protective stromal microenvironments that present significant biophysical barriers to effective drug delivery, that are immunosuppressive, and that can limit the distribution and function of antitumor immune cells. Here, we utilized stromal reengineering to disrupt these barriers and move the stroma toward normalization using a potent antifibrotic agent, halofuginone. In an autochthonous genetically engineered mouse model of PDA, halofuginone disrupted physical barriers to effective drug distribution by decreasing fibroblast activation and reducing key extracellular matrix elements that drive stromal resistance. Concomitantly, halofuginone treatment altered the immune landscape in PDA, with greater immune infiltrate into regions of low hylauronan, which resulted in increased number and distribution of both classically activated inflammatory macrophages and cytotoxic T cells. In concert with a direct effect on carcinoma cells, this led to widespread intratumoral necrosis and reduced tumor volume. These data point to the multifunctional and critical role of the stroma in tumor protection and survival and demonstrate how compromising tumor integrity to move toward a more normal physiologic state through stroma-targeting therapy will likely be an instrumental component in treating PDA. SIGNIFICANCE: This work demonstrates how focused stromal re-engineering approaches to move toward normalization of the stroma disrupt physical barriers to effective drug delivery and promote antitumor immunity. Topics: Animals; Biophysical Phenomena; Carcinoma, Pancreatic Ductal; CD8-Positive T-Lymphocytes; Cell Line, Tumor; Doxorubicin; Drug Delivery Systems; Humans; Macrophages; Mice; Pancreatic Neoplasms; Piperidines; Quinazolinones; Random Allocation; Stromal Cells; Tumor Microenvironment | 2019 |
Safety signal detection and evaluation in clinical development programs: A case study of tofacitinib.
Adverse events are anticipated during a clinical development program. Tofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA). We describe here the process undertaken by Pfizer to investigate a safety signal for pancreatic cancer with tofacitinib. Potential cases of pancreatic cancer across indications from Pfizer's clinical trials and safety databases were identified and underwent in-depth case review and external expert consultation. The magnitude of the signal was quantified. The feasibility of formal signal evaluation via a hypothesis-testing study was explored. As of July 2016, 14 cases of potential pancreatic cancer were identified: eight cases in clinical development trials (psoriasis n = 6; RA n = 1; psoriatic arthritis n = 1), four cases in a postmarketing study in RA patients in Japan, and two spontaneous reports. Incidence rates (95% confidence intervals) per 100 patient-years ranged from 0 (0, 0.02) to 0.14 in RA, 0.05 (0.01, 0.15) to 0.07 (0.02, 0.16) in psoriasis, and 0.25 (0.01, 1.37) in psoriatic arthritis. The majority of patients had established risk factors for pancreatic cancer. The pharmaceutical industry's rapid and transparent response to safety signals is essential for ensuring patient safety and enabling physicians and patients to adequately assess a drug's risk:benefit. Safety signals emerging through pharmacovigilance may be true or false indicators of a causative association with drug exposure. In this example, it was determined that tofacitinib exposure was unlikely to be related to induction and promotion of pancreatic cancer; however, a relationship with pancreatic cancer promotion could not be excluded. Topics: Adverse Drug Reaction Reporting Systems; Aged; Aged, 80 and over; Arthritis, Rheumatoid; Clinical Trials as Topic; Feasibility Studies; Female; Humans; Incidence; Janus Kinase Inhibitors; Japan; Male; Middle Aged; Pancreatic Neoplasms; Pharmacovigilance; Piperidines; Product Surveillance, Postmarketing; Pyrimidines; Pyrroles | 2018 |
Masitinib in treatment of pancreatic cancer.
Pancreatic cancer continues to have high mortality despite the development of many chemotherapeutic agents. The 5-year relative survival for stage IV patients is less than 3%. This urgent unmet need warrants the development of novel and active therapeutic agents, which focus both on targeting cancer cells and modifying the microenvironment of cancer cells. Areas covered: In this article, the authors review the development of masitinib, a novel tyrosine kinase inhibitor of numerous targets, including c-Kit, PDGFR and FGFR. This review covers its development from the bench to clinical trials assessing its potential in pancreatic cancer. Expert opinion: While masitinib has not shown an increase in overall survival (OS) or progression free survival (PFS) compared to the current standard of care in patients with pancreatic adenocarcinoma, masitinib may have a role in decreasing inflammation related to those patients with increased pain scores with pancreatic adenocarcinoma. If we have the tools to identify accurate subgroups of patients who may benefit from particular therapies, this agent may be of benefit to these patients. Indeed, if more sophisticated biomarkers and the identification of patient subgroups are better explained, the authors believe that masitinib will become part of the armamentarium against pancreatic adenocarcinoma. Topics: Benzamides; Humans; Pancreatic Neoplasms; Piperidines; Protein Kinase Inhibitors; Pyridines; Survival Rate; Thiazoles | 2018 |
A receptor tyrosine kinase ROR1 inhibitor (KAN0439834) induced significant apoptosis of pancreatic cells which was enhanced by erlotinib and ibrutinib.
There is a great unmet medical need in pancreatic carcinoma (PC) for novel drugs with other mechanisms of action than existing. PC cells express the onco-fetal RTK ROR1, absent on most normal post-partem cells. ROR1 is involved in proliferation, survival, EMT and metastasis of tumor cells in various malignancies. A small molecule inhibitor (KAN0439834) (530 Da) targeting the TK domain of ROR1 was developed and the activity in ROR1 expressing human PC cell lines (n = 8) evaluated. The effects were compared to a murine mAb against the external part of ROR1, gemcitabine, erlotinib and ibrutinib. KAN0439834 induced significant apoptosis of the tumor cells. EC50 values for KAN0439834 varied between 250-650 nM depending on the cell line. The corresponding values for erlotinib and ibrutinib were 10-40 folds higher. KAN0439834 was much more effective in inducing tumor cell death than the ROR1 mAb although both inhibited ROR1 phosphorylation and downstream non-canonical Wnt pathway molecules. Combination of KAN0439834 with erlotinib or ibrutinib had significant additive effects on tumor cell death. A first-in-class small molecule ROR1 inhibitor (KAN0439834) showed promising in vitro activity against a number of human PC cell lines. Interesting is the additive effects of erlotinib and ibrutinib which warrants further studies as both these agents are in clinical trials for pancreatic carcinoma. Topics: Adenine; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Drug Synergism; Erlotinib Hydrochloride; Gene Expression Regulation, Neoplastic; Humans; Low Density Lipoprotein Receptor-Related Protein-6; Organic Chemicals; Pancreas; Pancreatic Neoplasms; Phosphorylation; Piperidines; Protein Kinase Inhibitors; Protein Multimerization; Protein Structure, Quaternary; Pyrazoles; Pyrimidines; Receptor Tyrosine Kinase-like Orphan Receptors | 2018 |
Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERK-dependent necroptosis.
Topics: Apoptosis; Calcium; Calcium Channels; Cell Line, Tumor; Extracellular Signal-Regulated MAP Kinases; Humans; Mitochondria; p38 Mitogen-Activated Protein Kinases; Pancreatic Neoplasms; Piperidines; Receptor-Interacting Protein Serine-Threonine Kinases; Receptors, Adiponectin; RNA Interference; RNA, Small Interfering; Signal Transduction; Superoxides | 2018 |
MEK inhibitors cobimetinib and trametinib, regressed a gemcitabine-resistant pancreatic-cancer patient-derived orthotopic xenograft (PDOX).
A pancreatic ductal adenocarcinoma (PDAC), obtained from a patient, was grown orthotopically in the pancreatic tail of nude mice to establish a patient-derived orthotopic (PDOX) model. Seven weeks after implantation, PDOX nude mice were divided into the following groups: untreated control (n = 7); gemcitabine (100 mg/kg, i.p., once a week for 2 weeks, n = 7); cobimetinib (5 mg/kg, p.o., 14 consecutive days, n = 7); trametinib (0.3 mg/kg, p.o., 14 consecutive days, n = 7); trabectedin (0.15 mg/kg, i.v., once a week for 2 weeks, n = 7); temozolomide (25 mg/kg, p.o., 14 consecutive days, n = 7); carfilzomib (2 mg/kg, i.v., twice a week for 2 weeks, n = 7); bortezomib (1 mg/kg, i.v., twice a week for 2 weeks, n = 7); MK-1775 (20 mg/kg, p.o., 14 consecutive days, n = 7); BEZ-235 (45 mg/kg, p.o., 14 consecutive days, n = 7); vorinostat (50 mg/kg, i.p., 14 consecutive days, n = 7). Only the MEK inhibitors, cobimetinib and trametinib, regressed tumor growth, and they were more significantly effective than other therapies (p < 0.0001, respectively), thereby demonstrating the precision of the PDOX models of PDAC and its potential for individualizing pancreatic-cancer therapy. Topics: Animals; Antineoplastic Agents; Azetidines; Cell Line, Tumor; Deoxycytidine; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Gemcitabine; Humans; Mice; Mitogen-Activated Protein Kinases; Pancreatic Neoplasms; Piperidines; Protein Kinase Inhibitors; Pyridones; Pyrimidinones; Xenograft Model Antitumor Assays | 2017 |
Survival of pancreatic cancer cells lacking KRAS function.
Activating mutations in the proto-oncogene KRAS are a hallmark of pancreatic ductal adenocarcinoma (PDAC), an aggressive malignancy with few effective therapeutic options. Despite efforts to develop KRAS-targeted drugs, the absolute dependence of PDAC cells on KRAS remains incompletely understood. Here we model complete KRAS inhibition using CRISPR/Cas-mediated genome editing and demonstrate that KRAS is dispensable in a subset of human and mouse PDAC cells. Remarkably, nearly all KRAS deficient cells exhibit phosphoinositide 3-kinase (PI3K)-dependent mitogen-activated protein kinase (MAPK) signaling and induced sensitivity to PI3K inhibitors. Furthermore, comparison of gene expression profiles of PDAC cells retaining or lacking KRAS reveal a role of KRAS in the suppression of metastasis-related genes. Collectively, these data underscore the potential for PDAC resistance to even the very best KRAS inhibitors and provide insights into mechanisms of response and resistance to KRAS inhibition. Topics: Animals; Antineoplastic Agents; Benzimidazoles; Carcinoma, Pancreatic Ductal; DNA Copy Number Variations; Humans; Immunoblotting; Indazoles; Mice; Morpholines; Pancreatic Neoplasms; Phenylurea Compounds; Piperidines; Proto-Oncogene Mas; Proto-Oncogene Proteins p21(ras); Purines; Pyrimidines; Pyrimidinones; Quinazolinones; Sulfonamides; Thiazoles | 2017 |
Regulation of the Nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer.
Nicotinamide adenine dinucleotide (NAD) is a crucial cofactor for the redox reactions in the metabolic pathways of cancer cells that have elevated aerobic glycolysis (Warburg effect). Cancer cells are reported to rely on NAD recycling and inhibition of the NAD salvage pathway causes metabolic collapse and cell death. However, the underlying regulatory mechanisms and clinical implications for the NAD salvage pathway in pancreatic ductal adenocarcinoma (PDAC) remain unclear. This study showed that the expression of Nampt, the rate-limiting enzyme of the NAD salvage pathway, was significantly increased in PDAC cells and PDAC tissues. Additionally, inhibition of Nampt impaired tumor growth in vitro and tumorigenesis in vivo, which was accompanied by a decreased cellular NAD level and glycolytic activity. Mechanistically, the Nampt expression was independent of Kras and p16 status, but it was directly regulated by miR-206, which was inversely correlated with the expression of Nampt in PDAC tissues. Importantly, pharmacological inhibition of Nampt by its inhibitor, FK866, significantly enhanced the antitumor activity of gemcitabine in PDAC cells and in orthotopic xenograft mouse models. In conclusion, the present study revealed a novel regulatory mechanism for Nampt in PDAC and suggested that Nampt inhibition may override gemcitabine resistance by decreasing the NAD level and suppressing glycolytic activity, warranting further clinical investigation for pancreatic cancer treatment. Topics: 3' Untranslated Regions; Acrylamides; Animals; Antimetabolites, Antineoplastic; Binding Sites; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Cell Proliferation; Cytokines; Deoxycytidine; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Enzyme Inhibitors; Female; Gemcitabine; Glycolysis; Humans; Mice, Inbred BALB C; Mice, Inbred NOD; Mice, SCID; MicroRNAs; NAD; Nicotinamide Phosphoribosyltransferase; Pancreatic Neoplasms; Piperidines; RNA Interference; Time Factors; Transfection; Tumor Burden; Xenograft Model Antitumor Assays | 2016 |
A pancreatic ductal adenocarcinoma subpopulation is sensitive to FK866, an inhibitor of NAMPT.
Treating pancreatic cancer is extremely challenging due to multiple factors, including chemoresistance and poor disease prognosis. Chemoresistance can be explained by: the presence of a dense stromal barrier leading to a lower vascularized condition, therefore limiting drug delivery; the huge intra-tumoral heterogeneity; and the status of epithelial-to-mesenchymal transition. These factors are highly variable between patients making it difficult to predict responses to chemotherapy. Nicotinamide phosphoribosyl transferase (NAMPT) is the main enzyme responsible for recycling cytosolic NAD+ in hypoxic conditions. FK866 is a noncompetitive specific inhibitor of NAMPT, which has proven anti-tumoral effects, although a clinical advantage has still not been demonstrated. Here, we tested the effect of FK866 on pancreatic cancer-derived primary cell cultures (PCCs), both alone and in combination with three different drugs typically used against this cancer: gemcitabine, 5-Fluorouracil (5FU) and oxaliplatin. The aims of this study were to evaluate the benefit of drug combinations, define groups of sensitivity, and identify a potential biomarker for predicting treatment sensitivity. We performed cell viability tests in the presence of either FK866 alone or in combination with the drugs above-mentioned. We confirmed both inter- and intra-tumoral heterogeneity. Interestingly, only the in vitro effect of gemcitabine was influenced by the addition of FK866. We also found that NAMPT mRNA expression levels can predict the sensitivity of cells to FK866. Overall, our results suggest that patients with tumors sensitive to FK866 can be identified using NAMPT mRNA levels as a biomarker and could therefore benefit from a co-treatment of gemcitabine plus FK866. Topics: Acrylamides; Adult; Aged; Aged, 80 and over; Animals; Antineoplastic Agents; Biomarkers, Tumor; Carcinoma, Pancreatic Ductal; Cytokines; Drug Resistance, Neoplasm; Enzyme Inhibitors; Female; Humans; Male; Mice; Middle Aged; Nicotinamide Phosphoribosyltransferase; Pancreatic Neoplasms; Piperidines; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2016 |
Modeling targeted inhibition of MEK and PI3 kinase in human pancreatic cancer.
Activating mutations in the KRAS oncogene occur in approximately 90% of pancreatic cancers, resulting in aberrant activation of the MAPK and the PI3K pathways, driving malignant progression. Significant efforts to develop targeted inhibitors of nodes within these pathways are underway and several are currently in clinical trials for patients with KRAS-mutant tumors, including patients with pancreatic cancer. To model MEK and PI3K inhibition in late-stage pancreatic cancer, we conducted preclinical trials with a mutant Kras-driven genetically engineered mouse model that faithfully recapitulates human pancreatic ductal adenocarcinoma development. Treatment of advanced disease with either a MEK (GDC-0973) or PI3K inhibitor (GDC-0941) alone showed modest tumor growth inhibition and did not significantly enhance overall survival. However, combination of the two agents resulted in a significant survival advantage as compared with control tumor-bearing mice. To model the clinical scenario, we also evaluated the combination of these targeted agents with gemcitabine, the current standard-of-care chemotherapy for pancreatic cancer. The addition of MEK or PI3K inhibition to gemcitabine, or the triple combination regimen, incrementally enhanced overall survival as compared with gemcitabine alone. These results are reminiscent of the survival advantage conferred in this model and in patients by the combination of gemcitabine and erlotinib, an approved therapeutic regimen for advanced nonresectable pancreatic cancer. Taken together, these data indicate that inhibition of MEK and PI3K alone or in combination with chemotherapy do not confer a dramatic improvement as compared with currently available therapies for patients with pancreatic cancer. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Azetidines; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Deoxycytidine; Dose-Response Relationship, Drug; Gemcitabine; Humans; Indazoles; MAP Kinase Kinase 1; Mice; Models, Biological; Mutation; Pancreatic Neoplasms; Phosphoinositide-3 Kinase Inhibitors; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins p21(ras); Standard of Care; Sulfonamides; Xenograft Model Antitumor Assays | 2015 |
Pharmacological inhibition and genetic knockdown of exchange protein directly activated by cAMP 1 reduce pancreatic cancer metastasis in vivo.
cAMP plays a critical role in regulating migration of various cancers. This role is context dependent and is determined by which of the two main cAMP sensors is at play: cAMP-dependent protein kinase or exchange protein directly activated by cAMP (EPAC). Recently, we have shown that the cAMP sensor protein EPAC1 promotes invasion/migration of pancreatic ductal adenocarcinoma (PDA) in vitro. In this study, we investigated the role of EPAC1 in invasion and metastasis of PDA in vivo, and evaluated the therapeutic potential of EPAC inhibitors as antimetastasis agents for this neoplasm. We employed an orthotopic metastatic mouse model in which the PDA cells MIA PaCa-2 were injected into the pancreas of athymic nude mice, and their local and distant spread was monitored by in vivo imaging and histologic evaluation of the number of metastatic foci in the liver. Either genetic suppression of EPAC1 or its pharmacologic inhibition with 3-(5-tert-butyl-isoxazol-3-yl)-2-[(3-chloro-phenyl)-hydrazono]-3-oxo-propionitrile, an EPAC-specific antagonist recently identified in our laboratory, decreased invasion and metastasis of the PDA cells. Mechanistically, EPAC1 promotes activation and trafficking of integrin β1, which plays an essential role in PDA migration and metastasis. Our data show that EPAC1 facilitates metastasis of PDA cells and EPAC1 might be a potential novel therapeutic target for developing antimetastasis agents for PDA. Topics: Animals; Carcinoma, Pancreatic Ductal; Female; Gene Knockdown Techniques; Guanine Nucleotide Exchange Factors; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Invasiveness; Pancreatic Neoplasms; Piperidines | 2015 |
NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by β-lapachone.
Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (e.g., FK866) target the most active pathway of NAD(+) synthesis in tumor cells, but lack tumor-selectivity for use as a single agent. Reducing NAD(+) pools by inhibiting NAMPT primed pancreatic ductal adenocarcinoma (PDA) cells for poly(ADP ribose) polymerase (PARP1)-dependent cell death induced by the targeted cancer therapeutic, β-lapachone (β-lap, ARQ761), independent of poly(ADP ribose) (PAR) accumulation. β-Lap is bioactivated by NADPH:quinone oxidoreductase 1 (NQO1) in a futile redox cycle that consumes oxygen and generates high levels of reactive oxygen species (ROS) that cause extensive DNA damage and rapid PARP1-mediated NAD(+) consumption. Synergy with FK866+β-lap was tumor-selective, only occurring in NQO1-overexpressing cancer cells, which is noted in a majority (∼85%) of PDA cases. This treatment strategy simultaneously decreases NAD(+) synthesis while increasing NAD(+) consumption, reducing required doses and treatment times for both drugs and increasing potency. These complementary mechanisms caused profound NAD(P)(+) depletion and inhibited glycolysis, driving down adenosine triphosphate levels and preventing recovery normally observed with either agent alone. Cancer cells died through an ROS-induced, μ-calpain-mediated programmed cell death process that kills independent of caspase activation and is not driven by PAR accumulation, which we call NAD(+)-Keresis. Non-overlapping specificities of FK866 for PDA tumors that rely heavily on NAMPT-catalyzed NAD(+) synthesis and β-lap for cancer cells with elevated NQO1 levels affords high tumor-selectivity. The concept of reducing NAD(+) pools in cancer cells to sensitize them to ROS-mediated cell death by β-lap is a novel strategy with potential application for pancreatic and other types of NQO1+ solid tumors. Topics: Acrylamides; Cell Death; Cell Line, Tumor; DNA Breaks, Double-Stranded; Drug Synergism; Energy Metabolism; Glycolysis; Humans; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Nicotinamide Phosphoribosyltransferase; Pancreatic Neoplasms; Piperidines; Poly Adenosine Diphosphate Ribose; Reactive Oxygen Species | 2015 |
Ibrutinib exerts potent antifibrotic and antitumor activities in mouse models of pancreatic adenocarcinoma.
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense stromal fibroinflammatory reaction that is a major obstacle to effective therapy. The desmoplastic stroma comprises many inflammatory cells, in particular mast cells as key components of the PDAC microenvironment, and such infiltration correlates with poor patient outcome. Indeed, it has been hypothesized that stromal ablation is critical to improve clinical response in patients with PDAC. Ibrutinib is a clinically approved Bruton's tyrosine kinase inhibitor that inhibits mast cells and tumor progression in a mouse model of β-cell tumorigenesis. Here, we show that ibrutinib is highly effective at limiting the growth of PDAC in both transgenic mouse and patient-derived xenograft models of the disease. In these various experimental settings, ibrutinib effectively diminished fibrosis, extended survival, and improved the response to clinical standard-of-care therapy. Our results offer a preclinical rationale to immediately evaluate the clinical efficacy of ibrutinib in patients with PDAC. Topics: Adenine; Adenocarcinoma; Animals; Antineoplastic Agents; Female; Fibrosis; Male; Mice; Mice, Inbred C57BL; Mice, Inbred NOD; Mice, SCID; Pancreatic Neoplasms; Piperidines; Pyrazoles; Pyrimidines; Tumor Cells, Cultured; Tumor Microenvironment; Xenograft Model Antitumor Assays | 2015 |
Combinative effects of β-Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation.
Pancreatic cancer (PC) is one of the most lethal human malignancies and a major health problem. Patients diagnosed with PC and treated with conventional approaches have an overall 5-year survival rate of less than 5%. Novel strategies are needed to treat this disease. Herein, we propose a combinatorial strategy that targets two unrelated metabolic enzymes overexpressed in PC cells:. quinone oxidoreductase-1 (NQO1) and nicotinamide phosphoribosyl transferase (NAMPT) using β-lapachone (BL) and APO866, respectively. We show that BL tremendously enhances the antitumor activity of APO866 on various PC cell lines without affecting normal cells, in a PARP-1 dependent manner. The chemopotentiation of APO866 with BL was characterized by the following: (i) nicotinamide adenine dinucleotide (NAD) depletion; (ii) catalase (CAT) degradation; (iii) excessive H2O2 production; (iv) dramatic drop of mitochondrial membrane potential (MMP); and finally (v) autophagic-associated cell death. H2O2 production, loss of MMP and cell death (but not NAD depletion) were abrogated by exogenous supplementation with CAT or pharmacological or genetic inhibition of PARP-1. Our data demonstrates that the combination of a non-lethal dose of BL and low dose of APO866 optimizes significantly cell death on various PC lines over both compounds given separately and open new and promising combination in PC therapy. Topics: Acrylamides; Cell Death; Cell Line; Cell Line, Tumor; Humans; Immunoblotting; Membrane Potential, Mitochondrial; Naphthoquinones; Pancreatic Neoplasms; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Reactive Oxygen Species | 2015 |
Discovery of 2-[1-(4,4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118): A Potent, Orally Available, and Highly Selective PARP-1 Inhibitor for Cancer Therapy.
The nuclear protein poly(ADP-ribose) polymerase-1 (PARP-1) has a well-established role in the signaling and repair of DNA and is a prominent target in oncology, as testified by the number of candidates in clinical testing that unselectively target both PARP-1 and its closest isoform PARP-2. The goal of our program was to find a PARP-1 selective inhibitor that would potentially mitigate toxicities arising from cross-inhibition of PARP-2. Thus, an HTS campaign on the proprietary Nerviano Medical Sciences (NMS) chemical collection, followed by SAR optimization, allowed us to discover 2-[1-(4,4-difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118, 20by). NMS-P118 proved to be a potent, orally available, and highly selective PARP-1 inhibitor endowed with excellent ADME and pharmacokinetic profiles and high efficacy in vivo both as a single agent and in combination with Temozolomide in MDA-MB-436 and Capan-1 xenograft models, respectively. Cocrystal structures of 20by with both PARP-1 and PARP-2 catalytic domain proteins allowed rationalization of the observed selectivity. Topics: Administration, Oral; Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Biological Availability; Cell Proliferation; Dacarbazine; Drug Screening Assays, Antitumor; Female; Heterografts; High-Throughput Screening Assays; Humans; Isoindoles; Mice, Inbred BALB C; Mice, Nude; Microsomes, Liver; Models, Molecular; Neoplasm Transplantation; Pancreatic Neoplasms; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Rats, Sprague-Dawley; Structure-Activity Relationship; Temozolomide; Triple Negative Breast Neoplasms | 2015 |
Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors.
Here, we describe a novel interplay between NAD synthesis and degradation involved in pancreatic tumor growth.. We used human pancreatic cancer cells, both in vitro (cell culture experiments) and in vivo (xenograft experiments), to demonstrate the role of NAD synthesis and degradation in tumor cell metabolism and growth.. We demonstrated that pharmacologic and genetic targeting of Nampt, the key enzyme in the NAD salvage synthesis pathway, inhibits cell growth and survival of pancreatic cancer cells. These changes were accompanied by a reduction of NAD levels, glycolytic flux, lactate production, mitochondrial function, and levels of ATP. The massive reduction in overall metabolic activity induced by Nampt inhibition was accompanied by a dramatic decrease in pancreatic tumor growth. The results of the mechanistic experiments showed that neither the NAD-dependent enzymes PARP-1 nor SIRT1 play a significant role on the effect of Nampt inhibition on pancreatic cancer cells. However, we identified a role for the NAD degradation pathway mediated by the NADase CD38 on the sensitivity to Nampt inhibition. The responsiveness to Nampt inhibition is modulated by the expression of CD38; low levels of this enzyme decrease the sensitivity to Nampt inhibition. In contrast, its overexpression decreased cell growth in vitro and in vivo, and further increased the sensitivity to Nampt inhibition.. Our study demonstrates that NAD metabolism is essential for pancreatic cancer cell survival and proliferation and that targeting NAD synthesis via the Nampt pathway could lead to novel therapeutic treatments for pancreatic cancer. Topics: Acrylamides; ADP-ribosyl Cyclase 1; Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cytokines; Female; Humans; Membrane Glycoproteins; Mice; Mice, Nude; Molecular Targeted Therapy; NAD; Nicotinamide Phosphoribosyltransferase; Pancreatic Neoplasms; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Sirtuin 1; Tumor Burden; Xenograft Model Antitumor Assays | 2014 |
Targeting metabolic scavenging in pancreatic cancer.
Pancreatic tumor metabolism is rewired to facilitate survival and growth in a nutrient-depleted environment. This leads to a unique dependence on metabolic recycling and scavenging pathways, including NAD salvage. Targeting this pathway in pancreatic cancer disrupts metabolic homeostasis and impairs tumor growth. Topics: Acrylamides; Animals; Antineoplastic Agents; Female; Humans; NAD; Pancreatic Neoplasms; Piperidines | 2014 |
PAK1 mediates pancreatic cancer cell migration and resistance to MET inhibition.
Pancreatic adenocarcinoma (PDAC) is a major unmet medical need and a deeper understanding of molecular drivers is needed to advance therapeutic options for patients. We report here that p21-activated kinase 1 (PAK1) is a central node in PDAC cells downstream of multiple growth factor signalling pathways, including hepatocyte growth factor (HGF) and MET receptor tyrosine kinase. PAK1 inhibition blocks signalling to cytoskeletal effectors and tumour cell motility driven by HGF/MET. MET antagonists, such as onartuzumab and crizotinib, are currently in clinical development. Given that even highly effective therapies have resistance mechanisms, we show that combination with PAK1 inhibition overcomes potential resistance mechanisms mediated either by activation of parallel growth factor pathways or by direct amplification of PAK1. Inhibition of PAK1 attenuated in vivo tumour growth and metastasis in a model of pancreatic adenocarcinoma. In human tissues, PAK1 is highly expressed in a proportion of PDACs (33% IHC score 2 or 3; n = 304) and its expression is significantly associated with MET positivity (p < 0.0001) and linked to a widespread metastatic pattern in patients (p = 0.067). Taken together, our results provide evidence for a functional role of MET/PAK1 signalling in pancreatic adenocarcinoma and support further characterization of therapeutic inhibitors in this indication. Topics: Adenocarcinoma; Animals; Antibodies, Monoclonal; Antineoplastic Combined Chemotherapy Protocols; Azetidines; Cell Movement; Disease Models, Animal; Drug Resistance, Neoplasm; Humans; Immunohistochemistry; Mice; p21-Activated Kinases; Pancreatic Neoplasms; Piperidines; Proto-Oncogene Proteins c-met; Signal Transduction | 2014 |
EGCG enhances the therapeutic potential of gemcitabine and CP690550 by inhibiting STAT3 signaling pathway in human pancreatic cancer.
Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogene, which promotes cell survival, proliferation, motility and progression in cancer cells. Targeting STAT3 signaling may lead to the development of novel therapeutic approaches for human cancers. Here, we examined the effects of epigallocathechin gallate (EGCG) on STAT3 signaling in pancreatic cancer cells, and assessed the therapeutic potential of EGCG with gemcitabine or JAK3 inhibitor CP690550 (Tasocitinib) for the treatment and/or prevention of pancreatic cancer.. Cell viability and apoptosis were measured by XTT assay and TUNEL staining, respectively. Gene and protein expressions were measured by qRT-PCR and Western blot analysis, respectively. The results revealed that EGCG inhibited the expression of phospho and total JAK3 and STAT3, STAT3 transcription and activation, and the expression of STAT3-regulated genes, resulting in the inhibition of cell motility, migration and invasion, and the induction of caspase-3 and PARP cleavage. The inhibition of STAT3 enhanced the inhibitory effects of EGCG on cell motility and viability. Additionally, gemcitabine and CP690550 alone inhibited STAT3 target genes and synergized with EGCG to inhibit cell viability and induce apoptosis in pancreatic cancer cells.. Overall, these results suggest that EGCG suppresses the growth, invasion and migration of pancreatic cancer cells, and induces apoptosis by interfering with the STAT3 signaling pathway. Moreover, EGCG further enhanced the therapeutic potential of gemcitabine and CP690550 against pancreatic cancer. Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Catechin; Cell Line, Tumor; Cell Movement; Cell Survival; Deoxycytidine; Drug Synergism; Gemcitabine; Humans; Pancreatic Neoplasms; Piperidines; Pyrimidines; Pyrroles; Signal Transduction; STAT3 Transcription Factor | 2012 |
A monoreactive bifunctional triazacyclononane phosphinate chelator with high selectivity for gallium-68.
Topics: Animals; Aza Compounds; Cell Line, Tumor; Chelating Agents; Gallium Radioisotopes; Humans; Integrin alphaVbeta3; Melanoma; Mice; Mice, Nude; Pancreatic Neoplasms; Peptides; Phosphinic Acids; Piperidines; Positron-Emission Tomography; Radiopharmaceuticals; Rats; Transplantation, Heterologous | 2012 |
Involvement of host stroma cells and tissue fibrosis in pancreatic tumor development in transgenic mice.
Stroma cells and extracellular matrix (ECM) components provide the pivotal microenvironment for tumor development. The study aimed to evaluate the importance of the pancreatic stroma for tumor development.. Pancreatic tumor cells were implanted subcutaneously into green fluorescent protein transgenic mice, and stroma cells invading the tumors were identified through immunohistochemistry. Inhibition of tumor invasion by stroma cells was achieved with halofuginone, an inhibitor of TGFβ/Smad3 signaling, alone or in combination with chemotherapy. The origin of tumor ECM was evaluated with species-specific collagen I antibodies and in situ hybridization of collagen α1(I) gene. Pancreatic fibrosis was induced by cerulean injection and tumors by spleen injection of pancreatic tumor cells.. Inhibition of stroma cell infiltration and reduction of tumor ECM levels by halofuginone inhibited development of tumors derived from mouse and human pancreatic cancer cells. Halofuginone reduced the number only of stroma myofibroblasts expressing both contractile and collagen biosynthesis markers. Both stroma myofibroblasts and tumor cells generated ECM that contributes to tumor growth. Combination of treatments that inhibit stroma cell infiltration, cause apoptosis of myofibroblasts and inhibit Smad3 phosphorylation, with chemotherapy that increases tumor-cell apoptosis without affecting Smad3 phosphorylation was more efficacious than either treatment alone. More tumors developed in fibrotic than in normal pancreas, and prevention of tissue fibrosis greatly reduced tumor development.. The utmost importance of tissue fibrosis and of stroma cells for tumor development presents potential new therapy targets, suggesting combination therapy against stroma and neoplastic cells as a treatment of choice. Topics: Animals; Anticarcinogenic Agents; Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Cell Proliferation; Ceruletide; Collagen; Extracellular Matrix; Fibrosis; Humans; Male; Mice; Mice, Transgenic; Myofibroblasts; Neoplasm Invasiveness; Pancreatic Neoplasms; Piperidines; Quinazolinones; Stromal Cells | 2012 |
New adamantane phenylalkylamines with σ-receptor binding affinity and anticancer activity, associated with putative antagonism of neuropathic pain.
The synthesis of the adamantane phenylalkylamines 2a-d, 3a-c, and 4a-e is described. These compounds exhibited significant antiproliferative activity, in vitro, against eight cancer cell lines tested. The σ(1), σ(2), and sodium channel binding affinities of compounds 2a, 3a, 4a, and 4c-e were investigated. The most interesting analogue, 4a, exhibited significant in vivo anticancer profile on pancreas, prostate, leukemia, and ovarian cancer cell line xenografts together with apoptosis and caspase-3 activation. Inhibition of the cancer cells cycle at the sub-G1 level was also obtained with 4a. Finally, encouraging results were observed with 4a in vivo on mice, suggesting putative antimetastatic and analgesic activities of this compound. Topics: Adamantane; Animals; Antineoplastic Agents; Apoptosis; Caspase 3; Cell Cycle; Cell Proliferation; Female; Humans; Male; Mice; Mice, SCID; Molecular Structure; Neuralgia; Ovarian Neoplasms; Pancreatic Neoplasms; Piperidines; Prostatic Neoplasms; Protein Binding; Receptors, sigma; Structure-Activity Relationship; Tumor Cells, Cultured | 2012 |
Modeling pharmacological inhibition of mast cell degranulation as a therapy for insulinoma.
Myc, a pleiotropic transcription factor that is deregulated and/or overexpressed in most human cancers, instructs multiple extracellular programs that are required to sustain the complex microenvironment needed for tumor maintenance, including remodeling of tumor stroma, angiogenesis, and inflammation. We previously showed in a model of pancreatic β-cell tumorigenesis that acute Myc activation in vivo triggers rapid recruitment of mast cells to the tumor site and that this is absolutely required for angiogenesis and macroscopic tumor expansion. Moreover, systemic inhibition of mast cell degranulation with sodium cromoglycate induced death of tumor and endothelial cells in established tumors. Hence, mast cells are required both to establish and to maintain the tumors. Whereas this intimates that selective inhibition of mast cell function could be therapeutically efficacious, cromoglycate is not a practical drug for systemic delivery in humans, and no other systemic inhibitor of mast cell degranulation has hitherto been available. PCI-32765 is a novel inhibitor of Bruton tyrosine kinase (Btk) that blocks mast cell degranulation and is currently in clinical trial as a therapy for B-cell non-Hodgkin lymphoma. Here, we show that systemic treatment of insulinoma-bearing mice with PCI-32765 efficiently inhibits Btk, blocks mast cell degranulation, and triggers collapse of tumor vasculature and tumor regression. These data reinforce the notion that mast cell function is required for maintenance of certain tumor types and indicate that the Btk inhibitor PCI-32765 may be useful in treating such diseases. Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Animals; Cell Degranulation; Cell Proliferation; Cell Transformation, Neoplastic; Disease Models, Animal; Down-Regulation; Genes, myc; Insulinoma; Mast Cells; Mice; Mice, Transgenic; Models, Theoretical; Pancreatic Neoplasms; Piperidines; Protein-Tyrosine Kinases; Pyrazoles; Pyrimidines; Tumor Cells, Cultured | 2011 |
Masitinib combined with standard gemcitabine chemotherapy: in vitro and in vivo studies in human pancreatic tumour cell lines and ectopic mouse model.
Tyrosine kinases are attractive targets for pancreatic cancer therapy because several are over-expressed, including PDGFRalpha/beta, FAK, Src and Lyn. A critical role of mast cells in the development of pancreatic cancer has also been reported. Masitinib is a tyrosine kinase inhibitor that selectively targets c-Kit, PDGFRalpha/beta, Lyn, and to a lesser extent the FAK pathway, without inhibiting kinases of known toxicities. Masitinib is particularly efficient in controlling the proliferation, differentiation and degranulation of mast cells. This study evaluates the therapeutic potential of masitinib in pancreatic cancer, as a single agent and in combination with gemcitabine.. Proof-of-concept studies were performed in vitro on human pancreatic tumour cell lines and then in vivo using a mouse model of human pancreatic cancer. Molecular mechanisms were investigated via gene expression profiling. Masitinib as a single agent had no significant antiproliferative activity while the masitinib/gemcitabine combination showed synergy in vitro on proliferation of gemcitabine-refractory cell lines Mia Paca2 and Panc1, and to a lesser extent in vivo on Mia Paca2 cell tumour growth. Specifically, masitinib at 10 microM strongly sensitised Mia Paca2 cells to gemcitabine (>400-fold reduction in IC(50)); and moderately sensitised Panc1 cells (10-fold reduction). Transcriptional analysis identified the Wnt/beta-catenin signalling pathway as down-regulated in the cell lines resensitised by the masitinib/gemcitabine combination.. These data establish proof-of-concept that masitinib can sensitise gemcitabine-refractory pancreatic cancer cell lines and warrant further in vivo investigation. Indeed, such an effect has been recently observed in a phase 2 clinical study of patients with pancreatic cancer who received a masitinib/gemcitabine combination. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Cell Line, Tumor; Cell Proliferation; Deoxycytidine; Disease Models, Animal; Gemcitabine; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Inhibitory Concentration 50; Male; Mice; Mice, SCID; Pancreatic Neoplasms; Piperidines; Pyridines; Thiazoles | 2010 |
Inhibition of pancreatic stellate cell activation by halofuginone prevents pancreatic xenograft tumor development.
Most solid tumors consist of neoplastic and nonneoplastic cells and extracellular matrix components. In the pancreas, activated stellate cells (PSCs) are the source of the extracellular matrix proteins. We evaluated the significance of PSC activation in tumor establishment and development in mouse xenografts.. Xenografts were established by implanting human pancreatic cancer cells (MiaPaca-2) subcutaneously or orthotopically by injecting them into the spleen. Fibrosis was induced by cerulein. Collagen level was evaluated by Sirius red staining. Prolyl 4-hydroxylase β and stellate cell activation-associated protein (Cygb/STAP) were determined by immunohistochemistry.. Halofuginone inhibited subcutaneous tumor development implanted with Matrigel and reduced collagen and prolyl 4-hydroxylase β levels. Few tumors, which developed slowly, were observed after MiaPaca-2 implantation without Matrigel. Increase in tumor number and rate of development were observed with addition of PSCs from control pancreas, and further increase was observed when the PSCs were from cerulein-treated mice. Preincubation of the PSCs with halofuginone elicited Cygb/STAP level reduction and tumor growth inhibition. More tumors developed orthotopically in cerulein-treated mice than in controls; this was prevented by halofuginone.. Extracellular matrix production by activated PSCs is essential for tumor establishment and growth. Thus, inhibition of PSC activation is a viable means of reducing pancreatic tumor development. Topics: Animals; Cell Line, Tumor; Extracellular Matrix; Fibrosis; Humans; Male; Mice; Neoplasm Transplantation; Pancreas; Pancreatic Neoplasms; Pancreatic Stellate Cells; Piperidines; Quinazolinones; Transplantation, Heterologous | 2010 |
Autophagy induced by farnesyltransferase inhibitors in cancer cells.
The mechanisms of action of farnesyltransferase inhibitors (FTIs) involve Rheb and the phosphatidylinositide 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway. mTOR in particular plays a key role in the regulation of autophagy. Collectively, the literature suggests that FTIs very likely induce autophagy, but thus far there have been no reports that FTIs affect this process relevant to cancer cell biology. We hypothesized that FTIs can induce autophagy. In this study, we found that the FTIs manumycin A, FTI-276, and lonafarnib induced autophagy in two human cancer cell lines. We also found that neither inhibition of apoptosis with a pan-caspase inhibitor nor inhibition of autophagy increased the number of clones of lonafarnib-treated U2OS osteosarcoma cells that formed in soft agar. Although whether autophagy is a cell death or cell survival mechanism after FTI treatment remains unresolved, our data show that cancer cells apparently can shift between apoptosis and autophagy once they are committed to die after FTI treatment. Topics: Apoptosis; Autophagy; Cell Line, Tumor; Dose-Response Relationship, Drug; Enzyme Inhibitors; Farnesyltranstransferase; Humans; Microscopy, Electron, Transmission; Microscopy, Fluorescence; Pancreatic Neoplasms; Piperidines; Polyenes; Polyunsaturated Alkamides; Protein Kinases; Pyridines; RNA, Small Interfering; Signal Transduction; TOR Serine-Threonine Kinases | 2008 |
Antiangiogenic and antitumor activity of a novel vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor ZD6474 in a metastatic human pancreatic tumor model.
ZD6474 is a novel, orally available inhibitor of vascular endothelial growth factor receptor kinase insert domain receptor/flk-1 tyrosine kinase activity with additional activity against the epidermal growth factor receptor-1 tyrosine kinase. The aim of this study was to evaluate ZD6474, alone and in combination with gemcitabine, in an orthotopic model of metastatic pancreatic cancer. Nude mice (nine to 10/group) were injected orthotopically with 1x10(6) L3.6pl human pancreatic cancer cells. Eight days later, treatment was initiated with vehicle only, gemcitabine (100 mg/kg intraperitoneal twice weekly), ZD6474 (50 mg/kg oral once daily) or a combination of the two treatments. Animals were killed on day 24 posttreatment initiation. The phosphorylation status level of vascular endothelial growth factor receptor-2 and epidermal growth factor receptor as well as the phosphorylation level of AKT and extracellular signal-regulated kinase-1/2 in different human pancreatic carcinoma cells and in human umbilical vein endothelial cells was analyzed by Western blotting. Compared with controls (1231 mg), the mean weight of treated tumors was reduced to 836, 541 and 308 mg in the gemcitabine, ZD6474 and combination groups, respectively. Lymph node metastasis was significantly reduced in both the ZD6474 alone and combined treatment groups, with 3/10 and 1/5 animals developing metastases, compared with 10/10 and 9/9 in the control and gemcitabine groups (P<0.003 and <0.0003, respectively). Microvessel density and cell proliferation were significantly reduced in the ZD6474 and combined treatment groups (P<0.02). Immunohistochemistry of tumor samples following treatment with ZD6474 resulted in a reduction of the activated and phosphorylated epidermal growth factor receptor, whereas total epidermal growth factor receptor levels were comparable with control tumors. On the basis of Western blot analysis, ZD6474 provides inhibition of tumor angiogenesis through an anti-vascular endothelial growth factor receptor-2 mechanism and inhibition of cancer cell growth through an anti-epidermal growth factor receptor mechanism. ZD6474 decreased primary pancreatic tumor growth and reduced lymph node and liver metastases compared with controls or gemcitabine alone. Tumor growth was inhibited further in animals receiving ZD6474 and gemcitabine in combination. Topics: Angiogenesis Inhibitors; Animals; Antimetabolites, Antineoplastic; Antineoplastic Agents; Blotting, Western; Cell Line, Tumor; Deoxycytidine; Enzyme Inhibitors; Gemcitabine; Humans; Immunohistochemistry; Mice; Mice, Nude; Neoplasm Metastasis; Neoplasm Transplantation; Pancreatic Neoplasms; Piperidines; Quinazolines; Regional Blood Flow; Signal Transduction; Skin; Transplantation, Heterologous; Vascular Endothelial Growth Factor Receptor-2 | 2007 |
American Society of Clinical Oncology--43rd annual meeting. Research into therapeutics: Part 3.
Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Axitinib; Bevacizumab; Biomedical Research; Breast Neoplasms; Cetuximab; Clinical Trials as Topic; Colorectal Neoplasms; Deoxycytidine; Female; Gemcitabine; Humans; Imidazoles; Indazoles; Male; Molecular Structure; Neoplasms; Organoplatinum Compounds; Pancreatic Neoplasms; Piperidines; Prednisolone; Prostatic Neoplasms; Quinazolines; Treatment Outcome | 2007 |
Cannabinoid derivatives induce cell death in pancreatic MIA PaCa-2 cells via a receptor-independent mechanism.
Cannabinoids (CBs) are implicated in the control of cell survival in different types of tumors, but little is known about the role of CB system in pancreatic cancer. Herein, we investigated the in vitro antitumor activity of CBs and the potential role of their receptors in human pancreatic cancer cells MIA PaCa-2. Characterization tools used for this study included growth inhibition/cell viability analyses, caspase 3/7 induction, DNA fragmentation, microarray analysis and combination index-isobologram method. Our results demonstrate that CBs produce a significant cytotoxic effect via a receptor-independent mechanism. The CB1 antagonist N-(piperidin-1-1yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) was the most active compound with an IC50 of 8.6 +/- 1.3 microM after 72 h. AM251 induces apoptosis, causes transcriptional changes of genes in janus kinase/signal transducers and activators of transcription signaling network and synergistically interacts with the pyrimidine analogue, 5-fluorouracil. These findings exclude the involvement of CB receptors in the regulation of MIA PaCa-2 cell growth and put AM251 forward as a candidate for the development of novel compounds worthy to be tested in this type of neoplasia. Topics: Antineoplastic Agents; Apoptosis; Cannabinoids; Cell Line, Tumor; Cell Proliferation; Humans; Inhibitory Concentration 50; Pancreatic Neoplasms; Piperidines; Pyrazoles; Receptors, Cannabinoid | 2006 |
Synergistic antitumor activity of ZD6474, an inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling, with gemcitabine and ionizing radiation against pancreatic cancer.
Standard treatments have modest effect against pancreatic cancer, and current research focuses on agents targeting molecular pathways involved in tumor growth and angiogenesis. This study investigated the interactions between ZD6474, an inhibitor of tyrosine kinase activities of vascular endothelial growth factor receptor-2 and epidermal growth factor receptor (EGFR), gemcitabine, and ionizing radiation in human pancreatic cancer cells and analyzed the molecular mechanisms underlying this combination.. ZD6474, ionizing radiation, and gemcitabine, alone or in combination, were given in vitro to MIA PaCa-2, PANC-1, and Capan-1 cells and in vivo to MIA PaCa-2 tumor xenografts. The effects of treatments were studied by the evaluation of cytotoxicity, apoptosis, cell cycle, EGFR and Akt phosphorylation, modulation of gene expression of enzymes related to gemcitabine activity (deoxycytidine kinase and ribonucleotide reductase), as well as vascular endothelial growth factor immunohistochemistry and microvessel count.. In vitro, ZD6474 dose dependently inhibited cell growth, induced apoptosis, and synergistically enhanced the cytotoxic activity of gemcitabine and ionizing radiation. Moreover, ZD6474 inhibited phosphorylation of EGFR and Akt and triggered cell apoptosis. PCR analysis showed that ZD6474 increased the ratio between gene expression of deoxycytidine kinase and ribonucleotide reductase. In vivo, ZD6474 showed significant antitumor activity alone and in combination with radiotherapy and gemcitabine, and the combination of all three modalities enhanced MIA PaCA-2 tumor growth inhibition compared with gemcitabine alone.. ZD6474 decreases EGFR and Akt phosphorylation, enhances apoptosis, favorably modulates gene expression in cancer cells, and acts synergistically with gemcitabine and radiotherapy to inhibit tumor growth. These findings support the investigation of this combination in the clinical setting. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Combined Modality Therapy; Deoxycytidine; Deoxycytidine Kinase; Disease Models, Animal; Dose-Response Relationship, Radiation; Drug Screening Assays, Antitumor; Drug Synergism; ErbB Receptors; Female; Gemcitabine; Gene Expression Profiling; Humans; Mice; Mice, Nude; Pancreatic Neoplasms; Phosphorylation; Piperidines; Polymerase Chain Reaction; Predictive Value of Tests; Quinazolines; Radiation, Ionizing; Receptors, Vascular Endothelial Growth Factor; Signal Transduction; Transplantation, Heterologous | 2006 |
Involvement of the neurotensin receptor subtype NTR3 in the growth effect of neurotensin on cancer cell lines.
The expression of the 3 currently known neurotensin receptors was studied in human cancer cells of prostatic, colonic or pancreatic origin by means of RT-PCR analysis and binding experiments. All the cells selected for this work have been shown to exhibit a growth response to neurotensin. We found that the 7 transmembrane domain, levocabastine insensitive receptor (NTR1) is expressed in most but not all of the cells studied whereas the 7 transmembrane domain, levocabastine sensitive receptor (NTR2) is present in none of these cells. The 100 kDa-type I neurotensin receptor (NTR3) is expressed in all the cells assayed. Moreover, we demonstrated that neurotensin can stimulate the growth of CHO cells stably transfected with the NTR3. Taken together, our results strongly suggest that the NTR3 subtype could be involved in the growth response of human cancer cells to neurotensin. Topics: Animals; Cell Membrane; CHO Cells; Cholic Acids; Colonic Neoplasms; Cricetinae; Drug Resistance, Neoplasm; Electrophoresis, Polyacrylamide Gel; Humans; Kinetics; Male; Neurotensin; Pancreatic Neoplasms; Piperidines; Prostatic Neoplasms; Protein Binding; Protein Structure, Tertiary; Receptors, Neurotensin; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors; Transfection; Tumor Cells, Cultured | 2001 |
Combination therapy with the farnesyl protein transferase inhibitor SCH66336 and SCH58500 (p53 adenovirus) in preclinical cancer models.
SCH66336 is a p.o.-active, farnesyl protein transferase inhibitor. SCH66336 inhibits farnesylation of RAS and other proteins in tumor cells and suppresses tumor growth in human xenograft and transgenic mouse cancer models in vivo. SCH58500 is a replication-deficient, recombinant adenovirus, which expresses the human p53 tumor suppressor. In preclinical models, SCH58500 has therapeutic efficacy against a wide range of human tumor types containing nonfunctional p53 and enhanced activity in combination with many chemotherapeutic drugs. Here we report that combination therapy with SCH66336 and SCH58500 has synergistic or additive antiproliferative effects on a panel of tumor cells lines in vitro. The efficacy of the three-drug combination of SCH66336, SCH58500, and paclitaxel was also examined in vitro. Each two-drug interaction displayed such marked synergy, the addition of a third drug to the statistical model could only yield additivity. Greater combined efficacy for SCH66336 and SCH58500 was also observed in vivo in the DU-145 human prostate and wap-ras/F transgenic mouse cancer models. Topics: Adenocarcinoma; Adenoviruses, Human; Alkyl and Aryl Transferases; Animals; Antineoplastic Combined Chemotherapy Protocols; Breast Neoplasms; Cell Survival; Drug Synergism; Female; Genes, ras; Humans; Male; Mice; Mice, Nude; Mice, SCID; Mice, Transgenic; Ovarian Neoplasms; Paclitaxel; Pancreatic Neoplasms; Piperidines; Prostatic Neoplasms; Pyridines; Teratocarcinoma; Tumor Cells, Cultured; Tumor Suppressor Protein p53 | 1999 |
Inhibition of insulin production by cyproheptadine in RINm5F rat insulinoma cells.
The clonal insulin producing cell line RINm5F was evaluated as a model for the action of cyproheptadine (CPH)-like diabetogenic compounds in the rat pancreas. Treatment with 10 microM CPH and selected structural analogs under culture conditions produced a progressive loss of cellular insulin which reached 30% of control within 24 hours. Comparison of the activities of the analogs 4-diphenylmethylpiperidine (4-DPMP) and 2-diphenylmethylpiperidine (2-DPMP) to produce cellular insulin depletion showed that 4-DPMP was as active as CPH but 2-DPMP had no activity at the highest concentration employed (10 microM). The CPH metabolite desmethyl CPH-epoxide was five times more active than the parent compound in producing loss of insulin in RINm5F cells. These results are consistent with previously published results of CPH actions in vivo. An inhibition of insulin biosynthesis with no loss of preproinsulin mRNA occurred in RINm5F cells treated with CPH or DMCPH-epoxide. This suggests that an effect on transcription may not be the primary action by which CPH and its analogs inhibit insulin synthesis in vivo. Topics: Animals; Blotting, Northern; Cyproheptadine; DNA; Indicators and Reagents; Insulin; Insulinoma; Pancreatic Neoplasms; Piperidines; Rats; RNA, Messenger; Tumor Cells, Cultured | 1993 |
Acetylcholine regulates pancreastatin secretion from the human pancreastatin-producing cell line (QGP-1N).
Studies were made of pancreastatin (PST) secretion from a human PST-producing cell line (QGP-1N) in response to various secretagogues. Cells with immunoreactivity for PST were observed in monolayer cultures of QGP-1N cells. Carbachol stimulated PST secretion and the intracellular Ca2+ mobilization concentration dependently in the range of 10(-6)-10(-4) M. The PST secretion and Ca2+ mobilization induced by carbachol were inhibited by atropine. The calcium ionophore (A23187) stimulated PST secretion. However, cholecystokinin and gastrin-releasing peptide did not stimulate either PST secretion or Ca2+ mobilization. Secretin also did not stimulate PST secretion. The glucose concentration in the culture medium had no effect on PST secretion. These results suggest that PST secretion is mainly regulated by acetylcholine through a muscarinic receptor, and that an increase in intracellular Ca2+ plays an important role in stimulus-secretion coupling in QGP-1N cells. Topics: Acetylcholine; Adenoma, Islet Cell; Atropine; Calcimycin; Calcium; Carbachol; Chromogranin A; Gastrin-Releasing Peptide; Humans; Pancreatic Hormones; Pancreatic Neoplasms; Parasympatholytics; Peptides; Piperidines; Pirenzepine; Receptors, Muscarinic; Sincalide; Tumor Cells, Cultured | 1991 |
Loperamide therapy in a child with vipoma-associated diarrhoea.
Topics: Adenoma, Islet Cell; Diarrhea, Infantile; Female; Humans; Infant; Loperamide; Pancreatic Neoplasms; Piperidines; Vipoma | 1982 |