piperidines has been researched along with Neuralgia* in 100 studies
2 review(s) available for piperidines and Neuralgia
Article | Year |
---|---|
Glycine transporter inhibitors: A new avenue for managing neuropathic pain.
Interneurons operating with glycine neurotransmitter are involved in the regulation of pain transmission in the dorsal horn of the spinal cord. In addition to interneurons, glycine release also occurs from glial cells neighboring glutamatergic synapses in the spinal cord. Neuronal and glial release of glycine is controlled by glycine transporters (GlyTs). Inhibitors of the two isoforms of GlyTs, the astrocytic type-1 (GlyT-1) and the neuronal type-2 (GlyT-2), decrease pain sensation evoked by injuries of peripheral sensory neurons or inflammation. The function of dorsal horn glycinergic interneurons has been suggested to be reduced in neuropathic pain, which can be reversed by GlyT-2 inhibitors (Org-25543, ALX1393). Several lines of evidence also support that peripheral nerve damage or inflammation may shift glutamatergic neurochemical transmission from N-methyl-D aspartate (NMDA) NR1/NR2A receptor- to NR1/NR2B receptor-mediated events (subunit switch). This pathological overactivation of NR1/NR2B receptors can be reduced by GlyT-1 inhibitors (NFPS, Org-25935), which decrease excessive glycine release from astroglial cells or by selective antagonists of NR2B subunits (ifenprodil, Ro 25-6981). Although several experiments suggest that GlyT inhibitors may represent a novel strategy in the control of neuropathic pain, proving this concept in human beings is hampered by lack of clinically applicable GlyT inhibitors. We also suggest that drugs inhibiting both GlyT-1 and GlyT-2 non-selectively and reversibly, may favorably target neuropathic pain. In this paper we overview inhibitors of the two isoforms of GlyTs as well as the effects of these drugs in experimental models of neuropathic pain. In addition, the possible mechanisms of action of the GlyT inhibitors, i.e. how they affect the neurochemical and pain transmission in the spinal cord, are also discussed. The growing evidence for the possible therapeutic intervention of neuropathic pain by GlyT inhibitors further urges development of drugable compounds, which may beneficially restore impaired pain transmission in various neuropathic conditions. Topics: Animals; Glycine; Glycine Plasma Membrane Transport Proteins; Humans; Hyperalgesia; Neuralgia; Neuroglia; Neurons; Phenols; Piperidines; Receptors, N-Methyl-D-Aspartate; Serine; Spinal Cord Dorsal Horn; Synapses; Synaptic Transmission | 2019 |
[Alpha2-adrenergic receptors in the dorsal horn of the spinal cord--their function and the descending inhibitory systems].
Topics: Acetylcholine; Adrenergic alpha-2 Receptor Agonists; Amines; Analgesics; Animals; Brain-Derived Neurotrophic Factor; Chronic Disease; Clonidine; Cyclohexanecarboxylic Acids; Donepezil; Drug Therapy, Combination; Gabapentin; gamma-Aminobutyric Acid; Humans; Indans; Neuralgia; Norepinephrine; Piperidines; Posterior Horn Cells; Receptors, Adrenergic, alpha-2; Receptors, Muscarinic | 2007 |
2 trial(s) available for piperidines and Neuralgia
Article | Year |
---|---|
Cell cycle inhibition limits development and maintenance of neuropathic pain following spinal cord injury.
Chronic pain after spinal cord injury (SCI) may present as hyperalgesia, allodynia, and/or spontaneous pain and is often resistant to conventional pain medications. Identifying more effective interventions to manage SCI pain requires improved understanding of the pathophysiological mechanisms involved. Cell cycle activation (CCA) has been implicated as a key pathophysiological event following SCI. We have shown that early central or systemic administration of a cell cycle inhibitor reduces CCA, prevents glial changes, and limits SCI-induced hyperesthesia. Here, we compared the effects of early vs late treatment with the pan-cyclin-dependent kinase inhibitor flavopiridol on allodynia as well as spontaneous pain. Adult C57BL/6 male mice subjected to moderate SCI were treated with intraperitoneal injections of flavopiridol (1 mg/kg), daily for 7 days beginning either 3 hours or 5 weeks after injury. Mechanical/thermal allodynia was evaluated, as well as spontaneous pain using the mouse grimace scale (MGS). We show that sensitivity to mechanical and thermal stimulation, and locomotor dysfunction were significantly reduced by early flavopiridol treatment compared with vehicle-treated controls. Spinal cord injury caused robust and extended increases of MGS up to 3 weeks after trauma. Early administration of flavopiridol significantly shortened duration of MGS changes. Late flavopiridol intervention significantly limited hyperesthesia at 7 days after treatment, associated with reduced glial changes, but without effect on locomotion. Thus, our data suggest that cell cycle modulation may provide an effective therapeutic strategy to reduce hyperesthesia after SCI, with a prolonged therapeutic window. Topics: Animals; Calcium-Binding Proteins; Cell Cycle; Cell Cycle Proteins; Cell Movement; Disease Models, Animal; Facial Expression; Flavonoids; Ganglia, Spinal; Gene Expression Regulation; Hyperalgesia; Locomotion; Male; Mice; Mice, Inbred C57BL; Microfilament Proteins; Nerve Tissue Proteins; Neuralgia; Pain Measurement; Piperidines; Protein Kinase Inhibitors; Spinal Cord Injuries; Statistics, Nonparametric | 2016 |
Donepezil provides positive effects to patients treated with gabapentin for neuropathic pain: an exploratory study.
The first-line medication gabapentin and the acetylcholinesterase inhibitor donepezil represent a new promising combination to improve treatment outcomes for patients with severe neuropathic pain. The drugs have previously shown synergism following co-administration in nerve-injured rats.. The clinical relevance of adding donepezil to existing gabapentin treatment in patients with post-traumatic neuropathic pain was explored in this open-label study. The study comprised two consecutive periods of minimum 6 weeks: (1) titration of gabapentin to the highest tolerable dose or maximum 2400 mg daily, and (2) addition of donepezil 5 mg once daily to the fixed gabapentin dose. Efficacy and tolerability were assessed by ratings of pain intensity, questionnaires for pain and health-related quality of life, and reporting of adverse events. Pain scores were also analysed using mixed-effects analysis with the software NONMEM to account for intersubject variability.. Eight patients commenced treatment with donepezil, of which two withdrew because of adverse events. Addition of donepezil resulted in clinically relevant reductions of pain (> 11 units on a 0-100 scale) and improved mental wellness in three of six patients. The remaining three patients had no obvious supplemental effect. Mixed-effects analysis revealed that pain scores were significantly lower during co-administration (P < 0.0001 combination vs. monotherapy).. Donepezil may provide additional analgesia to neuropathic pain patients with insufficient pain relief from gabapentin as monotherapy. The promising results support controlled clinical trials of the drug combination. The usefulness of mixed-effects analysis in small-scale trials and/or for data with high intersubject variability was also demonstrated. Topics: Adult; Aged; Algorithms; Amines; Analgesics; Cyclohexanecarboxylic Acids; Cyclohexanols; Donepezil; Drug Therapy, Combination; Female; Gabapentin; gamma-Aminobutyric Acid; Humans; Indans; Male; Middle Aged; Neuralgia; Neuroprotective Agents; Pain Measurement; Piperidines; Quality of Life; Sample Size; Venlafaxine Hydrochloride | 2014 |
96 other study(ies) available for piperidines and Neuralgia
Article | Year |
---|---|
Corydecumine G inhibits microglia activation via MAPK pathway in a rat model of neuropathic pain.
Microglial activation plays an important role in the onset and progression of neuropathic pain by producing a variety of pro-inflammatory cytokines that interact with neurons to enhance neuronal hyperexcitability. Corydalis decumbens (Thunb.) pers., a traditional Chinese medicine has been used to treat mild cancer pain, dementia and to remit cerebral ischemia in clinics. Phenylphthalide isoquinolines are the major type of metabolites of C. decumbens and one of the derivatives, Corydecumine G (Cor G) has been shown to inhibit neuronal excitability. The present study aims to investigate the analgesic efficacy of Cor G in neuropathic pain rat model, the effects of Cor G on microglia activation and the possible mechanisms.. Neuropathic pain was modeled using chronic constriction sciatic nerve injury (CCI) in rats. Western blot, immunofluorescence, and qRT-PCR were used to evaluate the levels of protein and mRNA.. Taken together, we suggest that Cor G, the specific phthalide isoquinoline from traditional Chinese medicine Corydalis Decumbentis Rhizoma, may be promising for treatment of neuropathic pain. Topics: Animals; Hyperalgesia; MAP Kinase Signaling System; Microglia; Neuralgia; p38 Mitogen-Activated Protein Kinases; Piperidines; Rats; Rats, Sprague-Dawley; Spinal Cord; Tumor Necrosis Factor-alpha | 2022 |
EETs/sEHi alleviates nociception by blocking the crosslink between endoplasmic reticulum stress and neuroinflammation in a central poststroke pain model.
Central post-stroke pain (CPSP) is a chronic and intolerable neuropathic pain syndrome following a cerebral vascular insult, which negatively impacts the quality of life of stroke survivors but currently lacks efficacious treatments. Though its underlying mechanism remains unclear, clinical features of hyperalgesia and allodynia indicate central sensitization due to excessive neuroinflammation. Recently, the crosslink between neuroinflammation and endoplasmic reticulum (ER) stress has been identified in diverse types of diseases. Nevertheless, whether this interaction contributes to pain development remains unanswered. Epoxyeicosatrienoic acids (EETs)/soluble epoxy hydrolase inhibitors (sEHi) are emerging targets that play a significant role in pain and neuroinflammatory regulation. Moreover, recent studies have revealed that EETs are effective in attenuating ER stress. In this study, we hypothesized that ER stress around the stroke site may activate glial cells and lead to further inflammatory cascades, which constitute a positive feedback loop resulting in central sensitization and CPSP. Additionally, we tested whether EETs/sEHi could attenuate CPSP by suppressing ER stress and neuroinflammation, as well as their vicious cycle, in a rat model of CPSP.. Young male SD rats were used to induce CPSP using a model of thalamic hemorrhage and were then treated with TPPU (sEHi) alone or in combination with 14,15-EET or 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, the EET antagonist), tunicamycin (Tm, ER stress inducer), or 4-PBA (ER stress inhibitor). Nociceptive behaviors, ER stress markers, JNK and p38 (two well-recognized inflammatory kinases of mitogen-activated protein kinase (MAPK) signaling) expression, and glial cell activation were assessed. In addition, some healthy rats were intrathalamically microinjected with Tm or lipopolysaccharide (LPS) to test the interaction between ER stress and neuroinflammation in central pain.. Analysis of the perithalamic lesion tissue from the brain of CPSP rats demonstrated decreased soluble epoxy hydrolase (sEH) expression, which was accompanied by increased expression of ER stress markers, including BIP, p-IRE, p-PERK, and ATF6. In addition, inflammatory kinases (p-p38 and p-JNK) were upregulated and glial cells were activated. Intrathalamic injection of sEHi (TPPU) increased the paw withdrawal mechanical threshold (PWMT), reduced hallmarks of ER stress and MAPK signaling, and restrained the activation of microglia and astrocytes around the lesion site. However, the analgesic effect of TPPU was completely abolished by 14,15-EEZE. Moreover, microinjection of Tm into the thalamic ventral posterior lateral (VPL) nucleus of healthy rats induced mechanical allodynia and activated MAPK-mediated neuroinflammatory signaling; lipopolysaccharide (LPS) administration led to activation of ER stress along the injected site in healthy rats.. The present study provides evidence that the interaction between ER stress and neuroinflammation is involved in the mechanism of CPSP. Combined with the previously reported EET/sEHi effects on antinociception and neuroprotection, therapy with agents that target EET signaling may serve as a multi-functional approach in central neuropathic pain by attenuating ER stress, excessive neuroinflammation, and subsequent central sensitization. The use of these agents within a proper time window could not only curtail further nerve injury but also produce an analgesic effect. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Endoplasmic Reticulum Stress; Epoxide Hydrolases; Male; Neuralgia; Neuroinflammatory Diseases; Nociception; Phenylurea Compounds; Piperidines; Rats; Rats, Sprague-Dawley; Stroke; Vasodilator Agents | 2021 |
Optimization of bifunctional piperidinamide derivatives as σ
Topics: Acetic Acid; Amides; Animals; Behavior, Animal; Dose-Response Relationship, Drug; Formaldehyde; Guinea Pigs; Mice; Mice, Inbred ICR; Molecular Dynamics Simulation; Molecular Structure; Neuralgia; Pain Measurement; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Receptors, sigma; Sigma-1 Receptor; Structure-Activity Relationship | 2021 |
Ifenprodil Reduced Expression of Activated Microglia, BDNF and DREAM Proteins in the Spinal Cord Following Formalin Injection During the Early Stage of Painful Diabetic Neuropathy in Rats.
The pharmacological inhibition of glial activation is one of the new approaches for combating neuropathic pain in which the role of glia in the modulation of neuropathic pain has attracted significant interest and attention. Neuron-glial crosstalk is achieved with N-methyl-D-aspartate-2B receptor (NMDAR-2B) activation. This study aims to determine the effect of ifenprodil, a potent noncompetitive NMDAR-2B antagonist, on activated microglia, brain-derived neurotrophic factors (BDNF) and downstream regulatory element antagonist modulator (DREAM) protein expression in the spinal cord of streptozotocin-induced painful diabetic neuropathy (PDN) rats following formalin injection. In this experimentation, 48 Sprague-Dawley male rats were randomly selected and divided into four groups: (n = 12): control, PDN, and ifenprodil-treated PDN rats at 0.5 μg or 1.0 μg for 7 days. Type I diabetes mellitus was then induced by injecting streptozotocin (60 mg/kg, i.p.) into the rats which were then over a 2-week period allowed to progress into the early phase of PDN. Ifenprodil was administered in PDN rats while saline was administered intrathecally in the control group. A formalin test was conducted during the fourth week to induce inflammatory nerve injury, in which the rats were sacrificed at 72 h post-formalin injection. The lumbar enlargement region (L4-L5) of the spinal cord was dissected for immunohistochemistry and western blot analyses. The results demonstrated a significant increase in formalin-induced flinching and licking behavior with an increased spinal expression of activated microglia, BDNF and DREAM proteins. It was also shown that the ifenprodil-treated rats following both doses reduced the extent of their flinching and duration of licking in PDN in a dose-dependent manner. As such, ifenprodil successfully demonstrated inhibition against microglia activation and suppressed the expression of BDNF and DREAM proteins in the spinal cord of PDN rats. In conclusion, ifenprodil may alleviate PDN by suppressing spinal microglia activation, BDNF and DREAM proteins. Topics: Animals; Brain-Derived Neurotrophic Factor; Diabetic Neuropathies; Formaldehyde; Kv Channel-Interacting Proteins; Male; Microglia; Nerve Tissue Proteins; Neuralgia; Piperidines; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Repressor Proteins; Spinal Cord | 2021 |
Comparison of morphine, oxycodone and the biased MOR agonist SR-17018 for tolerance and efficacy in mouse models of pain.
The mu opioid receptor-selective agonist, SR-17018, preferentially activates GTPγS binding over βarrestin2 recruitment in cellular assays, thereby demonstrating signaling bias. In mice, SR-17018 stimulates GTPγS binding in brainstem and produces antinociception with potencies similar to morphine. However, it produces much less respiratory suppression and mice do not develop antinociceptive tolerance in the hot plate assay upon repeated dosing. Herein we evaluate the effects of acute and repeated dosing of SR-17018, oxycodone and morphine in additional models of pain-related behaviors. In the mouse warm water tail immersion assay, an assessment of spinal reflex to thermal nociception, repeated administration of SR-17018 produces tolerance as does morphine and oxycodone. SR-17018 retains efficacy in a formalin-induced inflammatory pain model upon repeated dosing, while oxycodone does not. In a chemotherapeutic-induced neuropathy pain model SR-17018 is more potent and efficacious than morphine or oxycodone, moreover, this efficacy is retained upon repeated dosing of SR-17018. These findings demonstrate that, with the exception of the tail flick test, SR-17018 retains efficacy upon chronic treatment across several pain models. Topics: Analgesics, Opioid; Animals; Benzimidazoles; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Tolerance; Female; Infusion Pumps, Implantable; Male; Mice; Mice, Inbred C57BL; Mice, Inbred DBA; Morphine; Neuralgia; Oxycodone; Pain Measurement; Piperidines; Receptors, Opioid, mu; Treatment Outcome | 2021 |
Inhibitory effect of intrathecally administered AM404, an endocannabinoid reuptake inhibitor, on neuropathic pain in a rat chronic constriction injury model.
The endocannabinoid system modulates a wide variety of pain conditions. Systemically administered AM404, an endocannabinoid reuptake inhibitor, exerts antinociceptive effects via activation of the endocannabinoid system. However, the mechanism and site of AM404 action are not fully understood. Here, we explored the effect of AM404 on neuropathic pain at the site of the spinal cord.. Male Sprague-Dawley rats were subjected to chronic constriction injury (CCI) of the sciatic nerve. The effects of intrathecal administration of AM404 on mechanical and cold hyperalgesia were examined using the electronic von Frey test and cold plate test, respectively. Motor coordination was assessed using the rotarod test. To understand the mechanisms underlying the action of AM404, we tested the effects of pretreatment with the cannabinoid type 1 (CB. AM404 attenuated mechanical and cold hyperalgesia with minimal effects on motor coordination. AM251 significantly inhibited the antihyperalgesic action of AM404, whereas capsazepine showed a potentiating effect.. These results indicate that AM404 exerts antihyperalgesic effects primarily via CB Topics: Animals; Arachidonic Acids; Capsaicin; Constriction; Disease Models, Animal; Endocannabinoids; Hyperalgesia; Indoles; Male; Neuralgia; Pain Measurement; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rotarod Performance Test; Spinal Cord; TRPV Cation Channels | 2021 |
Structure-Activity Relationship of Heterocyclic P2Y
A known zwitterionic, heterocyclic P2Y Topics: Animals; Binding Sites; Disease Models, Animal; Drug Design; Humans; Mice; Molecular Docking Simulation; Molecular Dynamics Simulation; Neuralgia; Piperidines; Prodrugs; Purinergic P2 Receptor Antagonists; Receptors, Purinergic P2; Solubility; Structure-Activity Relationship; Triazoles | 2021 |
Cannabidiol in the prelimbic cortex modulates the comorbid condition between the chronic neuropathic pain and depression-like behaviour in rats: The role of medial prefrontal cortex 5-HT
Topics: Animals; Cannabidiol; Chronic Disease; Cobalt; Depression; Limbic System; Microinjections; Neuralgia; Piperazines; Piperidines; Prefrontal Cortex; Pyrazoles; Pyridines; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Serotonin, 5-HT1A; Sciatica; Serotonin 5-HT1 Receptor Antagonists; Swimming; Synapses | 2021 |
Piperidine propionamide as a scaffold for potent sigma-1 receptor antagonists and mu opioid receptor agonists for treating neuropathic pain.
Topics: Amides; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Formaldehyde; Guinea Pigs; Injections, Subcutaneous; Mice; Mice, Inbred ICR; Molecular Structure; Neuralgia; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Receptors, sigma; Sciatic Nerve; Sigma-1 Receptor; Structure-Activity Relationship | 2020 |
ASP8477, a fatty acid amide hydrolase inhibitor, exerts analgesic effects in rat models of neuropathic and dysfunctional pain.
Exogenous cannabinoid receptor agonists are clinically effective for treating chronic pain but frequently cause side effects in the central nervous system. Fatty acid amide hydrolase (FAAH) is a primary catabolic enzyme for anandamide, an endogenous cannabinoid agonist. 3-Pyridyl 4-(phenylcarbamoyl)piperidine-1-carboxylate (ASP8477) is a potent and selective FAAH inhibitor that is orally active and able to increase the brain anandamide level and is effective in rat models of neuropathic and osteoarthritis pain without causing motor coordination deficits. In the present study, we examined the pharmacokinetics and pharmacodynamics, analgesic spectrum in pain models, and the anti-nociceptive mechanism of ASP8477. Single and four-week repeated oral administration of ASP8477 ameliorated mechanical allodynia in spinal nerve ligation rats with similar improvement rates. Further, single oral administration of ASP8477 improved thermal hyperalgesia and cold allodynia in chronic constriction nerve injury rats. ASP8477 also restored muscle pressure thresholds in reserpine-induced myalgia rats. This analgesic effect of ASP8477 persisted for at least 4 h, consistent with the inhibitory effect observed in an ex vivo study using rat brain as well as the increasing effect on oleoylethanolamide and palmitoylethanolamide levels but not the ASP8477 concentration in rat brain. ASP8477 also improved α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-, N-methyl-D-aspartic acid (NMDA)-, prostaglandin E Topics: Amides; Amidohydrolases; Analgesics; Animals; Behavior, Animal; Brain; Chronic Pain; Disease Models, Animal; Enzyme Inhibitors; Ethanolamines; Male; Neuralgia; Oleic Acids; Pain Threshold; Palmitic Acids; Piperidines; Pyridines; Rats, Sprague-Dawley | 2020 |
Peripheral deficiency and antiallodynic effects of 2-arachidonoyl glycerol in a mouse model of paclitaxel-induced neuropathic pain.
Modulation of the endocannabinoid system has been shown to alleviate neuropathic pain. The aim of this study was to evaluate if treatment with paclitaxel, a chemotherapeutic agent that induces neuropathic pain, affects endocannabinoid levels at a time when mice develop paclitaxel-induced mechanical allodynia. We also evaluated the peripheral antiallodynic activity of the endocannabinoid 2-arachidonoyl glycerol (2-AG) and an inhibitor of monoacylglycerol lipase (MAGL), an enzyme responsible for 2-AG hydrolysis.. Female BALB/c mice were treated intraperitoneally with paclitaxel to induce mechanical allodynia. Levels of the endocannabinoids, N-arachidonoylethanolamine (anandamide, AEA), 2-AG, and the N-acylethanolamines (NAEs), N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), which are structurally-related to AEA, in the brain, spinal cord and paw skin were measured using LC-MS/MS. Protein expression of MAGL in the paw skin was measured using Wes™. The effects of subcutaneous (s.c.) injection of 2-AG and JZL184 (a MAGL inhibitor) into the right hind paw of mice with paclitaxel-induced mechanical allodynia were assessed using the dynamic plantar aesthesiometer. The effects of pretreatment, s.c., into the right hind paw, with cannabinoid type 1 (CB. The levels of 2-AG were reduced only in the paw skin of paclitaxel-treated mice, whilst the levels of AEA, PEA and OEA were not significantly altered. There was no change in the expression of MAGL in the paw skin. Administration of 2-AG and JZL184 produced antiallodynic effects against paclitaxel-induced mechanical allodynia in the injected right paw, but did not affect the uninjected left paw. The antiallodynic activity of 2-AG was antagonized by both AM251 and AM630.. These results indicate that during paclitaxel-induced mechanical allodynia there is a deficiency of 2-AG in the periphery, but not in the CNS. Increasing 2-AG in the paw by local administration of 2-AG or a MAGL inhibitor, alleviates mechanical allodynia in a CB Topics: Analgesics; Animals; Arachidonic Acids; Benzodioxoles; Cannabinoid Receptor Agonists; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Female; Glycerides; Hyperalgesia; Mice, Inbred BALB C; Monoacylglycerol Lipases; Neuralgia; Paclitaxel; Piperidines; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Skin | 2020 |
Analysis of the effects of a tricyclic antidepressant on secondary sleep disturbance induced by chronic pain in a preclinical model.
Chronic pain and sleep have a bidirectional relationship that promotes a vicious circle making chronic pain more difficult to treat. Therefore, pain and sleep should be treated simultaneously. In our previous study, we suggested that hyperactivation of ascending serotonergic neurons could cause secondary sleep disturbance in chronic pain. This study aimed to demonstrate the effects of a tricyclic antidepressant (amitriptyline) and a selective 5-hydroxy-tryptamine 2A (5-HT2A) antagonist (MDL 100907) that adjust serotonergic transmission, on secondary sleep disturbance induced in a preclinical chronic pain model. We produced a chronic neuropathic pain model by partial sciatic nerve ligation in mice, analyzed their electroencephalogram (EEG) and electromyogram (EMG) using the SleepSign software, and evaluated the sleep condition of the pain model mice after administration of amitriptyline or MDL 100907. Amitriptyline improved thermal hyperalgesia and the amount of sleep, especially non-REM sleep. Time change of normalized power density of δ wave in the nerve ligation group with amitriptyline administration showed a normal pattern that was similar to sham mice. In addition, MDL 100907 normalized sleep condition similar to amitriptyline, without improvement in pain threshold. In conclusion, amitriptyline could improve sleep quantity and quality impaired by chronic pain. 5-HT2A receptor antagonism could partially contribute to this sleep improvement, but is not associated with pain relief. Topics: Amitriptyline; Animals; Antidepressive Agents, Tricyclic; Chronic Pain; Disease Models, Animal; Fluorobenzenes; Male; Mice; Neuralgia; Piperidines; Receptor, Serotonin, 5-HT2A; Serotonin 5-HT2 Receptor Antagonists; Sleep Wake Disorders | 2020 |
Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain.
Clinical studies indicate that cannabidiol (CBD), the primary nonaddictive component of cannabis that interacts with the serotonin (5-HT)1A receptor, may possess analgesic and anxiolytic effects. However, its effects on 5-HT neuronal activity, as well as its impact on models of neuropathic pain are unknown. First, using in vivo single-unit extracellular recordings in rats, we demonstrated that acute intravenous (i.v.) increasing doses of CBD (0.1-1.0 mg/kg) decreased the firing rate of 5-HT neurons in the dorsal raphe nucleus, which was prevented by administration of the 5-HT1A antagonist WAY 100635 (0.3 mg/kg, i.v.) and the TRPV1 antagonist capsazepine (1 mg/kg, i.v.) but not by the CB1 receptor antagonist AM 251 (1 mg/kg, i.v.). Repeated treatment with CBD (5 mg/kg/day, subcutaneously [s.c.], for 7 days) increased 5-HT firing through desensitization of 5-HT1A receptors. Rats subjected to the spared nerve injury model for 24 days showed decreased 5-HT firing activity, mechanical allodynia, and increased anxiety-like behavior in the elevated plus maze test, open-field test, and novelty-suppressed feeding test. Seven days of treatment with CBD reduced mechanical allodynia, decreased anxiety-like behavior, and normalized 5-HT activity. Antiallodynic effects of CBD were fully prevented by capsazepine (10 mg/kg/day, s.c., for 7 days) and partially prevented by WAY 100635 (2 mg/kg/day, s.c., for 7 days), whereas the anxiolytic effect was blocked only by WAY. Overall, repeated treatment with low-dose CBD induces analgesia predominantly through TRPV1 activation, reduces anxiety through 5-HT1A receptor activation, and rescues impaired 5-HT neurotransmission under neuropathic pain conditions. Topics: Action Potentials; Animals; Anxiety; Cannabidiol; Capsaicin; Disease Models, Animal; Exploratory Behavior; Feeding Behavior; Ganglia, Spinal; Hyperalgesia; Lysergic Acid Diethylamide; Male; Maze Learning; Neuralgia; Piperazines; Piperidines; Pyrazoles; Pyridines; Rats; Rats, Wistar; Serotonin; Serotonin Antagonists; Swimming | 2019 |
Cannabinoid Type 2 Receptor System Modulates Paclitaxel-Induced Microglial Dysregulation and Central Sensitization in Rats.
Paclitaxel induces microglial activation and production of proinflammatory mediators in the dorsal horn, which contribute to the development and maintenance of central sensitization and pain behavior. MDA7, 1-([3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-yl]carbonyl) piperidine, is a novel highly selective cannabinoid type 2 (CB2) agonist. We tested the hypothesis that activation of CB2 receptor by MDA7 modulates microglial dysregulation, suppresses the overexpression of brain-derived neurotrophic factor (BDNF) in microglia in the dorsal horn, and attenuates the central sensitization and pain behavior induced by paclitaxel. For 4 consecutice days, groups of rats randomly received saline or 1.0 mg/kg of paclitaxel daily intraperitoneally for a total cumulative dose of 4 mg/kg. MDA7 15 mg/kg intraperitoneally or vehicle were administered 15 min before administering paclitaxel for 4 days and then continued for another 10 days. Behavioral and molecular studies were performed. Paclitaxel induced the expression of CB2 receptors and production of interleukin (IL)-6 in microglia in the dorsal horn. MDA7 attenuated the expression of IL-6 and promoted the expression of IL-10. Paclitaxel induced epigenetic upregulation of IRF8 and P2X purinoceptor 4 (P2X4) in microglia and subsequently increased the expression of alpha isoform of calcium/calmodulin-dependent protein kinase II (CaMKIIα), transcriptional factors p-CREB and ΔFosB, leading to the overproduction of BDNF in microglia. Paclitaxel also upregulated the expression of glutamate receptor subunits GluR1 and NR2B, decreased the expression of K Topics: Animals; Benzofurans; Brain-Derived Neurotrophic Factor; Cannabinoid Receptor Agonists; Central Nervous System Sensitization; Epigenesis, Genetic; Hyperalgesia; Inflammation; Male; Microglia; Neuralgia; Paclitaxel; Piperidines; Random Allocation; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Spinal Cord Dorsal Horn | 2019 |
The bivalent ligand MCC22 potently attenuates hyperalgesia in a mouse model of cisplatin-evoked neuropathic pain without tolerance or reward.
Topics: Analgesics, Opioid; Animals; Antineoplastic Agents; CCR5 Receptor Antagonists; Cisplatin; Disease Models, Animal; Hyperalgesia; Isoquinolines; Male; Mice; Neuralgia; Nociception; Piperidines; Receptors, Opioid, mu | 2019 |
Inhibition of 2-arachydonoylgycerol degradation attenuates orofacial neuropathic pain in trigeminal nerve-injured mice.
Current therapeutics are not effective for orofacial neuropathic pain, and better options are needed. The present study used inferior orbital nerve (ION)-injured mice to investigate the effect of inhibiting monoacylglycerol lipase (MAGL), an enzyme that degrades the major endocannabinoid 2-arachydonoylgycerol (2-AG) in orofacial neuropathic pain. The head-withdrawal threshold to mechanical stimulation of the whisker pad was reduced on days 3, 5, and 7 after ION injury. Injection of JZL184, a selective inhibitor of MAGL, on day 7 after ION injury attenuated the reduction in head-withdrawal threshold at 2 h after administration. Moreover, the numbers of MAGL-immunoreactive neurons in the trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) were significantly greater in ION-injured mice than in sham-operated mice but were reduced after administration of JZL184. The increase in MAGL immunoreactivity suggests that increased 2-AG production is followed by rapid enzymatic degradation of 2-AG. JZL184 inhibited this degradation and thus increased 2-AG concentration in the brain, particularly in the Vc and C1-C2 regions, thus attenuating pain. Our findings suggest that inhibition of 2-AG degradation by MAGL inhibitors is a promising therapeutic option for treatment of orofacial neuropathic pain. Topics: Animals; Arachidonic Acids; Behavior, Animal; Benzodioxoles; Endocannabinoids; Enzyme Inhibitors; Facial Pain; Glycerides; Male; Mice, Inbred C57BL; Monoacylglycerol Lipases; Neuralgia; Piperidines; Trigeminal Nerve Injuries | 2018 |
N-methyl D-aspartate receptor subtype 2B antagonist, Ro 25-6981, attenuates neuropathic pain by inhibiting postsynaptic density 95 expression.
Postsynaptic density-95 (PSD-95) is a synaptic scaffolding protein that plays a crucial role in the development of neuropathic pain. However, the underlying mechanism remains unclear. To address the role of PSD-95 in N-methyl-D-aspartate receptor subtype 2B (NR2B) -mediated chronic pain, we investigated the relationship between PSD-95 activation and NR2B function in the spinal cord, by using a rat model of sciatic nerve chronic constriction injury (CCI). We demonstrate that the expression levels of total PSD-95 and cAMP response element binding protein (CREB), as well as phosphorylated NR2B, PSD-95, and CREB, in the spinal dorsal horn, and the interaction of NR2B with PSD-95 were increased in the CCI animals. Intrathecal injection of the selective NR2B antagonist Ro 25-6981 increased paw withdrawal latency, in a thermal pain assessment test. Moreover, repeated treatment with Ro 25-6981 markedly attenuated the thermal hypersensitivity, and inhibited the CCI-induced upregulation of PSD-95 in the spinal dorsal horn. Furthermore, intrathecal injection of the PSD-95 inhibitor strikingly reversed the thermal and mechanical hyperalgesia. Our results suggest that blocking of NR2B signaling in the spinal cord could be used as a therapeutic candidate for treating neuropathic pain. Topics: Animals; Behavior, Animal; CREB-Binding Protein; Disease Models, Animal; Disks Large Homolog 4 Protein; Hyperalgesia; Injections, Spinal; Male; Neuralgia; Phenols; Phosphorylation; Piperidines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Sciatic Nerve; Signal Transduction; Spinal Cord Dorsal Horn; Up-Regulation | 2018 |
Injecting NMDA and Ro 25-6981 in insular cortex induce neuroplastic changes and neuropathic pain-like behaviour.
Neuropathic pain is associated with abnormal sensitivity of the central nervous system. Although the mechanism underlying the development of sensitization remains to be fully elucidated, recent studies have reported that neuroplastic changes in the pain circuitry may be involved in hypersensitivity associated with neuropathic pain. However, it is difficult to investigate such phenomena in existing animal pain model. Therefore, in this study, we developed a novel animal model - the circuit plasticity reconstruction (CPR) model - to mimic central sensitization associated with neuroplastic changes.. NMDA and Ro 25-6981 were injected into the right insular cortex of Sprague-Dawley rats, while electrical stimulation was delivered to the contralateral hind paw. Mechanical allodynia was tested by von Frey test with up-down method, and neuroplastic changes were confirmed by PSA-NCAM-positive immunostaining.. The mechanical withdrawal threshold of the left hind paw decreased beginning 1 day after CPR modelling and persisted until day 21 comparing to the modified CPR 1 (mod-CPR 1) group (CPR: 91.68 ± 1.8%, mod-CPR 1: 42.71 ± 3.4%, p < 0.001). In contrast, mod-CPR 2 surgery without electrical stimulation did not induce mechanical allodynia. Immunostaining for PSA-NCAM also revealed that neuroplastic changes had occurred in the CPR group.. Our results demonstrated that CPR modelling induced neuroplasticity within the insular cortex, leading to alterations in the neural circuitry and central sensitization.. This article represents that the CPR model can mimic the neuropathic pain derived by neuroplastic changes. Our findings indicate that the CPR model may aid the development of novel therapeutic strategies for neuropathic pain and in elucidating the mechanisms underlying pain induced by central sensitization and neuroplastic changes. Topics: Animals; Central Nervous System Sensitization; Cerebral Cortex; Disease Models, Animal; Electric Stimulation; Excitatory Amino Acid Agonists; Male; N-Methylaspartate; Neural Cell Adhesion Molecule L1; Neuralgia; Neuronal Plasticity; Pain Threshold; Phenols; Piperidines; Rats; Rats, Sprague-Dawley; Sialic Acids | 2018 |
Analgesic effects of a novel pH-dependent μ-opioid receptor agonist in models of neuropathic and abdominal pain.
Recently, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), a newly designed μ-opioid receptor (MOR) agonist with a low pKa, has been shown to produce injury-restricted analgesia in models of inflammatory and postoperative pain, without exhibiting typical opioid side effects. Here, we investigated MOR binding of NFEPP in brain and dorsal root ganglia, pH in injured tissues, and the analgesic efficacy of NFEPP compared with fentanyl in a chronic constriction injury model of neuropathic pain, and in the acetic acid-induced abdominal writhing assay in rats. Binding experiments revealed significantly lower affinity of NFEPP compared with fentanyl at pH 7.4. In vivo, pH significantly dropped both at injured nerves after chronic constriction injury and in the abdominal cavity after acetic acid administration. Intravenous NFEPP as well as fentanyl dose-dependently diminished neuropathy-induced mechanical and heat hypersensitivity, and acetic acid-induced abdominal constrictions. In both models, NFEPP-induced analgesia was fully reversed by naloxone methiodide, a peripherally restricted opioid receptor antagonist, injected at the nerve injury site or into the abdominal cavity. Our results indicate that NFEPP exerts peripheral opioid receptor-mediated analgesia exclusively in damaged tissue in models of neuropathic and abdominal pain. Topics: Abdominal Pain; Animals; Brain; Cell Membrane; Disease Models, Animal; Ganglia, Spinal; Hydrogen-Ion Concentration; Hyperalgesia; Male; Neuralgia; Pain Measurement; Pain Threshold; Piperidines; Protein Binding; Rats; Rats, Wistar; Receptors, Opioid, mu; Statistics, Nonparametric | 2018 |
Effect of mito-TEMPO, a mitochondria-targeted antioxidant, in rats with neuropathic pain.
The therapeutic effects of mitochondria-targeted antioxidants have been demonstrated in many pathological conditions, but their effect on neuropathic pain remains unclear. The objective was to study the therapeutic effects and mechanisms of mito-TEMPO (MT), as a nitroxide conjugated with a triphenylphosphonium moiety, on neuropathic pain in rats. Rats were randomly assigned to sham control (sham), chronic constrictive injury (CCI) or MT treatment groups (sham+MT and CCI+MT). All animals received CCI of the left sciatic nerve except those in the sham group. Overall, 0.7 mg/kg of MT was intraperitoneally injected once daily for 14 consecutive days starting from day 7 after surgery. Mechanical paw withdrawal threshold and thermal paw withdrawal latency were detected to assess pain behavior. Malondialdehyde and reduced glutathione content and total superoxide dismutase activity of serum and spinal cord tissues were estimated to assess oxidative stress levels. Mitochondrial morphology and dynamin-related proteins were used to evaluate mitochondrial function, such as fusion [Mitofusin (Mfn) and optic atrophy 1 gene protein (OPA1)] and fission [dynamin-related protein (DRP1) and Fis1]. Paw withdrawal threshold and thermal paw withdrawal latency were significantly increased in the CCI+MT group compared with the CCI group. The malondialdehyde content was decreased whereas glutathione content and superoxide dismutase activity were increased in the serum of CCI+MT rats. Furthermore, MT substantially attenuated the elevated number and decreased size of mitochondria induced by CCI. Finally, MT significantly increased expressions of Mfn1 and OPA1 and significantly decreased expression of DRP1 and Fis1. The mitochondria-targeted antioxidant MT relieved neuropathic pain induced by CCI by protecting mitochondria against oxidative stress injury. Topics: Analgesics; Animals; Antioxidants; Disease Models, Animal; Ganglia, Spinal; Male; Mitochondria; Neuralgia; Organophosphorus Compounds; Oxidative Stress; Peripheral Nerve Injuries; Piperidines; Random Allocation; Rats, Sprague-Dawley; Sciatic Nerve | 2018 |
Brain-Permeant and -Impermeant Inhibitors of Fatty Acid Amide Hydrolase Synergize with the Opioid Analgesic Morphine to Suppress Chemotherapy-Induced Neuropathic Nociception Without Enhancing Effects of Morphine on Gastrointestinal Transit.
Opioid-based therapies remain a mainstay for chronic pain management, but unwanted side effects limit therapeutic use. We compared efficacies of brain-permeant and -impermeant inhibitors of fatty acid amide hydrolase (FAAH) in suppressing neuropathic pain induced by the chemotherapeutic agent paclitaxel. Paclitaxel produced mechanical and cold allodynia without altering nestlet shredding or marble burying behaviors. We compared FAAH inhibitors that differ in their ability to penetrate the central nervous system for antiallodynic efficacy, pharmacological specificity, and synergism with the opioid analgesic morphine. (3'-(aminocarbonyl)[1,1'-biphenyl]- 3-yl)-cyclohexylcarbamate (URB597), a brain-permeant FAAH inhibitor, attenuated paclitaxel-induced allodynia via cannabinoid receptor 1 (CB Topics: Amidohydrolases; Analgesics, Opioid; Animals; Antineoplastic Agents; Arachidonic Acids; Benzamides; Brain; Cannabinoids; Carbamates; Gastrointestinal Transit; Hyperalgesia; Indoles; Mice; Mice, Inbred C57BL; Morphine; Morpholines; Neuralgia; Nociception; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2018 |
Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice.
Topics: Administration, Oral; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents, Phytogenic; Cannabinoid Receptor Modulators; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Hyperalgesia; Indoles; Male; Neuralgia; Paclitaxel; Pain Threshold; Peripheral Nervous System Diseases; Piperidines; Polycyclic Sesquiterpenes; Pyrazoles; Random Allocation; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Sesquiterpenes; Spinal Cord | 2017 |
Antinociceptive, antiallodynic and antihyperalgesic effects of the 5-HT
NLX-112 (a.k.a. befiradol, F13640) is a drug candidate intended for the treatment of l-DOPA-induced dyskinesia. It is a highly selective serotonin 5-HT. The activity of NLX-112 was tested in mouse models of acute pain (hot plate), tonic pain (intraplantar formalin test), in the oxaliplatin-induced neuropathic pain model of chemotherapy-induced peripheral neuropathy and in the streptozotocin (STZ)-induced model of painful diabetic neuropathy.. NLX-112 may have significant potential for treatment of tonic pain but may be less promising as a candidate for treatment of chemotherapy-induced or diabetic neuropathic pain. Topics: Analgesics; Animals; Antineoplastic Agents; Cyclohexanes; Diabetic Neuropathies; Disease Models, Animal; Dose-Response Relationship, Drug; Formaldehyde; Hot Temperature; Hyperalgesia; Male; Mice; Motor Activity; Neuralgia; Nociceptive Pain; Organoplatinum Compounds; Oxaliplatin; Piperazines; Piperidines; Pyridines; Random Allocation; Receptor, Serotonin, 5-HT1A; Serotonin 5-HT1 Receptor Agonists; Serotonin 5-HT1 Receptor Antagonists; Streptozocin; Touch | 2017 |
Analgesic effects of novel lysophosphatidic acid receptor 5 antagonist AS2717638 in rodents.
Lysophosphatidic acid (LPA) is a bioactive lipid that acts via at least six G protein-coupled receptors, LPA receptors 1-6 (LPA1-6), for various physiological functions. We examined (1) whether LPA5 is involved in pain signaling in the spinal cord; and (2) the pharmacological effects of a novel LPA5 antagonist on intrathecal prostaglandin (PG)- and (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced allodynia, and neuropathic and inflammatory pain in rodents. Intrathecal injection of a selective LPA5 agonist, geranylgeranyl diphosphate, and a non-selective agonist, LPA, induced allodynia in wild type, but not in LPA5 knockout mice. These novel results suggest that LPA5 is important for pain signal transmission in the spinal cord. AS2717638 (6,7-dimethoxy-2-(5-methyl-1,2-benzoxazol-3-yl)-4-(piperidin-1-ylcarbonyl)isoquinolin-1(2H)-one) bound to the LPA-binding site on LPA5 and selectively inhibited LPA-induced cyclic adenosine monophosphate accumulation in human LPA5-but not LPA1-, 2-, or 3-expressing cells. Further, oral administration of AS2717638 inhibited LPA5 agonist-induced allodynia in mice. AS2717638 also significantly improved PGE Topics: Analgesics; Animals; Benzoxazoles; Cells, Cultured; Cyclic AMP; Female; Hyperalgesia; Inflammation; Injections, Spinal; Isoquinolines; Lysophospholipids; Male; Mice, Inbred C57BL; Mice, Knockout; Neuralgia; Pain; Pain Threshold; Piperidines; Polyisoprenyl Phosphates; Rats, Inbred Lew; Rats, Sprague-Dawley; Receptors, Lysophosphatidic Acid | 2017 |
The monoacylglycerol lipase inhibitor KML29 with gabapentin synergistically produces analgesia in mice.
Gabapentin is commonly prescribed for nerve pain but may also cause dizziness, sedation and gait disturbances. Similarly, inhibition of the endogenous cannabinoid enzyme monoacylglycerol lipase (MAGL) has antinociceptive and anti-inflammatory properties but also induces sedation in mice at high doses. To limit these side effects, the present study investigated the analgesic effects of coadministering a MAGL inhibitor with gabapentin.. Mice subjected to the chronic constriction injury model of neuropathic pain were administered the MAGL inhibitor KML29 (1-40 mg·kg. The combination of low-dose KML29:gabapentin additively attenuated mechanical allodynia and synergistically reduced cold allodynia. The CB. These data support the strategy of combining MAGL inhibition with a commonly prescribed analgesic as a therapeutic approach for attenuating neuropathic pain. Topics: Amines; Analgesics; Animals; Benzodioxoles; Cyclohexanecarboxylic Acids; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Drug Tolerance; Enzyme Inhibitors; Gabapentin; gamma-Aminobutyric Acid; Hyperalgesia; Male; Mice; Mice, Inbred C57BL; Monoacylglycerol Lipases; Neuralgia; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; Signal Transduction | 2017 |
Involvement of Spinal PKMζ Expression and Phosphorylation in Remifentanil-Induced Long-Term Hyperalgesia in Rats.
Up-regulation of GluN2B-containing N-methyl-D-aspartate receptors (NMDARs) expression and trafficking is the key mechanism for remifentanil-induced hyperalgesia (RIH), nevertheless, the signaling pathway and pivotal proteins involved in RIH remain equivocal. PKMζ, an isoform of protein kinase C (PKC), maintains pain memory storage in neuropathic pain and inflammatory pain, which plays a parallel role regulated by NMDARs in long-term memory trace. In the present study, Zeta Inhibitory Peptide (ZIP), a PKMζ inhibitor, and a selective GluN2B antagonist Ro-256981 are injected intrathecally before remifentanil infusion (1 μg kg Topics: Animals; Hyperalgesia; Memory, Long-Term; Neuralgia; Phosphorylation; Piperidines; Posterior Horn Cells; Protein Kinase C; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Remifentanil; Spinal Cord; Up-Regulation | 2017 |
Isobolographic Analysis of Drug Combinations With Intrathecal BRL52537 (κ-Opioid Agonist), Pregabalin (Calcium Channel Modulator), AF 353 (P2X3 Receptor Antagonist), and A804598 (P2X7 Receptor Antagonist) in Neuropathic Rats.
Neuropathic pain should be treated with drug combinations exhibiting multiple analgesic mechanisms of action because the mechanism of neuropathic pain involves multiple physiological causes and is mediated by multiple pathways. In this study, we defined the pharmacological interaction of BRL52537 (κ-opioid agonist), pregabalin (calcium channel modulator), AF 353 (P2X3 receptor antagonist), and A804598 (P2X7 receptor antagonist).. Animal models of neuropathic pain were established by spinal nerve ligation (SNL) in male Sprague-Dawley rats, and responses to the mechanical stimulation using von Frey filaments were measured. Drugs were administered by intrathecal route and were examined for antiallodynic effects, and drug interactions were evaluated using isobolographic analysis. The mRNA expression levels of pain-related receptors in each spinal cord or dorsal root ganglion of naïve, SNL, and drug-treated SNL rats were evaluated using real-time polymerase chain reaction.. Intrathecal BRL52537, pregabalin, AF 353, and A804598 produced antiallodynic effects in SNL rats. In the drug combination studies, intrathecal coadministration of BRL52537 with pregabalin or A804598 exhibited synergistic interactions, and other drugs combinations showed additivity. The rank order of potency was observed as follows: BRL52537 + pregabalin > BRL52537 + A804598 > pregabalin + AF 353 > A804598 + pregabalin > BRL52537 + AF 353 > AF 353 + A804598. Real-time polymerase chain reaction indicated that alterations of P2X3 receptor and calcium channel mRNA expression levels were observed, while P2X7 receptor and κ-opioid receptor expression levels were not altered.. These results demonstrated that intrathecal combination of BRL52537, pregabalin, AF 353, and A804598 synergistically or additively attenuated allodynia evoked by SNL, which suggests the possibility to improve the efficacy of single-drug administration. Topics: Analgesics; Animals; Behavior, Animal; Calcium; Calcium Channels; Disease Models, Animal; Drug Combinations; Guanidines; Hyperalgesia; Male; Neuralgia; Pain Threshold; Piperidines; Pregabalin; Purinergic P2X Receptor Antagonists; Pyrrolidines; Quinolines; Rats; Rats, Sprague-Dawley | 2017 |
Donepezil, an Acetylcholinesterase Inhibitor, Can Attenuate Gabapentinoid-Induced Somnolence in Patients with Neuropathic Pain: A Retrospective Chart Review.
Donepezil, an oral acetylcholinesterase inhibitor, is used to treat Alzheimer's disease and reportedly attenuates opioid-induced sedation in patients with cancer pain. Neuropathic pain is often treated with gabapentinoids (pregabalin, gabapentin), but gabapentinoid-induced somnolence sometimes prevents patients from using these agents. We conducted a retrospective chart review of patients with neuropathic pain to examine whether donepezil is useful for gabapentinoid-induced somnolence. We investigated pain severity in 13 patients before and after taking gabapentinoids and donepezil, the degree of gabapentinoid-induced somnolence before and after starting donepezil, and gabapentinoid dose escalation after taking donepezil. Donepezil was started at 3-5 mg/day upon experiencing gabapentinoid-induced somnolence. Likert-scale scores for somnolence (0 = no somnolence; 4 = severe somnolence with stumbling) improved significantly after starting donepezil (before: 2.3 ± 0.9, after: 0.5 ± 0.7; Wilcoxon's signed-rank test, P < .05), resulting in gabapentinoid dose escalation (before: 796.2 ± 564.3 mg, after: 1409.6 ± 526.9 mg; P < .05), which significantly decreased pain intensity (before: 7.4 ± 1.2, after: 5.0 ± 1.3; P < .05). Donepezil could be an alternative to psychostimulants for gabapentinoid-induced somnolence. The analgesic effect of gabapentinoids remained uncompromised by donepezil, which could enhance the dose-dependent analgesic effect of gabapentinoids. Topics: Adult; Aged; Aged, 80 and over; Amines; Cholinesterase Inhibitors; Cyclohexanecarboxylic Acids; Disorders of Excessive Somnolence; Donepezil; Female; Gabapentin; gamma-Aminobutyric Acid; Humans; Indans; Male; Middle Aged; Neuralgia; Pain Measurement; Piperidines; Pregabalin; Retrospective Studies | 2017 |
Use of Posterior Root-Muscle Reflexes in Peripheral Nerve Surgery: A Case Report.
It is well established that a mixed-agent general anesthetic regimen of volatile gas and intravenous anesthetic or total intravenous anesthetic (TIVA) is required to obtain adequate transcranial motor-evoked potentials (TcMEPs) to detect and hopefully prevent injury during brain, spinal cord, and peripheral nerve surgery. But even under ideal general anesthetic conditions, TcMEPs are not always detectable in every muscle monitored, and are prone to anesthetic fade, especially when neuropathic or injured tissue is monitored. TcMEP sensitivity to general anesthesia can be especially problematic during peripheral nerve surgery where there is often only one or a few essential muscles required to provide adequate monitoring; thus, maximum fidelity is essential. However, there is an anesthetic-resistant high-fidelity modality available to successfully monitor the motor component of distant peripheral nerves originating from the cauda equina. Percutaneus transabdominal electrical stimulation elicits a relatively anesthetic-resistant, robust motor response in muscles innervated by cauda equina nerve roots. We report the successful use of posterior root-muscle (PRM) reflex to monitor the decompression of the sciatic nerve at its bifurcation in a 22-year-old female with a history of severe sciatic nerve neuropathic pain and muscle weakness following benign thigh tumor resection. Topics: Anesthesia, General; Anesthetics, General; Decompression, Surgical; Electric Stimulation; Evoked Potentials, Motor; Female; H-Reflex; Humans; Intraoperative Neurophysiological Monitoring; Methyl Ethers; Neuralgia; Neurosurgical Procedures; Piperidines; Propofol; Remifentanil; Sciatica; Sevoflurane; Spinal Nerve Roots; Young Adult | 2016 |
Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model.
While cannabinoids have been proposed as a potential treatment for neuropathic pain, they have limitations. Cannabinoid receptor agonists have good efficacy in animal models of neuropathic pain; they have a poor therapeutic window. Conversely, selective fatty acid amide hydrolase (FAAH) inhibitors that enhance the endocannabinoid system have a better therapeutic window, but lesser efficacy. We examined whether JZL195, a dual inhibitor of FAAH and monacylglycerol lipase (MAGL), could overcome these limitations.. C57BL/6 mice underwent the chronic constriction injury (CCI) model of neuropathic pain. Mechanical and cold allodynia, plus cannabinoid side effects, were assessed in response to systemic drug application.. JZL195 and the cannabinoid receptor agonist WIN55212 produced dose-dependent reductions in CCI-induced mechanical and cold allodynia, plus side effects including motor incoordination, catalepsy and sedation. JZL195 reduced allodynia with an ED50 at least four times less than that at which it produced side effects. By contrast, WIN55212 reduced allodynia and produce side effects with similar ED50s. The maximal anti-allodynic effect of JZL195 was greater than that produced by selective FAAH, or MAGL inhibitors. The JZL195-induced anti-allodynia was maintained during repeated treatment.. These findings suggest that JZL195 has greater anti-allodynic efficacy than selective FAAH, or MAGL inhibitors, plus a greater therapeutic window than a cannabinoid receptor agonist. Thus, dual FAAH/MAGL inhibition may have greater potential in alleviating neuropathic pain, compared with selective FAAH and MAGL inhibitors, or cannabinoid receptor agonists. Topics: Amidohydrolases; Animals; Benzamides; Benzodioxoles; Benzoxazines; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Hyperalgesia; Male; Mice; Monoacylglycerol Lipases; Morpholines; Naphthalenes; Neuralgia; Piperazines; Piperidines | 2016 |
T-type calcium channel blocker Z944 restores cortical synchrony and thalamocortical connectivity in a rat model of neuropathic pain.
Oscillations are fundamental to communication between neuronal ensembles. We previously reported that pain in awake rats enhances synchrony in primary somatosensory cortex (S1) and attenuates coherence between S1 and ventral posterolateral (VPL) thalamus. Here, we asked whether similar changes occur in anesthetized rats and whether pain modulates phase-amplitude coupling between VPL and S1. We also hypothesized that the suppression of burst firing in VPL using Z944, a novel T-type calcium channel blocker, restores S1 synchrony and thalamocortical connectivity. Local field potentials were recorded from S1 and VPL in anesthetized rats 7 days after sciatic chronic constriction injury (CCI). In rats with CCI, low-frequency (4-12 Hz) synchrony in S1 was enhanced, whereas VPL-S1 coherence and theta-gamma phase-amplitude coupling were attenuated. Moreover, Granger causality showed decreased informational flow from VPL to S1. Systemic or intrathalamic delivery of Z944 to rats with CCI normalized these changes. Systemic Z944 also reversed thermal hyperalgesia and conditioned place preference. These data suggest that pain-induced cortical synchrony and thalamocortical disconnectivity are directly related to burst firing in VPL. Topics: Acetamides; Action Potentials; Animals; Benzamides; Calcium Channel Blockers; Calcium Channels, T-Type; Cerebral Cortex; Disease Models, Animal; Male; Neural Pathways; Neuralgia; Piperidines; Rats; Rats, Sprague-Dawley; Thalamus | 2016 |
AMPAkines Target the Nucleus Accumbens to Relieve Postoperative Pain.
AMPAkines augment the function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the brain to increase excitatory outputs. These drugs are known to relieve persistent pain. However, their role in acute pain is unknown. Furthermore, a specific molecular and anatomic target for these novel analgesics remains elusive.. The authors studied the analgesic role of an AMPAkine, CX546, in a rat paw incision (PI) model of acute postoperative pain. The authors measured the effect of AMPAkines on sensory and depressive symptoms of pain using mechanical hypersensitivity and forced swim tests. The authors asked whether AMPA receptors in the nucleus accumbens (NAc), a key node in the brain's reward and pain circuitry, can be a target for AMPAkine analgesia.. Systemic administration of CX546 (n = 13), compared with control (n = 13), reduced mechanical hypersensitivity (50% withdrawal threshold of 6.05 ± 1.30 g [mean ± SEM] vs. 0.62 ± 0.13 g), and it reduced depressive features of pain by decreasing immobility on the forced swim test in PI-treated rats (89.0 ± 15.5 vs. 156.7 ± 18.5 s). Meanwhile, CX546 delivered locally into the NAc provided pain-relieving effects in both PI (50% withdrawal threshold of 6.81 ± 1.91 vs. 0.50 ± 0.03 g; control, n = 6; CX546, n = 8) and persistent postoperative pain (spared nerve injury) models (50% withdrawal threshold of 3.85 ± 1.23 vs. 0.45 ± 0.00 g; control, n = 7; CX546, n = 11). Blocking AMPA receptors in the NAc with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione inhibited these pain-relieving effects (50% withdrawal threshold of 7.18 ± 1.52 vs. 1.59 ± 0.66 g; n = 8 for PI groups; 10.70 ± 3.45 vs. 1.39 ± 0.88 g; n = 4 for spared nerve injury groups).. AMPAkines relieve postoperative pain by acting through AMPA receptors in the NAc. Topics: Analgesics; Animals; Behavior, Animal; Depression; Dioxoles; Disease Models, Animal; Male; Neuralgia; Nucleus Accumbens; Pain, Postoperative; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, AMPA | 2016 |
Consistent sex-dependent effects of PKMζ gene ablation and pharmacological inhibition on the maintenance of referred pain.
Persistently active PKMζ has been implicated in maintaining spinal nociceptive sensitization that underlies pain hypersensitivity. However, evidence for PKMζ in the maintenance of pain hypersensitivity comes exclusively from short-term studies in males using pharmacological agents of questionable selectivity. The present study examines the contribution of PKMζ to long-lasting allodynia associated with neuropathic, inflammatory, or referred visceral and muscle pain in males and females using pharmacological inhibition or genetic ablation.. Pharmacological inhibition or genetic ablation of PKMζ reduced mild formalin pain and slowly developing contralateral allodynia in nerve-injured rats, but not moderate formalin pain or ipsilateral allodynia in models of neuropathic and inflammatory pain. Pharmacological inhibition or genetic ablation of PKMζ also effectively reduced referred visceral and muscle pain in male, but not in female mice and rats.. We show pharmacological inhibition and genetic ablation of PKMζ consistently attenuate long-lasting pain hypersensitivity. However, differential effects in models of referred versus inflammatory and neuropathic pain, and in males versus females, highlight the roles of afferent input-dependent masking and sex differences in the maintenance of pain hypersensitivity. Topics: Animals; Capsaicin; Cell-Penetrating Peptides; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Freund's Adjuvant; Inflammation; Lipopeptides; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neuralgia; Pain Threshold; Piperidines; Protein Kinase C; Rats; Rats, Long-Evans; Sex Characteristics; Spinal Cord | 2016 |
Combined inhibition of monoacylglycerol lipase and cyclooxygenases synergistically reduces neuropathic pain in mice.
Neuropathic pain is commonly treated with GABA analogues, steroids or non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs inhibit one or more COX isozymes but chronic COX inhibition paradoxically increases gastrointestinal inflammation and risk of unwanted cardiovascular events. The cannabinoids also have analgesic and anti-inflammatory properties and reduce neuropathic pain in animal models. The present study investigated the analgesic effects of inhibiting both monoacylglycerol lipase (MAGL) and COX enzymes, using low doses of both inhibitors.. Mice subjected to chronic constriction injury (CCI) were tested for mechanical and cold allodynia after administration of the MAGL inhibitor, JZL184, or the non-selective COX inhibitor diclofenac. Then, both drugs were co-administered at fixed dose proportions of 1:3, 1:1 and 3:1, based on their ED50 values. PGs, endocannabinoids and related lipids were quantified in lumbar spinal cord.. Combining low doses of JZL184 and diclofenac synergistically attenuated mechanical allodynia and additively reduced cold allodynia. The cannabinoid CB1 receptor antagonist, rimonabant, but not the CB2 receptor antagonist, SR144528, blocked the analgesic effects of the JZL184 and diclofenac combination on mechanical allodynia, implying that CB1 receptors were primarily responsible for the anti-allodynia. Diclofenac alone and with JZL184 significantly reduced PGE2 and PGF2α in lumbar spinal cord tissue, whereas JZL184 alone caused significant increases in the endocannabinoid metabolite, N-arachidonoyl glycine.. Combining COX and MAGL inhibition is a promising therapeutic approach for reducing neuropathic pain with minimal side effects. Topics: Analgesics; Animals; Benzodioxoles; Cannabinoid Receptor Antagonists; Cyclooxygenase Inhibitors; Diclofenac; Drug Synergism; Drug Therapy, Combination; Eicosanoids; Endocannabinoids; Fatty Acids; Hyperalgesia; Male; Mice, Inbred C57BL; Monoacylglycerol Lipases; Neuralgia; Piperidines; Prostaglandin-Endoperoxide Synthases; Pyrazoles; Rimonabant; Spinal Cord | 2015 |
The spinal anti-inflammatory mechanism of motor cortex stimulation: cause of success and refractoriness in neuropathic pain?
Motor cortex stimulation (MCS) is an effective treatment in neuropathic pain refractory to pharmacological management. However, analgesia is not satisfactorily obtained in one third of patients. Given the importance of understanding the mechanisms to overcome therapeutic limitations, we addressed the question: what mechanisms can explain both MCS effectiveness and refractoriness? Considering the crucial role of spinal neuroimmune activation in neuropathic pain pathophysiology, we hypothesized that modulation of spinal astrocyte and microglia activity is one of the mechanisms of action of MCS.. Rats with peripheral neuropathy (chronic nerve injury model) underwent MCS and were evaluated with a nociceptive test. Following the test, these animals were divided into two groups: MCS-responsive and MCS-refractory. We also evaluated a group of neuropathic rats not stimulated and a group of sham-operated rats. Some assays included rats with peripheral neuropathy that were treated with AM251 (a cannabinoid antagonist/inverse agonist) or saline before MCS. Finally, we performed immunohistochemical analyses of glial cells (microglia and astrocytes), cytokines (TNF-α and IL-1β), cannabinoid type 2 (CB2), μ-opioid (MOR), and purinergic P2X4 receptors in the dorsal horn of the spinal cord (DHSC).. MCS reversed mechanical hyperalgesia, inhibited astrocyte and microglial activity, decreased proinflammatory cytokine staining, enhanced CB2 staining, and downregulated P2X4 receptors in the DHSC ipsilateral to sciatic injury. Spinal MOR staining was also inhibited upon MCS. Pre-treatment with AM251 blocked the effects of MCS, including the inhibitory mechanism on cells. Finally, MCS-refractory animals showed similar CB2, but higher P2X4 and MOR staining intensity in the DHSC in comparison to MCS-responsive rats.. These results indicate that MCS induces analgesia through a spinal anti-neuroinflammatory effect and the activation of the cannabinoid and opioid systems via descending inhibitory pathways. As a possible explanation for MCS refractoriness, we propose that CB2 activation is compromised, leading to cannabinoid resistance and consequently to the perpetuation of neuroinflammation and opioid inefficacy. Topics: Analysis of Variance; Animals; Anti-Inflammatory Agents; Calcium-Binding Proteins; Cytokines; Deep Brain Stimulation; Disease Models, Animal; Gene Expression Regulation; Hyperalgesia; Male; Microfilament Proteins; Motor Cortex; Myelitis; Neuralgia; Neuroglia; Pain Threshold; Piperidines; Pyrazoles; Rats; Receptor, Cannabinoid, CB2; Receptors, Opioid, mu; Receptors, Purinergic P2X4 | 2015 |
Selective monoacylglycerol lipase inhibitors: antinociceptive versus cannabimimetic effects in mice.
The endogenous cannabinoid 2-arachidonoylglycerol (2-AG) plays an important role in a variety of physiologic processes, but its rapid breakdown by monoacylglycerol lipase (MAGL) results in short-lived actions. Initial MAGL inhibitors were limited by poor selectivity and low potency. In this study, we tested JZL184 [4-nitrophenyl 4-[bis(2H-1,3-benzodioxol-5-yl)(hydroxy)methyl]piperidine-1-carboxylate] and MJN110 [2,5-dioxopyrrolidin-1-yl 4-(bis(4-chlorophenyl)methyl)piperazine-1-carboxylate], MAGL inhibitors that possess increased selectivity and potency, in mouse behavioral assays of neuropathic pain [chronic constriction injury (CCI) of the sciatic nerve], interoceptive cannabimimetic effects (drug-discrimination paradigm), and locomotor activity in an open field test. MJN110 (1.25 and 2.5 mg/kg) and JZL184 (16 and 40 mg/kg) significantly elevated 2-AG and decreased arachidonic acid but did not affect anandamide in whole brains. Both MAGL inhibitors significantly reduced CCI-induced mechanical allodynia with the following potencies [ED50 (95% confidence limit [CL]) values in mg/kg: MJN110 (0.43 [0.30-0.63]) > JZL184 (17.8 [11.6-27.4])] and also substituted for the potent cannabinoid receptor agonist CP55,940 [2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol] in the drug-discrimination paradigm [ED50 (95% CL) values in mg/kg: MJN110 (0.84 [0.69-1.02]) > JZL184 (24.9 [14.6-42.5])]; however, these compounds elicited differential effects on locomotor behavior. Similar to cannabinoid 1 (CB1) receptor agonists, JZL184 produced hypomotility, whereas MJN110 increased locomotor behavior and did not produce catalepsy or hypothermia. Although both drugs substituted for CP55,940 in the drug discrimination assay, MJN110 was more potent in reversing allodynia in the CCI model than in producing CP55,940-like effects. Overall, these results suggest that MAGL inhibition may alleviate neuropathic pain, while displaying limited cannabimimetic effects compared with direct CB1 receptor agonists. Topics: Analgesics; Animals; Benzodioxoles; Biomimetic Materials; Brain; Cannabinoids; Carbamates; Constriction; Endocannabinoids; Enzyme Inhibitors; Hyperalgesia; Male; Mice; Mice, Inbred C57BL; Monoacylglycerol Lipases; Motor Activity; Neuralgia; Piperidines; Succinimides | 2015 |
Analgesic effect of GT-0198, a structurally novel glycine transporter 2 inhibitor, in a mouse model of neuropathic pain.
This study was conducted to identify the characteristic pharmacological features of GT-0198 that is phenoxymethylbenzamide derivatives. GT-0198 inhibited the function of glycine transporter 2 (GlyT2) in human GlyT2-expressing HEK293 cells and did not bind various major transporters or receptors of neurotransmitters in a competitive manner. Thus, GT-0198 is considered to be a comparatively selective GlyT2 inhibitor. Intravenous, oral, and intrathecal injections of GT-0198 decreased the pain-related response in a model of neuropathic pain with partial sciatic nerve ligation. This result suggests that GT-0198 has an analgesic effect. The analgesic effect of GT-0198 was abolished by the intrathecal injection of strychnine, a glycine receptor antagonist. Therefore, GT-0198 is considered to exhibit its analgesic effect via the activation of a glycine receptor by glycine following presynaptic GlyT2 inhibition in the spinal cord. In summary, GT-0198 is a structurally novel GlyT2 inhibitor bearing a phenoxymethylbenzamide moiety with in vivo efficacy in behavioral models of neuropathic pain. Topics: Analgesics; Animals; Benzamides; Disease Models, Animal; Glycine Plasma Membrane Transport Proteins; HEK293 Cells; Humans; Ligation; Male; Mice, Inbred ICR; Neuralgia; Phenoxybenzamine; Piperidines; Sciatic Nerve; Spinal Cord; Strychnine | 2015 |
Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain.
Despite intensive effort and resulting gains in understanding the mechanisms underlying neuropathic pain, limited success in therapeutic approaches have been attained. A recently identified, nonchannel, nonneurotransmitter therapeutic target for pain is the enzyme soluble epoxide hydrolase (sEH). The sEH degrades natural analgesic lipid mediators, epoxy fatty acids (EpFAs), therefore its inhibition stabilizes these bioactive mediators. Here we demonstrate the effects of EpFAs on diabetes induced neuropathic pain and define a previously unknown mechanism of pain, regulated by endoplasmic reticulum (ER) stress. The activation of ER stress is first quantified in the peripheral nervous system of type I diabetic rats. We demonstrate that both pain and markers of ER stress are reversed by a chemical chaperone. Next, we identify the EpFAs as upstream modulators of ER stress pathways. Chemical inducers of ER stress invariably lead to pain behavior that is reversed by a chemical chaperone and an inhibitor of sEH. The rapid occurrence of pain behavior with inducers, equally rapid reversal by blockers and natural incidence of ER stress in diabetic peripheral nervous system (PNS) argue for a major role of the ER stress pathways in regulating the excitability of the nociceptive system. Understanding the role of ER stress in generation and maintenance of pain opens routes to exploit this system for therapeutic purposes. Topics: Animals; Apoptosis; Autophagy; Blood Glucose; Blotting, Western; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Endoplasmic Reticulum Stress; Enzyme Inhibitors; Epoxide Hydrolases; Male; Neuralgia; Peripheral Nervous System; Phenylbutyrates; Phenylurea Compounds; Piperidines; Rats, Sprague-Dawley; RNA, Messenger; Skin; Streptozocin; Tunicamycin | 2015 |
Regulation of neuropathic pain behavior by amygdaloid TRPC4/C5 channels.
Pain per se may increase anxiety and conversely, anxiety may increase pain. Therefore, a positive feedback loop between anxiety and pain possibly contributes to pain and suffering in some pathophysiological pain conditions, such as that induced by peripheral nerve injury. Recent results indicate that transient receptor channels 4 and 5 (TRPC4/C5) in the amygdala have anxiogenic effects in rodents, while their role in chronic pain conditions is not known. Here, we studied whether the amygdaloid TRPC4/C5 that are known to have anxiogenic properties contribute to the maintenance of sensory or affective aspects of pain in an experimental model of peripheral neuropathy. Rats with a spared nerve injury (SNI) model of neuropathy in the left hind limb had a chronic cannula for microinjections of drugs into the right amygdala or the internal capsule (a control site). Sensory pain was assessed by determining mechanical hypersensitivity with calibrated monofilaments and affective pain by determining aversive place-conditioning. Amygdaloid treatment with ML-204, a TRPC4/C5 antagonist, produced a dose-related (5-10 μg) antihypersensitivity effect, without obvious side-effects. Additionally, amygdaloid administration of ML-204 reduced affective-like pain behavior. In the internal capsule, ML-204 had no effect on hypersensitivity or affective-like pain in SNI animals. In healthy controls, amygdaloid administration of ML-204 failed to influence pain behavior induced by mechanical stimulation or noxious heat. The results indicate that the amygdaloid TRPC4/C5 contribute to maintenance of pain hypersensitivity and pain affect in neuropathy. Topics: Affect; Amygdala; Animals; Chronic Disease; Hyperalgesia; Indoles; Male; Microinjections; Neuralgia; Physical Stimulation; Piperidines; Rats; Touch; TRPC Cation Channels | 2015 |
Cholinergic Neurotransmission in the Posterior Insular Cortex Is Altered in Preclinical Models of Neuropathic Pain: Key Role of Muscarinic M2 Receptors in Donepezil-Induced Antinociception.
Neuropathic pain is one of the most debilitating pain conditions, yet no therapeutic strategy has been really effective for its treatment. Hence, a better understanding of its pathophysiological mechanisms is necessary to identify new pharmacological targets. Here, we report important metabolic variations in brain areas involved in pain processing in a rat model of oxaliplatin-induced neuropathy using HRMAS (1)H-NMR spectroscopy. An increased concentration of choline has been evidenced in the posterior insular cortex (pIC) of neuropathic animal, which was significantly correlated with animals' pain thresholds. The screening of 34 genes mRNA involved in the pIC cholinergic system showed an increased expression of the high-affinity choline transporter and especially the muscarinic M2 receptors, which was confirmed by Western blot analysis in oxaliplatin-treated rats and the spared nerve injury model (SNI). Furthermore, pharmacological activation of M2 receptors in the pIC using oxotremorine completely reversed oxaliplatin-induced mechanical allodynia. Consistently, systemic treatment with donepezil, a centrally active acetylcholinesterase inhibitor, prevented and reversed oxaliplatin-induced cold and mechanical allodynia as well as social interaction impairment. Intracerebral microdialysis revealed a lower level of acetylcholine in the pIC of oxaliplatin-treated rats, which was significantly increased by donepezil. Finally, the analgesic effect of donepezil was markedly reduced by a microinjection of the M2 antagonist, methoctramine, within the pIC, in both oxaliplatin-treated rats and spared nerve injury rats. These findings highlight the crucial role of cortical cholinergic neurotransmission as a critical mechanism of neuropathic pain, and suggest that targeting insular M2 receptors using central cholinomimetics could be used for neuropathic pain treatment.. Our study describes a decrease in cholinergic neurotransmission in the posterior insular cortex in neuropathic pain condition and the involvement of M2 receptors. Targeting these cortical muscarinic M2 receptors using central cholinomimetics could be an effective therapy for neuropathic pain treatment. Topics: Analgesics; Animals; Cerebral Cortex; Cholinesterase Inhibitors; Donepezil; Gene Expression; Hyperalgesia; Indans; Interpersonal Relations; Male; Membrane Transport Proteins; Muscarinic Antagonists; Neuralgia; Organoplatinum Compounds; Oxaliplatin; Parasympathetic Nervous System; Piperidines; Rats; Rats, Sprague-Dawley; Receptor, Muscarinic M2; RNA, Messenger; Synaptic Transmission | 2015 |
Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB₁ and CB₂ receptors.
The two most studied endocannabinoids are anandamide (AEA), principally catalyzed by fatty-acid amide hydrolase (FAAH), and 2-arachidonoyl glycerol (2-AG), mainly hydrolyzed by monoacylglycerol lipase (MGL). Inhibitors targeting these two enzymes have been described, including URB597 and URB602, respectively. Several recent studies examining the contribution of CB₁ and/or CB₂ receptors on the peripheral antinociceptive effects of AEA, 2-AG, URB597 and URB602 in neuropathic pain conditions using either pharmacological tools or transgenic mice separately have been reported, but the exact mechanism is still uncertain. Mechanical allodynia and thermal hyperalgesia were evaluated in 436 male C57BL/6, cnr1KO and cnr2KO mice in the presence or absence of cannabinoid CB₁ (AM251) or CB₂ (AM630) receptor antagonists in a mouse model of neuropathic pain. Peripheral subcutaneous injections of AEA, 2-AG, WIN55,212-2 (WIN; a CB₁/CB₂ synthetic agonist), URB597 and URB602 significantly decreased mechanical allodynia and thermal hyperalgesia. These effects were inhibited by both cannabinoid antagonists AM251 and AM630 for treatments with 2-AG, WIN and URB602 but only by AM251 for treatments with AEA and URB597 in C57BL/6 mice. Furthermore, the antinociceptive effects for AEA and URB597 were observed in cnr2KO mice but absent in cnr1KO mice, whereas the effects of 2-AG, WIN and URB602 were altered in both of these transgenic mice. Complementary genetic and pharmacological approaches revealed that the anti-hyperalgesic effects of 2-AG and URB602 required both CB₁ and CB₂ receptors, but only CB₂ receptors mediated its anti-allodynic actions. The antinociceptive properties of AEA and URB597 were mediated only by CB₁ receptors. Topics: Animals; Arachidonic Acids; Behavior, Animal; Endocannabinoids; Glycerides; Hyperalgesia; Male; Mice; Mice, Knockout; Neuralgia; Pain Measurement; Pain Threshold; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2014 |
A rat knockout model implicates TRPC4 in visceral pain sensation.
Acute and chronic pain resulting from injury, surgery, or disease afflicts >100 million Americans each year, having a severe impact on mood, mental health, and quality of life. The lack of structural and functional information for most ion channels, many of which play key roles in the detection and transmission of noxious stimuli, means that there remain unidentified therapeutic targets for pain management. This study focuses on the transient receptor potential canonical subfamily 4 (TRPC4) ion channel, which is involved in the tissue-specific and stimulus-dependent regulation of intracellular Ca²⁺ signaling. Rats with a transposon-mediated TRPC4-knockout mutation displayed tolerance to visceral pain induced by colonic mustard oil (MO) exposure, but not somatic or neuropathic pain stimuli. Moreover, wild-type rats treated with a selective TRPC4 antagonist (ML-204) prior to MO exposure mimicked the behavioral responses observed in TRPC4-knockout rats. Significantly, ML-204 inhibited visceral pain-related behavior in a dose-dependent manner without noticeable adverse effects. These data provide evidence that TRPC4 is required for detection and/or transmission of colonic MO visceral pain sensation. In the future, inhibitors of TRPC4 signaling may provide a highly promising path for the development of first-in-class therapeutics for this visceral pain, which may have fewer side effects and less addictive potential than opioid derivatives. Topics: Analgesics; Animals; Colon; Dose-Response Relationship, Drug; Female; Gene Knockout Techniques; Indoles; Male; Mustard Plant; Neuralgia; Nociception; Nociceptive Pain; Piperidines; Plant Oils; Rats; Rats, Inbred F344; Rats, Transgenic; RNA, Messenger; TRPC Cation Channels; Visceral Pain | 2014 |
Synthesis and biological evaluation of 1-(isoxazol-5-ylmethylaminoethyl)-4-phenyl tetrahydropyridine and piperidine derivatives as potent T-type calcium channel blockers with antinociceptive effect in a neuropathic pain model.
New tetrahydropyridinyl and piperidinyl ethylamine derivatives were designed with hypothetical mapping on pharmacophore model generated from ligand-based virtual screening. The designed compounds were synthesized, and their inhibitory activities on T-type calcium channel were assayed using FDSS and patch-clamp assay. Among them, compounds 7b and 10b showed potent T-type calcium current blocking activity against Ca(v)3.1 (α(1G)) and Ca(v)3.2 (α(1H)) channel simultaneously. With hERG and pharmacokinetics studies, compounds 7b and 10b were evaluated for the antinociceptive effect on rat model of neuropathic pain. They were significantly effective in decreasing the pain responses to mechanical and cold allodynia induced by spinal nerve ligation. These results suggest that modulation of α(1G) and α(1H) subtype T-type calcium channels may provide a promising approach for the treatment of neuropathic pain. Topics: Analgesics; Animals; Calcium Channel Blockers; Calcium Channels, T-Type; Drug Evaluation, Preclinical; Humans; Magnetic Resonance Spectroscopy; Neuralgia; Piperidines; Pyridines; Rats | 2014 |
Xanthine derivative KMUP-1 reduces inflammation and hyperalgesia in a bilateral chronic constriction injury model by suppressing MAPK and NFκB activation.
Neuropathic pain is characterized by spontaneous pain, hyperalgesia, and allodynia. The aim of this study was to investigate whether KMUP-1 (7-[2-[4-(2-chlorobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) could improve pain hypersensitivity and reduce inflammatory mediators, and also explore possible mechanisms in the rat sciatic nerve using bilateral chronic constriction injury (CCI) to induce neuropathic pain. Sprague-Dawley rats were randomly divided into four groups: Sham, Sham+KMUP-1, CCI, and CCI+KMUP-1. KMUP-1 (5 mg/kg/day) was injected intraperitoneally starting at day 1 after surgery. Mechanical and thermal responses were assessed before surgery and at days 3, 7, and 14 after CCI. Sciatic nerves around the injury site were isolated for Western blots and enzyme-linked immunosorbent assay to analyze protein and cytokine levels. The results show that thermal hyperalgesia and mechanical allodynia were reduced in the KMUP-1 treated group as compared to that in the CCI group. Inflammatory proteins (COX2, iNOS, and nNOS) and proinflammatory cytokines (TNF-α and IL-1β) induced by CCI were decreased in the KMUP-1 treated group at day 7 after surgery. KMUP-1 also inhibited neuropathic pain-related mechanisms, including p38 and ERK activation, but not JNK. Furthermore, KMUP-1 blocked IκB phosphorylation (p-IκB) and phospho-nuclear factor κB (p-NF-κB) translocation to nuclei. Double immunofluorescent staining further demonstrated that p-IκB (an indicator of activated NFκB) and p-NFκB proteins were almost abolished by KMUP-1 in peripheral macrophages and spinal microglia cells at day 7 after surgery. On the basis of these findings, we concluded that KMUP-1 has antiinflammatory and antihyperalgesia properties in CCI-induced neuropathic pain via decreases in MAPKs and NF-κB activation. Topics: Animals; Blotting, Western; Hyperalgesia; Immunohistochemistry; Inflammation; Male; Mitogen-Activated Protein Kinases; Neuralgia; NF-kappa B; Piperidines; Rats; Rats, Sprague-Dawley; Xanthine; Xanthines | 2014 |
Fatty acid amide hydrolase (FAAH) inhibitors exert pharmacological effects, but lack antinociceptive efficacy in rats with neuropathic spinal cord injury pain.
Amelioration of neuropathic spinal cord injury (SCI) pain is a clinical challenge. Increasing the endocannabinoid anandamide and other fatty acid amides (FAA) by blocking fatty acid amide hydrolase (FAAH) has been shown to be antinociceptive in a number of animal models of chronic pain. However, an antinociceptive effect of blocking FAAH has yet to be demonstrated in a rat model of neuropathic SCI pain. Four weeks following a SCI, rats developed significantly decreased hind paw withdrawal thresholds, indicative of below-level cutaneous hypersensitivity. A group of SCI rats were systemically treated (i.p.) with either the selective FAAH inhibitor URB597 or vehicle twice daily for seven days. A separate group of SCI rats received a single dose (p.o.) of either the selective FAAH inhibitor PF-3845 or vehicle. Following behavioral testing, levels of the FAA N-arachidonoylethanolamide, N-oleoyl ethanolamide and N-palmitoyl ethanolamide were quantified in brain and spinal cord from SCI rats. Four weeks following SCI, FAA levels were markedly reduced in spinal cord tissue. Although systemic treatment with URB597 significantly increased CNS FAA levels, no antinociceptive effect was observed. A significant elevation of CNS FAA levels was also observed following oral PF-3845 treatment, but only a modest antinociceptive effect was observed. Increasing CNS FAA levels alone does not lead to robust amelioration of below-level neuropathic SCI pain. Perhaps utilizing FAAH inhibition in conjunction with other analgesic mechanisms could be an effective analgesic therapy. Topics: Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Benzamides; Benzoxazines; Brain; Carbamates; Endocannabinoids; Enzyme Inhibitors; Hindlimb; Male; Morpholines; Naphthalenes; Neuralgia; Pain Measurement; Pain Threshold; Piperidines; Polyunsaturated Alkamides; Pyridines; Rats, Sprague-Dawley; Spinal Cord; Spinal Cord Injuries; Treatment Outcome | 2014 |
Synthesis and biological evaluation of 2-substituted quinoline 6-carboxamides as potential mGluR1 antagonists for the treatment of neuropathic pain.
A series of 2-amino and 2-methoxy quinoline-6-carboxamide derivatives have been synthesized and their metabotropic glutamate receptor type 1 (mGluR1) antagonistic activities were evaluated in a functional cell-based assay. The compound 13c showed the highest potency with IC50 value of 2.16 µM against mGluR1. Finally, in vivo evaluation of 13c in the rat spinal nerve ligation (SNL) model exhibited weak analgesic effects with regard to both mechanical allodynia and cold allodynia. Topics: Animals; Cold Temperature; Dose-Response Relationship, Drug; Ether-A-Go-Go Potassium Channels; Humans; Hyperalgesia; Mice; Molecular Structure; Neuralgia; Pain Measurement; Piperidines; Quinolines; Rats; Receptors, Metabotropic Glutamate; Structure-Activity Relationship | 2014 |
Antiallodynic action of 1-(3-(9H-Carbazol-9-yl)-1-propyl)-4-(2-methyoxyphenyl)-4-piperidinol (NNC05-2090), a betaine/GABA transporter inhibitor.
The GABAergic system in the spinal cord has been shown to participate in neuropathic pain in various animal models. GABA transporters (GATs) play a role in controlling the synaptic clearance of GABA; however, their role in neuropathic pain remains unclear. In the present study, we compared the betaine/GABA transporter (BGT-1) with other GAT subtypes to determine its participation in neuropathic pain using a mouse model of sciatic nerve ligation. 1-(3-(9H-Carbazol-9-yl)-1-propyl)-4-(2-methyoxyphenyl)-4-piperidinol (NNC05-2090), an inhibitor that displays moderate selectivity for BGT-1, had an antiallodynic action on model mice treated through both intrathecally and intravenous administration routes. On the other hand, SKF89976A, a selective GAT-1 inhibitor, had a weak antiallodynic action, and (S)-SNAP5114, an inhibitor that displays selectivity for GAT-3, had no antiallodynic action. Systemic analysis of these compounds on GABA uptake in CHO cells stably expressing BGT-1 revealed that NNC05-2090 not only inhibited BGT-1, but also serotonin, noradrenaline, and dopamine transporters, using a substrate uptake assay in CHO cells stably expressing each transporter, with IC50: 5.29, 7.91, and 4.08 μM, respectively. These values were similar to the IC50 value at BGT-1 (10.6 μM). These results suggest that the antiallodynic action of NNC05-2090 is due to the inhibition of both BGT-1 and monoamine transporters. Topics: Animals; Betaine; CHO Cells; Cricetulus; Disease Models, Animal; Dose-Response Relationship, Drug; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid; Male; Mice, Inbred Strains; Neuralgia; Piperidines | 2014 |
Augmented tonic pain-related behavior in knockout mice lacking monoacylglycerol lipase, a major degrading enzyme for the endocannabinoid 2-arachidonoylglycerol.
Monoacylglycerol lipase (MGL) is the main enzyme responsible for degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG). Selective inhibitors of MGL have antinociceptive effects upon acute administration and, therefore, hold promise as analgesics. To gain insight into the possible consequences of their prolonged administration, genetically modified mice with the knocked-out MGL gene were tested in several models of acute (phasic, tonic) and chronic (inflammatory, neuropathic) pain. MGL knockout mice showed normal acute phasic pain perception (pain thresholds) and no alleviation of pain perception in models of inflammatory and neuropathic pain. However, compared with wild-type controls, they showed significantly augmented nociceptive behavior in models of acute somatic and visceral tonic pain (formalin and acetic acid tests). The observed proalgesic changes in perception of tonic pain in MGL knockouts could have resulted from desensitization of cannabinoid receptors (known to occur after genetic inactivation of MGL). Supporting this notion, chronic pretreatment with the selective CB1 receptor antagonist AM 251 (employed to re-sensitize cannabinoid receptors in MGL knockouts) resulted in normalization of their tonic pain-related behaviors. Similar augmentation of tonic pain-related behaviors was replicated in C57BL/6N mice pretreated chronically with the selective MGL inhibitor JZL 184 (employed to pharmacologically desensitize CB1 receptors). These findings imply that prolonged use of MGL inhibitors, at doses causing close to complete inhibition of MGL enzymatic activity, not only have no beneficial analgesic effects, they may lead to exacerbation of some types of pain (particularly those with a tonic component). Topics: Animals; Arachidonic Acids; Benzodioxoles; Cannabinoid Receptor Modulators; Endocannabinoids; Glycerides; Inflammation; Male; Mice; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Knockout; Neuralgia; Pain; Pain Threshold; Phosphotransferases (Alcohol Group Acceptor); Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1 | 2014 |
Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade.
It has been recently recognized that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear.. In the present study, activation of spinal 5-HT3 receptors by intrathecal injection of a selective 5-HT3 receptor agonist SR 57227 induced spinal glial hyperactivity, neuronal hyperexcitability and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via the chemokine fractalkine, microglia to astrocyte signaling via cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of NMDA receptors in the spinal dorsal horn. Glial hyperactivation in spinal dorsal horn after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference.. These findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neurons and glia. Topics: Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Hyperalgesia; Inflammation; Male; Neuralgia; Neuroglia; Neurons; Pain Perception; Piperidines; Rats; Rats, Sprague-Dawley; Serotonin Antagonists; Serotonin Receptor Agonists; Signal Transduction; Spinal Cord; Spinal Nerves | 2014 |
Synaptic GluN2A and GluN2B containing NMDA receptors within the superficial dorsal horn activated following primary afferent stimulation.
NMDA receptors are important elements in pain signaling in the spinal cord dorsal horn. They are heterotetramers, typically composed of two GluN1 and two of four GluN2 subunits: GluN2A-2D. Mice lacking some of the GluN2 subunits show deficits in pain transmission yet functional synaptic localization of these receptor subtypes in the dorsal horn has not been fully resolved. In this study, we have investigated the composition of synaptic NMDA receptors expressed in monosynaptic and polysynaptic pathways from peripheral sensory fibers to lamina I neurons in rats. We focused on substance P receptor-expressing (NK1R+) projection neurons, critical for expression of hyperalgesia and allodynia. EAB-318 and (R)-CPP, GluN2A/B antagonists, blocked both monosynaptic and polysynaptic NMDA EPSCs initiated by primary afferent activation by ∼90%. Physiological measurements exploiting the voltage dependence of monosynaptic EPSCs similarly indicated dominant expression of GluN2A/B types of synaptic NMDA receptors. In addition, at synapses between C fibers and NK1R+ neurons, NMDA receptor activation initiated a secondary, depolarizing current. Ifenprodil, a GluN2B antagonist, caused modest suppression of monosynaptic NMDA EPSC amplitudes, but had a widely variable, sometimes powerful, effect on polysynaptic responses following primary afferent stimulation when inhibitory inputs were blocked to mimic neuropathic pain. We conclude that GluN2B subunits are moderately expressed at primary afferent synapses on lamina I NK1R+ neurons, but play more important roles for polysynaptic NMDA EPSCs driven by primary afferents following disinhibition, supporting the view that the analgesic effect of the GluN2B antagonist on neuropathic pain is at least in part, within the spinal cord. Topics: Animals; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; Male; Neuralgia; Piperidines; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Receptors, Neurokinin-1; Spinal Cord; Spinal Cord Dorsal Horn; Synapses; Synaptic Transmission | 2014 |
Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway.
To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain.. Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressure and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot.. Administration of ALO (80mg/kg and 40mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10mg/kg (i.p.).. ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway. Topics: Animals; Antioxidants; Constriction; Down-Regulation; Hot Temperature; Hyperalgesia; Interleukin-1beta; Interleukin-6; Male; Mice; Neuralgia; NF-kappa B; Piperidines; Quinolizidines; Sciatic Nerve; Tumor Necrosis Factor-alpha | 2014 |
Histamine in the locus coeruleus promotes descending noradrenergic inhibition of neuropathic hypersensitivity.
Among brain structures receiving efferent projections from the histaminergic tuberomammillary nucleus is the pontine locus coeruleus (LC) involved in descending noradrenergic control of pain. Here we studied whether histamine in the LC is involved in descending regulation of neuropathic hypersensitivity. Peripheral neuropathy was induced by unilateral spinal nerve ligation in the rat with a chronic intracerebral and intrathecal catheter for drug administrations. Mechanical hypersensitivity in the injured limb was assessed by monofilaments. Heat nociception was assessed by determining radiant heat-induced paw flick. Histamine in the LC produced a dose-related (1-10μg) mechanical antihypersensitivity effect (maximum effect at 15min and duration of effect 30min), without influence on heat nociception. Pretreatment of LC with zolantidine (histamine H2 receptor antagonist), but not with pyrilamine (histamine H1 receptor antagonist), and spinal administration of atipamezole (an α2-adrenoceptor antagonist), prazosine (an α1-adrenoceptor antagonist) or bicuculline (a GABAA receptor antagonist) attenuated the antihypersensitivity effect of histamine. The histamine-induced antihypersensitivity effect was also reduced by pretreatment of LC with fadolmidine, an α2-adrenoceptor agonist inducing autoinhibition of noradrenergic cell bodies. Zolantidine or pyrilamine alone in the LC failed to influence pain behavior, while A-960656 (histamine H3 receptor antagonist) suppressed hypersensitivity. A plausible explanation for these findings is that histamine, due to excitatory action mediated by the histamine H2 receptor on noradrenergic cell bodies, promotes descending spinal α1/2-adrenoceptor-mediated inhibition of neuropathic hypersensitivity. Blocking the autoinhibitory histamine H3 receptor on histaminergic nerve terminals in the LC facilitates release of histamine and thereby, increases descending noradrenergic pain inhibition. Topics: Adrenergic alpha-1 Receptor Antagonists; Adrenergic alpha-2 Receptor Agonists; Adrenergic Neurons; Animals; Benzothiazoles; Bicuculline; GABA-A Receptor Antagonists; Histamine; Histamine H2 Antagonists; Hot Temperature; Hyperalgesia; Imidazoles; Indans; Locus Coeruleus; Male; Neuralgia; Phenoxypropanolamines; Physical Stimulation; Piperidines; Prazosin; Rats; Receptors, Adrenergic, alpha-1; Receptors, Adrenergic, alpha-2; Receptors, Histamine; Spinal Nerves | 2014 |
JZL184 is anti-hyperalgesic in a murine model of cisplatin-induced peripheral neuropathy.
Cisplatin has been used effectively to treat a variety of cancers but its use is limited by the development of painful peripheral neuropathy. Because the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) is anti-hyperalgesic in several preclinical models of chronic pain, the anti-hyperalgesic effect of JZL184, an inhibitor of 2-AG hydrolysis, was tested in a murine model of cisplatin-induced hyperalgesia. Systemic injection of cisplatin (1mg/kg) produced mechanical hyperalgesia when administered daily for 7 days. Daily peripheral administration of a low dose of JZL184 in conjunction with cisplatin blocked the expression of mechanical hyperalgesia. Acute injection of a cannabinoid (CB)-1 but not a CB2 receptor antagonist reversed the anti-hyperalgesic effect of JZL184 indicating that downstream activation of CB1 receptors suppressed the expression of mechanical hyperalgesia. Components of endocannabinoid signaling in plantar hind paw skin and lumbar dorsal root ganglia (DRGs) were altered by treatments with cisplatin and JZL184. Treatment with cisplatin alone reduced levels of 2-AG and AEA in skin and DRGs as well as CB2 receptor protein in skin. Combining treatment of JZL184 with cisplatin increased 2-AG in DRGs compared to cisplatin alone but had no effect on the amount of 2-AG in skin. Evidence that JZL184 decreased the uptake of [(3)H]AEA into primary cultures of DRGs at a concentration that also inhibited the enzyme fatty acid amide hydrolase, in conjunction with data that 2-AG mimicked the effect of JZL184 on [(3)H]AEA uptake support the conclusion that AEA most likely mediates the anti-hyperalgesic effect of JZL184 in this model. Topics: Amides; Analgesics; Animals; Antineoplastic Agents; Arachidonic Acids; Benzodioxoles; Cells, Cultured; Cisplatin; Disease Models, Animal; Endocannabinoids; Ethanolamines; Ganglia, Spinal; Glycerides; Hyperalgesia; Indoles; Male; Mesencephalon; Mice; Mice, Inbred C3H; Monoacylglycerol Lipases; Morpholines; Neuralgia; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Skin; Spinal Cord | 2014 |
AMPAkines have novel analgesic properties in rat models of persistent neuropathic and inflammatory pain.
Novel analgesics that do not suppress the respiratory drive are urgently needed. Glutamate signaling through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors plays important roles in central pain circuits. AMPAkines augment AMPA receptor function and have been shown to stimulate the respiratory drive to oppose opioid-induced hypoventilation. However, their role in chronic pain states remains unknown.. The authors studied AMPAkines (CX546 and CX516) in rat spared nerve injury (SNI) model of neuropathic pain and Complete Freund's Adjuvant (CFA) model of inflammatory pain. They measured the effect of AMPAkines on mechanical and cold allodynia. They also evaluated their effect on depressive symptoms of pain using the forced swim test, as time of immobility on this test has been used as a measure for behavioral despair, a feature of depression.. The authors found that CX546, compared with dimethyl sulfoxide (DMSO) control, reduced both mechanical and sensory allodynia in SNI (DMSO group, n = 9; CX546 group, n = 11) and CFA models (both DMSO and CX546 groups, n = 9). They found that CX546, compared with control, also reduced depressive symptoms of pain by decreasing immobility on the forced swim test in both SNI (both DMSO and CX546 groups, n = 8) and CFA models (both DMSO and CX546 groups, n = 10). Finally, they found that CX516, compared with control, also reduced mechanical and cold allodynia in the SNI model (both DMSO and CX516 groups, n = 10).. AMPAkines alleviate pain hypersensitivity as well as depression-like behavior associated with long-lasting nerve injury and inflammatory insult. Topics: Analgesics; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antidepressive Agents; Behavior, Animal; Dioxoles; Inflammation; Male; Motor Activity; Neuralgia; Pain Measurement; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Swimming | 2014 |
Lysophosphatidic acid and its receptors LPA1 and LPA3 mediate paclitaxel-induced neuropathic pain in mice.
Paclitaxel, which is widely used for the treatment of solid tumors, causes neuropathic pain via poorly understood mechanisms. Previously, we have demonstrated that lysophosphatidic acid (LPA) and its receptors (LPA1 and LPA3) are required for the initiation of peripheral nerve injury-induced neuropathic pain. The present study aimed to clarify whether LPA and its receptors could mediate paclitaxel-induced neuropathic pain.. Intraperitoneal administration of paclitaxel triggered a marked increase in production of LPA species (18:1-, 16:0-, and 18:0-LPA) in the spinal dorsal horn. Also, we found significant activations of spinal cytosolic phospholipase A2 and calcium-independent phospholipase A2 after the paclitaxel treatment. The paclitaxel-induced LPA production was completely abolished not only by intrathecal pretreatment with neurokinin 1 (NK1) or N-methyl-D-aspartate (NMDA) receptor antagonist, but also in LPA1 receptor-deficient (Lpar1-/-) and LPA3 receptor-deficient (Lpar3-/-) mice. In addition, the pharmacological blockade of NK1 or NMDA receptor prevented a reduction in the paw withdrawal threshold against mechanical stimulation after paclitaxel treatments. Importantly, the paclitaxel-induced mechanical allodynia was absent in Lpar1-/- and Lpar3-/- mice.. These results suggest that LPA1 and LPA3 receptors-mediated amplification of spinal LPA production is required for the development of paclitaxel-induced neuropathic pain. Topics: Animals; Antineoplastic Agents, Phytogenic; Disease Models, Animal; Dizocilpine Maleate; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neuralgia; Paclitaxel; Pain Measurement; Phospholipases A2; Piperidines; Receptors, Lysophosphatidic Acid; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Spinal Cord Dorsal Horn; Time Factors | 2014 |
Synthesis and biological evaluation of novel sigma-1 receptor antagonists based on pyrimidine scaffold as agents for treating neuropathic pain.
The discovery and synthesis of a new series of pyrimidines as potent sigma-1 receptor (σ1R) antagonists, associated with pharmacological antineuropathic pain activity, are the focus of this article. The new compounds were evaluated in vitro in σ-1 and σ-2 receptor binding assays. The nature of the pyrimidine scaffold was crucial for activity, and a basic amine was shown to be necessary according to the known pharmacophoric model. The most promising derivative was 5-chloro-2-(4-chlorophenyl)-4-methyl-6-(3-(piperidin-1-yl)propoxy)pyrimidine (137), which exhibited a high binding affinity to σ1R receptor (Ki σ1 = 1.06 nM) and good σ-1/2 selectivity (1344-fold). In in vivo tests, compound 137 exerted dose-dependent antinociceptive effects in mice formalin model and rats CCI models of neuropathic pain. In addition, no motor impairments were found in rotarod tests; acceptable pharmacokinetic properties were also noted. These data suggest compound 137 may constitute a novel class of drugs for the treatment of neuropathic pain. Topics: Animals; Behavior, Animal; Carbon Tetrachloride; Ether-A-Go-Go Potassium Channels; Guinea Pigs; Mice; Molecular Structure; Motor Activity; Neuralgia; Neuroprotective Agents; Nociceptive Pain; Piperidines; Pyrimidines; Rats; Rats, Sprague-Dawley; Receptors, sigma; Sigma-1 Receptor; Structure-Activity Relationship | 2014 |
Spinal NTS2 receptor activation reverses signs of neuropathic pain.
Management of painful peripheral neuropathies remains challenging, since patients with chronic pain respond poorly to the available pharmacopeia. In recent years, the G-protein-coupled receptor neurotensin (NT) type 2 (NTS2) emerged as an attractive target for treating transitory pain states. To date, however, there is no evidence for its role in the regulation of chronic peripheral neuropathies. Here, we found that NTS2 receptors were largely localized to primary afferent fibers and superficial dorsal horns. Changes in the time course of the gene expression profile of NT, NTS1, and NTS2 were observed over a 28-d period following the sciatic nerve constriction [chronic constriction injury (CCI) model]. We next determined the effects of central delivery of selective-NTS2 agonists to CCI-treated rats on both mechanical allodynia (evoked withdrawal responses) and weight-bearing deficits (discomfort and quality-of-life proxies). The NTS2 analogs JMV431, levocabastine, and β-lactotensin were all effective in reducing ongoing tactile allodynia in CCI-treated rats. Likewise, amitriptyline, pregabalin, and morphine significantly attenuated CCI-induced mechanical hypersensitivity. NTS2 agonists were also efficient in reversing weight-bearing and postural deficits caused by nerve damage, unlike reference analgesics currently used in the clinic. Thus, NTS2 agonists may offer new treatment avenues for limiting pain associated with peripheral neuropathies and improve functional rehabilitation and well-being. Topics: Analgesics; Animals; Blotting, Western; Ganglia, Spinal; Male; Microscopy, Electron, Transmission; Neuralgia; Oligopeptides; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, Neurotensin; Spinal Cord | 2013 |
Synthesis and pharmacological evaluation of novel N-aryl-3,4-dihydro-1'H-spiro[chromene-2,4'-piperidine]-1'-carboxamides as TRPM8 antagonists.
A novel series of N-aryl-3,4-dihydro-1'H-spiro[chromene-2,4'-piperidine]-1'-carboxamides was identified as transient receptor potential melastatin 8 (TRPM8) channel blockers through analogue-based rational design, synthesis and screening. Details of the synthesis, effect of aryl groups and their substituents on in-vitro potency were studied. The effects of selected functional groups on the 4-position of the chromene ring were also studied, which showed interesting results. The 4-hydroxy derivatives showed excellent potency and selectivity. Optical resolution and screening of alcohols revealed that (R)-(-)-isomers were in general more potent than the corresponding (S)-(+)-isomers. The isomer (R)-(-)-10e (IC50: 8.9nM) showed a good pharmacokinetic profile upon oral dosing at 10mg/kg in Sprague-Dawley (SD) rats. The compound (R)-(-)-10e also showed excellent efficacy in relevant rodent models of neuropathic pain. Topics: Administration, Oral; Amides; Analgesics; Animals; Disease Models, Animal; Half-Life; Male; Mice; Mice, Inbred C57BL; Neuralgia; Piperidines; Protein Binding; Rats; Rats, Sprague-Dawley; Spiro Compounds; Stereoisomerism; Structure-Activity Relationship; TRPM Cation Channels | 2013 |
A polyamine-deficient diet prevents oxaliplatin-induced acute cold and mechanical hypersensitivity in rats.
Oxaliplatin is an anticancer drug used for the treatment of advanced colorectal cancer, but it can also cause painful peripheral neuropathies. The pathophysiology of these neuropathies has not been yet fully elucidated, but may involve spinal N-methyl-D-aspartate (NMDA) receptors, particularly the NR2B subunit. As polyamines are positive modulators of NMDA-NR2B receptors and mainly originate from dietary intake, the modulation of polyamines intake could represent an interesting way to prevent/modulate neuropathic pain symptoms by opposing glutamate neurotransmission.. The effect of a polyamine deficient diet was investigated in an animal model of oxaliplatin-induced acute pain hypersensitivity using behavioral tests (mechanical and cold hypersensitivity). The involvement of spinal glutamate neurotransmission was monitored by using a proton nuclear magnetic resonance spectroscopy based metabolomic approach and by assessing the expression and phosphorylation of the NR2B subunit of the NMDA receptor.. A 7-day polyamine deficient diet totally prevented oxaliplatin-induced acute cold hypersensitivity and mechanical allodynia. Oxaliplatin-induced pain hypersensitivity was not associated with an increase in NR2B subunit expression or phosphorylation, but with an increase of glutamate level in the spinal dorsal horn which was completely prevented by a polyamine deficient diet. As a validation that the oxaliplatin-induced hypersensitivity could be due to an increased activity of the spinal glutamate system, an intrathecal administration of the specific NR2B antagonist, ifenprodil, totally reversed oxaliplatin-induced mechanical and cold hypersensitivity.. A polyamine deficient diet could represent a promising and valuable nutritional therapy to prevent oxaliplatin-induced acute pain hypersensitivity. Topics: Acute Disease; Animals; Antineoplastic Agents; Behavior, Animal; Cold Temperature; Diet; Glutamic Acid; Hyperalgesia; Immunoblotting; Magnetic Resonance Spectroscopy; Male; Metabolomics; Neuralgia; Organoplatinum Compounds; Oxaliplatin; Phosphorylation; Piperidines; Polyamines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Spinal Cord; Vasodilator Agents | 2013 |
[Donepezil therapy by neuropathic pain].
A case report of a successful treatment of neuropathic pain after a plexus brachialis injury is presented. On basis of experience from nerve-injured rat models 5 mg donepezil was added to an already instituted gabapentin therapy of 800 mg x 3 daily. This allowed halving the gapentin dose with fully contained pain alleviation but with a drastic reduction of gabapentin's side effects: ataxia and somnolence. Thus, without adding any new side effects life quality was improved and an increased working capacity was observed together with a weight loss of 9 kg over six months. Topics: Aged; Analgesics; Donepezil; Drug Therapy, Combination; Female; Humans; Indans; Neuralgia; Piperidines; Shoulder Pain; Treatment Outcome | 2013 |
High-dose remifentanil prevents development of thermal hyperalgesia in a neuropathic pain model.
Intraoperative nerve lesions can lead to chronic postoperative pain. There are conflicting data as to whether or not anaesthetics administered intraoperatively are beneficial. We investigated if remifentanil administered at the time of nerve injury was able to attenuate neuropathic hypersensitivity.. Rats were anaesthetized with isoflurane, endotracheally intubated, and a tail vein catheter was inserted. Rats received an i.v. infusion of either saline or low- or high-dose remifentanil (2 or 20 μg kg(-1) min(-1), respectively) for 20 min. During this time, rats received a spinal nerve L5 transection to induce neuropathic pain or a sham procedure. Behavioural tests to assess mechanical and cold allodynia and heat hyperalgesia were performed on postoperative days 1, 3, 7, 14, 21, and 28.. Sham-operated animals exhibited no hypersensitivity regardless of the intraoperative remifentanil dose. In rats which received spinal nerve L5 transection, mechanical and cold allodynia developed with no significant differences between treatment groups. However, thermal hyperalgesia was reduced in rats given high-dose remifentanil: mean (standard deviation) area under the curve 426 (53) compared with 363 (34) and 342 (24) in saline or low-dose remifentanil treated rats, respectively (P<0.05).. High-dose remifentanil administered at the time of transection of the spinal nerve at L5 prevents subsequent thermal hyperalgesia. Topics: Analgesics, Opioid; Animals; Area Under Curve; Behavior, Animal; Cold Temperature; Data Interpretation, Statistical; Hot Temperature; Hyperalgesia; Male; Neuralgia; Pain, Postoperative; Physical Stimulation; Piperidines; Rats; Rats, Sprague-Dawley; Remifentanil; Spinal Nerves | 2013 |
Relief of hypersensitivity after nerve injury from systemic donepezil involves spinal cholinergic and γ-aminobutyric acid mechanisms.
Evoking spinal release of acetylcholine (ACh) produces antinociception in normal animals and reduces hypersensitivity after nerve injury, and some studies suggest that ACh-mediated analgesia relies on γ-aminobutyric acid (GABA)-ergic signaling in the spinal cord. In this study, the authors tested the spinal mechanisms underlying the antihypersensitivity effects of donepezil, a central nervous system-penetrating cholinesterase inhibitor, in a rat model of neuropathic pain.. Male Sprague-Dawley rats were anesthetized, and L5 spinal nerve ligation was performed unilaterally. Withdrawal threshold to a paw pressure test was measured before and after intraperitoneal administration of donepezil, with or without intrathecal antagonists for cholinergic and GABAergic receptors. Microdialysis studies in the ipsilateral dorsal horn of the lumbar spinal cord were also performed to measure extracellular ACh and GABA.. Donepezil increased the withdrawal threshold in spinal nerve ligation rats but not in normal rats. The antihypersensitivity effect of donepezil (1 mg/kg) in spinal nerve ligation rats was reduced by intrathecal pretreatment with atropine (30 μg), a muscarinic receptor antagonist; mecamylamine (100 μg), a nicotinic receptor antagonist; bicuculline (0.03 μg), a γ-aminobutyric acid receptor type A antagonist; and CGP 35348 (30 μg), a γ-aminobutyric acid receptor type B antagonist. ACh and GABA concentrations in the microdialysates from the spinal dorsal horn were increased after intraperitoneal donepezil treatment (1 mg/kg) in both normal and spinal nerve ligation rats.. Systemic administration of donepezil reduces hypersensitivity after nerve injury by increasing extracellular ACh concentration, which itself induces GABA release in the spinal cord. Activation of this spinal cholinergic-GABAergic interaction represents a promising treatment for neuropathic pain. Topics: Animals; Atropine; Bicuculline; Cholinergic Agents; Cholinesterase Inhibitors; Disease Models, Animal; Donepezil; GABA Agents; GABA Antagonists; GABA-A Receptor Antagonists; gamma-Aminobutyric Acid; Indans; Male; Mecamylamine; Neuralgia; Nicotinic Antagonists; Organophosphorus Compounds; Parasympatholytics; Peripheral Nerve Injuries; Piperidines; Rats; Rats, Sprague-Dawley; Spinal Nerves | 2013 |
Modulation of L-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids.
GPR55 is activated by l-α-lysophosphatidylinositol (LPI) but also by certain cannabinoids. In this study, we investigated the GPR55 pharmacology of various cannabinoids, including analogues of the CB1 receptor antagonist Rimonabant®, CB2 receptor agonists, and Cannabis sativa constituents. To test ERK1/2 phosphorylation, a primary downstream signaling pathway that conveys LPI-induced activation of GPR55, a high throughput system, was established using the AlphaScreen® SureFire® assay. Here, we show that CB1 receptor antagonists can act both as agonists alone and as inhibitors of LPI signaling under the same assay conditions. This study clarifies the controversy surrounding the GPR55-mediated actions of SR141716A; some reports indicate the compound to be an agonist and some report antagonism. In contrast, we report that the CB2 ligand GW405833 behaves as a partial agonist of GPR55 alone and enhances LPI signaling. GPR55 has been implicated in pain transmission, and thus our results suggest that this receptor may be responsible for some of the antinociceptive actions of certain CB2 receptor ligands. The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55. Topics: Allosteric Regulation; Analgesics; Cannabinoids; Cannabis; Dronabinol; HEK293 Cells; Humans; Ligands; Lysophospholipids; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Neuralgia; Phosphoproteins; Phosphorylation; Piperidines; Plant Extracts; Pyrazoles; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; Rimonabant | 2012 |
Plant derived alkaloid (-)-cassine induces anti-inflammatory and anti-hyperalgesics effects in both acute and chronic inflammatory and neuropathic pain models.
Natural products have been revealed as relevant sources of therapeutic agents including those for the management of pain states. In this study, the anti-nociceptive and anti-inflammatory effects of (-)-cassine, isolated from Senna spectabilis were evaluated using pharmacological, behavioural and biochemical approaches. Oral treatment with (-)-cassine (3-30 mg/kg) reduced carrageenan-induced mechanical and thermal nociception associated with the suppression of myeloperoxidase activity in the mouse paw. Moreover, (-)-cassine (1-10 μg/site) prevented mechanical hyperalgesia induced by carrageenan when given through the intraplantar (i.pl.), spinal and intracerebroventricular routes. Additionally, oral treatment with (-)-cassine (3-60 mg/kg) prevented the mechanical hyperalgesia elicited by intraplantar injection of prostaglandin E(2), complete Freund's adjuvant, interleukin-1β, interleukin-6 and keratinocyte-derived chemokine. Furthermore, (-)-cassine inhibited the mechanical nociceptive response induced by ligation of the sciatic nerve and also significantly reduced the levels of cytokines/chemokines in paw tissue following i.pl. injection of carrageenan. In addition, the anti-nociceptive and anti-inflammatory actions of (-)-cassine were associated with its ability to interact with both TRPV1 and TRPA1 receptors and by inhibiting the upregulation of cyclooxigenase-2 as well as inhibiting the phosphorylation of MAPK/ERK and the transcription factor NF-κB. It is important to highlight that oral treatment with (-)-cassine did not produce any effects related to temperature, locomotor activity or catalepsy. Altogether, the present data demonstrate that (-)-cassine has systemic, spinal and supraspinal anti-nociceptive properties when assessed in inflammatory and neuropathic pain models. These effects are associated with its ability to block several signalling pathways associated with inflammatory and nociceptive responses. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Topics: Animals; Behavior, Animal; Carrageenan; Freund's Adjuvant; Hyperalgesia; Inflammation; Ketones; Male; Mice; Neuralgia; Pain Measurement; Pain Threshold; Piperidines | 2012 |
Effect of NMDA NR2B antagonist on neuropathic pain in two spinal cord injury models.
N-Methyl-d-aspartate (NMDA) receptors are thought to play an important role in the processes of central sensitization and pathogenesis of neuropathic pain, particularly after spinal cord injury (SCI). NMDA antagonists effectively reduce neuropathic pain, but serious side effects prevent their use as therapeutic drugs. NMDA NR2B antagonists have been reported to effectively reduce inflammatory and neuropathic pain. In this study, we investigated the effects of NR2B antagonists on neuropathic pain and the expression of NR2B in the spinal cord in 2 SCI models. SCI was induced at T12 by a New York University impactor (contusion) or by sectioning of the lateral half of the spinal cord (hemisection). Ifenprodil (100, 200, 500, 1000nmol) and Ro25-6981 (20, 50, 100, 200nmol) were intrathecally injected and behavioral tests were conducted. Ifenprodil increased the paw withdrawal threshold in both models but also produced mild motor depression at higher doses. Ro25-6981 increased the mechanical nociceptive threshold in a dose-dependent manner without motor depression. NR2B expression was significantly increased on both sides at the spinal segments of L1-2 and L4-5 in the hemisection model but did not change in the contusion model. Increased expression of NR2B in the hemisection model was reduced by intrathecal ifenprodil. These results suggest that intrathecal NMDA NR2B antagonist increased the mechanical nociceptive threshold after SCI without motor depression. A selective subtype of NMDA receptor, such as NR2B, may be a more selective target for pain control because NMDA receptors play a crucial role in the development and maintenance of chronic pain. Topics: Animals; Behavior, Animal; Excitatory Amino Acid Antagonists; Male; Neuralgia; Pain Measurement; Phenols; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Spinal Cord; Spinal Cord Injuries | 2012 |
Changes in cannabinoid receptor subtype 1 activity and interaction with metabotropic glutamate subtype 5 receptors in the periaqueductal gray-rostral ventromedial medulla pathway in a rodent neuropathic pain model.
This study analyzed the effect of intra-ventrolateral periaqueductal grey (VL PAG) cannabinoid receptor (CB) stimulation on pain responses and rostral ventromedial medulla (RVM) neural activity in the chronic constriction injury (CCI) model of neuropathic pain in rats. Interaction between CB1 and metabotropic glutamate 1 and 5 (mGlu(1)/mGlu(5)) receptors was also investigated together with the expression of the CB1 receptor associated Gαi3 and cannabinoid receptor interacting 1a (CRIP 1a) proteins and the endocannabinoid synthesising and hydrolysing enzymes. In rats not subjected to CCI-induced pain, intra-VL PAG (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate (WIN 55,212-2) (2-4-8 nmol), a CB receptor agonist, increased the tail flick latency and changed the ongoing activity of RVM OFF and the tail flick-related activity of the ON and OFF cells, accordingly. These effects were prevented by SR141716A and MPEP, selective CB(1) and mGlu(5) receptor antagonists, respectively, though not by CPCCOEt, a selective mGlu(1) receptor antagonist. A higher dose up to 16 nmol of WIN 55,212-2 was necessary to increase tail flick latency and change ON and OFF cell activity in CCI rats. Consistently, CCI rats showed a decrease in the expression of CB(1) receptors, NAPE-PLD, Gαi3 and CRIP 1a proteins;the expression of diacylglycerol lipase A (DAGLA) was increased while fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL) did not change. As in control rats, MPEP and SR141716A also blocked WIN 55,212-2- induced effects in CCI rats. These data demonstrate a down regulation of the endocannabinoid system and a functional interaction between mGlu(5) and CB(1) receptors for cannabinoid-mediated effect in the PAG-RVM pain circuitry in neuropathic pain inflicted rats. Topics: Analgesics; Animals; Benzoxazines; Disease Models, Animal; Drug Interactions; Excitatory Amino Acid Antagonists; Male; Medulla Oblongata; Morpholines; Naphthalenes; Neuralgia; Periaqueductal Gray; Piperidines; Pyrazoles; Pyridines; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Rimonabant | 2012 |
A novel series of pyrazolylpiperidine N-type calcium channel blockers.
Selective blockers of the N-type calcium channel have proven to be effective in animal models of chronic pain. However, even though intrathecally delivered synthetic ω-conotoxin MVIIA from Conus magnus (ziconotide [Prialt®]) has been approved for the treatment of chronic pain in humans, its mode of delivery and narrow therapeutic window have limited its usefulness. Therefore, the identification of orally active, small-molecule N-type calcium channel blockers would represent a significant advancement in the treatment of chronic pain. A novel series of pyrazole-based N-type calcium channel blockers was identified by structural modification of a high-throughput screening hit and further optimized to improve potency and metabolic stability. In vivo efficacy in rat models of inflammatory and neuropathic pain was demonstrated by a representative compound from this series. Topics: Analgesics; Animals; Calcium Channel Blockers; Calcium Channels, N-Type; Cell Line; Chronic Pain; High-Throughput Screening Assays; Humans; Neuralgia; omega-Conotoxins; Patch-Clamp Techniques; Piperidines; Pyrazoles; Rats; Structure-Activity Relationship | 2012 |
Differential effects of calcitonin gene-related peptide receptor blockade by olcegepant on mechanical allodynia induced by ligation of the infraorbital nerve vs the sciatic nerve in the rat.
Previous studies showed that 5-hydroxytryptamine (5-HT)(1B/1D) receptor stimulation by triptans alleviates neuropathic pain caused by chronic constriction injury to the infraorbital nerve (CCI-ION) but not the sciatic nerve (CCI-SN) in rats. To assess whether such differential effects in the cephalic vs extracephalic territories is a property shared by other antimigraine drugs, we used the same models to investigate the effects of olcegepant, which has an antimigraine action mediated through calcitonin gene-related peptide (CGRP) receptor blockade. Adult male rats underwent unilateral CCI to the ION or the SN, and subsequent allodynia and/or hyperalgesia were assessed in ipsilateral vibrissal territory or hindpaw, respectively, using von Frey filaments and validated nociceptive tests. c-Fos expression was quantified by immunohistochemistry and interleukin 6 and activating transcription factor 3 (ATF3) mRNAs by real-time quantitative reverse transcriptase-polymerase chain reaction. Like naratriptan (0.1 to 0.3mg/kg, subcutaneously), olcegepant (0.3 to 0.9mg/kg, intravenously) markedly reduced mechanical allodynia in CCI-ION rats. In contrast, in CCI-SN rats, mechanical allodynia was completely unaffected and hyperalgesia was only marginally reduced by these drugs. A supra-additive antiallodynic effect was observed in CCI-ION rats treated with olcegepant (0.3mg/kg intravenously) plus naratriptan (0.1mg/kg subcutaneously), whereas this drug combination remained inactive in CCI-SN rats. Olcegepant (0.6mg/kg, intravenously) significantly reduced the number of c-Fos immunolabeled cells in spinal nucleus of the trigeminal nerve and upregulation of ATF3 transcript (a marker of neuron injury) but not that of interleukin-6 in trigeminal ganglion of CCI-ION rats. These findings suggest that CGRP receptor blockade might be of potential interest to alleviate trigeminal neuropathic pain. Topics: Activating Transcription Factor 3; Animals; Biomarkers; Calcitonin Gene-Related Peptide Receptor Antagonists; Dipeptides; Hyperalgesia; Interleukin-6; Locomotion; Male; Maxillary Nerve; Neuralgia; Pain Measurement; Piperazines; Piperidines; Proto-Oncogene Proteins c-fos; Quinazolines; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction; Receptors, Calcitonin Gene-Related Peptide; RNA, Messenger; Rotarod Performance Test; Sciatic Nerve; Serotonin 5-HT1 Receptor Agonists; Tryptamines | 2012 |
New adamantane phenylalkylamines with σ-receptor binding affinity and anticancer activity, associated with putative antagonism of neuropathic pain.
The synthesis of the adamantane phenylalkylamines 2a-d, 3a-c, and 4a-e is described. These compounds exhibited significant antiproliferative activity, in vitro, against eight cancer cell lines tested. The σ(1), σ(2), and sodium channel binding affinities of compounds 2a, 3a, 4a, and 4c-e were investigated. The most interesting analogue, 4a, exhibited significant in vivo anticancer profile on pancreas, prostate, leukemia, and ovarian cancer cell line xenografts together with apoptosis and caspase-3 activation. Inhibition of the cancer cells cycle at the sub-G1 level was also obtained with 4a. Finally, encouraging results were observed with 4a in vivo on mice, suggesting putative antimetastatic and analgesic activities of this compound. Topics: Adamantane; Animals; Antineoplastic Agents; Apoptosis; Caspase 3; Cell Cycle; Cell Proliferation; Female; Humans; Male; Mice; Mice, SCID; Molecular Structure; Neuralgia; Ovarian Neoplasms; Pancreatic Neoplasms; Piperidines; Prostatic Neoplasms; Protein Binding; Receptors, sigma; Structure-Activity Relationship; Tumor Cells, Cultured | 2012 |
Aminopiperidine sulfonamide Cav2.2 channel inhibitors for the treatment of chronic pain.
The voltage-gated calcium channel Ca(v)2.2 (N-type calcium channel) is a critical regulator of synaptic transmission and has emerged as an attractive target for the treatment of chronic pain. We report here the discovery of sulfonamide-derived, state-dependent inhibitors of Ca(v)2.2. In particular, 19 is an inhibitor of Ca(v)2.2 that is selective over cardiac ion channels, with a good preclinical PK and biodistribution profile. This compound exhibits dose-dependent efficacy in preclinical models of inflammatory hyperalgesia and neuropathic allodynia and is devoid of ancillary cardiovascular or CNS pharmacology at the doses tested. Importantly, 19 exhibited no efficacy in Ca(v)2.2 gene-deleted mice. The discovery of metabolite 26 confounds further development of members of this aminopiperidine sulfonamide series. This discovery also suggests specific structural liabilities of this class of compounds that must be addressed. Topics: Animals; Calcium Channel Blockers; Calcium Channels, N-Type; Cells, Cultured; Chronic Pain; Dogs; Humans; Hyperalgesia; Inflammation; Mice; Mice, Knockout; Microsomes, Liver; Neuralgia; Patch-Clamp Techniques; Piperidines; Rats; Rats, Sprague-Dawley; Sulfonamides; Tissue Distribution | 2012 |
Development of potent μ and δ opioid agonists with high lipophilicity.
An SAR study on the Dmt-substituted enkephalin-like tetrapeptide with a N-phenyl-N-piperidin-4-ylpropionamide moiety at the C-terminal was performed and has resulted in highly potent ligands at μ and δ opioid receptors. In general, ligands with the substitution of D-Nle(2) and halogenation of the aromatic ring of Phe(4) showed highly increased opioid activities. Ligand 6 with good biological activities in vitro demonstrated potent in vivo antihyperalgesic and antiallodynic effects in the tail-flick assay. Topics: Amides; Analgesics, Opioid; Animals; Binding, Competitive; Cell Membrane Permeability; CHO Cells; Cricetinae; Cricetulus; Humans; Hyperalgesia; Ileum; In Vitro Techniques; Ligands; Male; Mice; Muscle, Smooth; Neuralgia; Oligopeptides; Piperidines; Propionates; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, mu; Structure-Activity Relationship; Vas Deferens | 2011 |
Neuronal NR2B-containing NMDA receptor mediates spinal astrocytic c-Jun N-terminal kinase activation in a rat model of neuropathic pain.
Spinal N-methyl d-aspartate receptor (NMDAR) plays a pivotal role in nerve injury-induced central sensitization. Recent studies suggest that NMDAR also contributes to neuron-astrocyte signaling. c-Jun N-terminal kinase (JNK) is persistently and specifically activated (indicated by phosphorylation) in spinal cord astrocytes after nerve injury and thus it is considered as a dependable indicator of pain-related astrocytic activation. NMDAR-mediated JNK activation in spinal dorsal horn might be an important form of neuron-astrocyte signaling in neuropathic pain. In the present study, we observed that intrathecal injection of MK-801, a noncompetitive NMDA receptor antagonist, or Ro25-6981 and ifenprodil, which are selective antagonists of NR2B-containing NMDAR each significantly reduced nerve injury-induced JNK activation. Double immunostaining showed that NR2B was highly expressed in neurons, indicating the effect of NMDAR antagonists on JNK activation was indirect. We further observed that intrathecal injection of NMDA (twice a day for 3 days) significantly increased spinal JNK phosphorylation. Besides, NMDAR-related JNK activation could be blocked by a neuronal nitric oxide synthase (nNOS) selective inhibitor (7-nitroindazole sodium salt) but not by a nNOS sensitive guanylyl cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one). Finally, real-time RT-PCR and immunostaining showed that nerve injury-induced interleukin-1beta expression was dependent on astrocytic JNK activation. Treatments targeting NMDAR-nNOS pathway also influenced interleukin-1beta expression, which further confirmed our hypothesis. Taken together, our results suggest that neuronal NMDAR-nNOS pathway could activate astrocytic JNK pathway. Excitatory neuronal transmission initiates astrocytic activation-induced neuroinflammation in this way, which contributes to nerve injury-induced neuropathic pain. Topics: Animals; Astrocytes; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Guanylate Cyclase; Hyperalgesia; Indazoles; JNK Mitogen-Activated Protein Kinases; Male; Neuralgia; Neurons; Nitric Oxide Synthase Type I; Pain Measurement; Phenols; Phosphorylation; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Signal Transduction; Spinal Cord | 2011 |
Nonselective and NR2B-selective N-methyl-D-aspartic acid receptor antagonists produce antinociception and long-term relief of allodynia in acute and neuropathic pain.
At low dose, the nonselective N-methyl-D-aspartate receptor antagonist ketamine produces potent analgesia. In humans, psychedelic side effects limit its use. To assess whether other N-methyl-D-aspartate receptor antagonist have an improved therapeutic utility index, we compared antinociceptive, side effect, and locomotor activity of three N-methyl-D-aspartate receptor antagonists.. Ketamine, its active metabolite norketamine, and the NR2B-selective antagonist traxoprodil (CP-101,606) were tested in rat models of acute antinociception (paw-withdrawal response to heat) and chronic neuropathic pain (spared nerve injury). Side effects (stereotypical behavior, activity level) were scored and locomotor function of the nerve-injured paw was assessed using computerized gait analysis. In the chronic pain model, treatment was given 7 days after surgery, for 3 h on 5 consecutive days.. All three N-methyl-D-aspartate receptor antagonists caused dose-dependent antinociception in the acute pain model and relief of mechanical and cold allodynia for 3-6 weeks after treatment in the chronic pain model (P < 0.05 vs. saline). In both tests, ketamine was most potent. Norketamine was as much as two times less potent and traxoprodil was up to 8 times less potent than ketamine (based on area under the curve measures). Nerve injury caused an inability to use the affected paw that either did not improve after treatment (ketamine, traxoprodil) or showed only a limited effect (norketamine). Traxoprodil, but not ketamine or norketamine, showed clear separation between effect and side effect.. The observation that traxoprodil causes relief of chronic pain outlasting the treatment period with no side effects makes it an attractive alternative to ketamine in the treatment of chronic neuropathic pain. Topics: Acute Disease; Analgesics; Animals; Chronic Disease; Cold Temperature; Data Interpretation, Statistical; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Female; Foot Injuries; Hyperalgesia; Infrared Rays; Ketamine; Motor Activity; Neuralgia; Pain; Pain Measurement; Physical Stimulation; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Stereotyped Behavior | 2011 |
Synthesis and biological evaluation of 4-piperidinecarboxylate and 4-piperidinecyanide derivatives for T-type calcium channel blockers.
To obtain selective and potent inhibitor for T-type calcium channel by ligand based drug design, 4-piperidinecarboxylate and 4-piperidinecyanide derivatives were prepared and evaluated for in vitro and in vivo activity against α(1G) calcium channel. Among them, several compounds showed good T-type calcium channel inhibitory activity and minimal off-target activity over hERG channel (% inhibition at 10 μM=61.85-71.99, hERG channel IC(50)=1.57 ± 0.14-4.98 ± 0.36 μM). Selected compound 31a was evaluated on SNL model of neuropathic pain and showed inhibitory effect on mechanical allodynia. Topics: Animals; Calcium Channel Blockers; Calcium Channels, T-Type; Disease Models, Animal; Drug Design; Drug Evaluation, Preclinical; Drug Stability; Ether-A-Go-Go Potassium Channels; HEK293 Cells; Humans; Hyperalgesia; Inhibitory Concentration 50; Ligands; Mibefradil; Molecular Structure; Molecular Targeted Therapy; Neuralgia; Patch-Clamp Techniques; Piperidines; Quantitative Structure-Activity Relationship; Rats; Spinal Nerves; Structure-Activity Relationship | 2011 |
Discovery of 3-substituted aminocyclopentanes as potent and orally bioavailable NR2B subtype-selective NMDA antagonists.
A series of 3-substituted aminocyclopentanes has been identified as highly potent and selective NR2B receptor antagonists. Incorporation of a 1,2,4-oxadiazole linker and substitution of the pendant phenyl ring led to the discovery of orally bioavailable analogues that showed efficient NR2B receptor occupancy in rats. Unlike nonselective NMDA antagonists, the NR2B-selective antagonist 22 showed no adverse affects on motor coordination in the rotarod assay at high dose. Compound 22 was efficacious following oral administration in a spinal nerve ligation model of neuropathic pain and in an acute model of Parkinson's disease in a dose dependent manner. Topics: Administration, Oral; Animals; Benzopyrans; Biological Availability; Catalepsy; Cyclopentanes; Dogs; Drug Discovery; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Excitatory Amino Acid Antagonists; Female; Half-Life; Indicators and Reagents; Isomerism; Ligation; Macaca mulatta; Male; Neuralgia; Oxadiazoles; Parkinson Disease; Piperidines; Pyrimidines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Spinal Nerves | 2011 |
Contribution of the spinal cord BDNF to the development of neuropathic pain by activation of the NR2B-containing NMDA receptors in rats with spinal nerve ligation.
The NMDA receptor and the brain-derived neurotrophic factor (BDNF) are involved in central sensitization and synaptic plasticity in the spinal cord. To determine whether the spinal cord BDNF contributes to the development and maintenance of neuropathic pain by activation of the dorsal horn NR2B-containing NMDA (NMDA-2B) receptors, this study was designed to investigate if alterations in BDNF and its TrkB receptor in the spinal dorsal horn would parallel the timeline of the development of neuropathic pain in lumbar 5 (L5) spinal nerve ligated (SNL) rats. The enzyme-linked immunosorbent assay (ELISA) showed that the BDNF concentration significantly increased during 24 h post-surgery, and the maximal enhancement lasted for 48 h. It declined as time progressed and returned to the level of pre-operation at 28 days after SNL. In parallel with the alteration of BDNF concentration in the spinal dorsal horn, the 50% paw withdrawal threshold (PWT) of the ipsilateral hind paw in SNL rats also showed a significant decrease during 24-48 h after SNL as compared with those in sham-operated rats. The correlation analysis revealed that the BDNF concentration had a negative correlation with 50% PWT in early stage (0-48 h) (r=-0.974, p=0.001), but not late stage (3-28 days) (r=0.3395, p=0.6605), after SNL. Similarly, the immunohistochemical staining revealed that a significant up-regulation of BDNF expression in the spinal dorsal horn appeared as early as 12 h post-operation in SNL rats, peaked at 24-48 h, declined at 3 days and disappeared at 14 days after SNL. In contrast, an increase in NMDA-2B receptors expression in the spinal dorsal horn was delayed to 48 h after SNL. The increase reached peak at 3 days, lasted for 14 days, and returned to the control level of pre-operation at 28 days after SNL. The maximal enhancement of BDNF expression occurred in early stage (24-48 h) after nerve injury, while the peak of NMDA-2B receptors expression appeared in late stage (3-14 days) post-nerve ligation. As compared with the dynamic changes of 50% PWT in the timeline after nerve injury, the maximal enhancement of BDNF expression closely paralleled the maximal decline in the slope of 50% PWT, while the peak of NMDA-2B receptors expression corresponded with the plateau of the decreased 50% PWT. Therefore, the increased BDNF in the spinal dorsal horn was likely to be associated with the initiation of neuropathic pain in early stage (0-48 h), while the activation of NMDA-2B receptors Topics: Analysis of Variance; Animals; Brain-Derived Neurotrophic Factor; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme-Linked Immunosorbent Assay; Excitatory Amino Acid Antagonists; Gene Expression Regulation; Hyperalgesia; Male; Neuralgia; Pain Measurement; Phenols; Piperidines; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Receptor, trkB; Receptors, N-Methyl-D-Aspartate; Spinal Cord; Spinal Cord Injuries; Statistics as Topic; Time Factors | 2010 |
Endocannabinoid regulation of spinal nociceptive processing in a model of neuropathic pain.
Models of neuropathic pain are associated with elevated spinal levels of endocannabinoids (ECs) and altered expression of cannabinoid receptors on primary sensory afferents and post-synaptic cells in the spinal cord. We investigated the impact of these changes on the spinal processing of sensory inputs in a model of neuropathic pain. Extracellular single-unit recordings of spinal neurones were made in anaesthetized neuropathic and sham-operated rats. The effects of spinal administration of the cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) and the cannabinoid receptor type 2 (CB(2)) receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicycloheptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) on mechanically-evoked responses of spinal neurones were determined. The effects of spinal administration of (5Z,8Z11Z,14Z)-N-(3-furanylmethyl)-5,8,11,14-eicosatetraenamide (UCM707), which binds to CB(2) receptors and alters transport of ECs, on evoked responses of spinal neurones and spinal levels of ECs were also determined. The cannabinoid CB(1) receptor antagonist AM251, but not the CB(2) receptor antagonist, significantly facilitated 10-g-evoked responses of spinal neurones in neuropathic, but not sham-operated, rats. Spinal administration of UCM707 did not alter spinal levels of ECs but did significantly inhibit mechanically-evoked responses of neurones in neuropathic, but not sham-operated, rats. Pharmacological studies indicated that the selective inhibitory effects of spinal UCM707 in neuropathic rats were mediated by activation of spinal CB(2) receptors, as well as a contribution from transient receptor potential vanilloid 1 (TRPV1) channels. This work demonstrates that changes in the EC receptor system in the spinal cord of neuropathic rats influence the processing of sensory inputs, in particular low-weight inputs that drive allodynia, and indicates novel effects of drugs acting via multiple elements of this receptor system. Topics: Anesthesia; Animals; Arachidonic Acids; Camphanes; Cannabinoid Receptor Modulators; Central Nervous System Agents; Disease Models, Animal; Endocannabinoids; Evoked Potentials, Somatosensory; Furans; Male; Microelectrodes; Neuralgia; Neurons; Physical Stimulation; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Spinal Cord; TRPV Cation Channels | 2010 |
Low dose of donepezil improves gabapentin analgesia in the rat spared nerve injury model of neuropathic pain: single and multiple dosing studies.
The use of cholinergic drugs, either alone or in combination with other drugs, has been suggested as an approach to improve treatment outcome for patients suffering from neuropathic pain. The present study was undertaken in the rat spared nerve injury model of neuropathic pain to evaluate the effect of the cholinesterase inhibitor donepezil when administered (1) alone and (2) as low-dose in combination with the first-line recommendation gabapentin. The co-administration studies were performed following single and multiple dosing. Single, parenteral dosing of donepezil (1, 1.5 and 3 mg/kg s.c.) produced a dose-dependent reversal of the neuropathic pain behaviour. Co-administration of a sub-effective dose of donepezil (0.5 mg/kg s.c.) and low doses of gabapentin (10 and 30 mg/kg s.c.) resulted in a three- to fourfold increase of the analgesic effect, in comparison with gabapentin administered alone. Following multiple, oral dosing, gabapentin (25 mg/kg p.o.) was administered once daily over 20 days. Addition of donepezil (1.5 mg/kg p.o.) from day 11 to day 20 resulted in improved analgesia during the period of combination therapy, in comparison with the gabapentin monotherapy period. Furthermore, the treatment effects were stable in both the mono- and the combination therapy period, indicating that tolerance development does not occur within the studied time frame. In conclusion, the results from this preclinical study support the use of donepezil as adjunctive to gabapentin to improve the therapeutic outcome in the management of neuropathic pain. Topics: Amines; Analgesics; Animals; Cholinesterase Inhibitors; Cyclohexanecarboxylic Acids; Disease Models, Animal; Donepezil; Drug Administration Schedule; Drug Combinations; Drug Synergism; Gabapentin; gamma-Aminobutyric Acid; Indans; Male; Neuralgia; Peripheral Nervous System Diseases; Piperidines; Rats; Rats, Sprague-Dawley | 2010 |
Cannabinoid subtype-2 receptors modulate the antihyperalgesic effect of WIN 55,212-2 in rats with neuropathic spinal cord injury pain.
There is increasing evidence for a role of the cannabinoid (CB) system in the development of neuropathic pain (NP) after spinal cord injury (SCI). The nonspecific CB₁ and CB₂ receptor agonists, WIN 55, 212-2 (WIN), have previously been shown to alleviate both mechanical and thermal hyperalgesia (TH) after peripheral nerve injury.. The present study was designed to identify the CB receptors involved in the antihyperalgesic effect of WIN by using selective antagonists for CB₁ and CB₂ receptors.. This is an in vivo and behavioral study using a moderate T9 contusion SCI. After injury, TH of the hind paws was measured on postinjury days 21 through 42.. Sprague-Dawley rats underwent a contusion SCI using the Multicenter Animal Spinal Cord Injury Study (MASCIS) weight-drop impactor, which induced a moderate T9 SCI. Only animals showing consistent plantar stepping and consistent forelimb and hind limb coordination (Basso, Beattie, and Bresnahan score=15) were tested for TH. Animals exhibiting decreased withdrawal latency time, indicating TH, on or before Day 42, were selected for pharmacological intervention. Animals not exhibiting TH did not receive pharmacological intervention and were sacrificed. Rats underwent hind paw testing before any drug administration (after injury), 45 minutes after selective CB antagonist (AM 251 or AM 630) administration (postantagonist) and again 45 minutes after WIN administration (post-WIN). There were a total of seven treatment groups: saline vehicle control; Dimethyl sulfoxide (DMSO) vehicle control; low-dose WIN (0.2 mg/kg); and high-dose WIN (2.0 mg/kg); AM 251 (3 mg/kg) and AM 630 (1 mg/kg) were given subcutaneously in a total volume of 0.5 mL. Followed by intraperitoneal injection of WIN after each antagonist, sham-operated rats repeated pharmacological intervention used with treatment Groups 5 and 6.. Thermal hyperalgesia was significantly ameliorated in a dose-dependent manner with systemically administered WIN. Cannabinoid receptor Type 1 antagonist AM 251 pretreatment did not affect the antihyperalgesic effect of WIN. By contrast, pretreatment with the CB₂ receptor antagonist AM 630 significantly attenuated the effect of WIN.. Taken together, these results suggest a role of the CB₂ receptor in modulating SCI-induced TH. Selective activation of the CB₂ receptor could potentially lead to analgesic effects on NP while avoiding psychotropic side effects in patients with SCI. Topics: Analgesics; Analysis of Variance; Animals; Benzoxazines; Dose-Response Relationship, Drug; Hot Temperature; Hyperalgesia; Male; Morpholines; Naphthalenes; Neuralgia; Pain Measurement; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Spinal Cord Injuries | 2010 |
Conformationally constrained NR2B selective NMDA receptor antagonists derived from ifenprodil: Synthesis and biological evaluation of tetrahydro-3-benzazepine-1,7-diols.
NR2B selective NMDA receptor antagonists with tetrahydro-3-benzazepine-1,7-diol scaffold have been designed by formal cleavage and reconstitution of the piperidine ring of the lead compound ifenprodil (1). The secondary amine 10 represents the central building block for the synthesis of more than 25 tetrahydro-3-benzazepin-1-ols. Generally 7-hydroxy derivatives display higher NR2B receptor affinities than the corresponding 7-benzyloxy compounds. A distance of four atoms (five bond lengths) between the basic amino group and the terminal aryl moiety led to highest NR2B affinity. 3-(4-Phenylbutyl)-2,3,4,5-tetrahydro-1H-3-benzazepine-1,7-diol (WMS-1410, 25) represents the most promising NR2B antagonist of this series showing a K(i)-value of 14nM. Compound 25 reveals excellent selectivity over more than 100 further relevant target proteins, antagonizes glutamate induced excitotoxicity (IC(50)=18.4nM) and is metabolically more stable than ifenprodil. Up to a dose of 100mg/kg 25 is well tolerated by mice and it shows dose dependent analgesic activity in the late neuropathic pain phase of the formalin assay. Topics: Analgesics; Animals; Benzazepines; Humans; Mice; Microsomes, Liver; Neuralgia; Piperidines; Rats; Receptors, N-Methyl-D-Aspartate; Structure-Activity Relationship | 2010 |
Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain.
Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn has been shown to be essential for the initiation of central sensitization and the hyperexcitability of dorsal horn neurons in chronic pain. However, whether the spinal NR2B-containing NMDA (NMDA-2B) receptors are involved still remains largely unclear. Using behavioral test and in vivo extracellular electrophysiological recording in L5 spinal nerve-ligated (SNL) neuropathic rats, we investigate the roles of spinal cord NMDA-2B receptors in the development of neuropathic pain. Our study showed that intrathecal (i.t.) injection of Ro 25-6981, a selective NMDA-2B receptor antagonist, had a dose-dependent anti-allodynic effect without causing motor dysfunction. Furthermore, i.t. application of another NMDA-2B receptor antagonist ifenprodil prior to SNL also significantly inhibited the mechanical allodynia but not the thermal hyperalgesia. These data suggest that NMDA-2B receptors at the spinal cord level play an important role in the development of neuropathic pain, especially at the early stage following nerve injury. In addition, spinal administration of Ro 25-6981 not only had a dose-dependent inhibitory effect on the C-fiber responses of dorsal horn wide dynamic range (WDR) neurons in both normal and SNL rats, but also significantly inhibited the long-term potentiation (LTP) in the C-fiber responses of WDR neurons induced by high-frequency stimulation (HFS) applied to the sciatic nerve. These results indicate that activation of the dorsal horn NMDA-2B receptors may be crucial for the spinal nociceptive synaptic transmission and for the development of long-lasting spinal hyperexcitability following nerve injury. In conclusion, the spinal cord NMDA-2B receptors play a role in the development of central sensitization and neuropathic pain via the induction of LTP in dorsal horn nociceptive synaptic transmission. Therefore, the spinal cord NMDA-2B receptor is likely to be a target for clinical pain therapy. Topics: Action Potentials; Analysis of Variance; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Electric Stimulation; Excitatory Amino Acid Antagonists; Hyperalgesia; Long-Term Potentiation; Male; Motor Activity; Nerve Fibers; Neuralgia; Pain Measurement; Pain Threshold; Phenols; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Sensory Receptor Cells; Spinal Cord; Time Factors | 2009 |
Spinal cholinergic mechanism of the relieving effects of electroacupuncture on cold and warm allodynia in a rat model of neuropathic pain.
This study was performed to determine whether spinal cholinergic systems mediate the relieving effects of electroacupuncture (EA) on cold and warm allodynia in a rat model of neuropathic pain. For neuropathic surgery, the right superior caudal trunk was resected at the level between the S1 and S2 spinal nerves innervating the tail. Two weeks after the injury, the intrathecal (i.t.) catheter was implanted. Five days after the catheterization, the rats were injected with atropine (non-selective muscarinic antagonist, 30 microg), mecamylamine (non-selective nicotinic antagonist, 50 microg), pirenzepine (M(1) muscarinic antagonist, 10 microg), methoctramine (M(2) antagonist, 10 microg) or 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) (M(3) antagonist, 10 microg). Ten minutes after the injection, EA was applied to the ST36 acupoint for 30 min. The cold and warm allodynia were assessed by the tail immersion test [i.e., immersing the tail in cold (4 degrees C) or warm (40 degrees C) water and measuring the latency of an abrupt tail movement] before and after the treatments. The i.t. atropine, but not mecamylamine, blocked the relieving effects of EA on cold and warm allodynia. Furthermore, i.t. pirenzepine attenuated the antiallodynic effects of EA, whereas methoctramine and 4-DAMP did not. These results suggest that spinal muscarinic receptors, especially M(1) subtype, mediate the EA-induced antiallodynia in neuropathic rats. Topics: Animals; Atropine; Cholinergic Agents; Cholinergic Fibers; Cold Temperature; Diamines; Disease Models, Animal; Electroacupuncture; Hot Temperature; Hyperesthesia; Male; Mecamylamine; Neuralgia; Pain Threshold; Piperidines; Pirenzepine; Rats; Rats, Sprague-Dawley; Receptor, Muscarinic M1; Spinal Nerves | 2009 |
Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain.
Previous studies of peripheral immune cells have documented that activation of adenosine 2A receptors (A(2A)Rs) decrease proinflammatory cytokine release and increase release of the potent anti-inflammatory cytokine, interleukin-10 (IL-10). Given the growing literature supporting that glial proinflammatory cytokines importantly contribute to neuropathic pain and that IL-10 can suppress such pain, we evaluated the effects of intrathecally administered A(2A)R agonists on neuropathic pain using the chronic constriction injury (CCI) model. A single intrathecal injection of the A(2A)R agonists 4-(3-(6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl)prop-2-ynyl)piperidine-1-carboxylic acid methyl ester (ATL313) or 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido adenosine HCl (CGS21680), 10-14 d after CCI versus sham surgery, produced a long-duration reversal of mechanical allodynia and thermal hyperalgesia for at least 4 weeks. Neither drug altered the nociceptive responses of sham-operated controls. An A(2A)R antagonist [ZM241385 (4-(2-[7-amino-2-(2-furyl)(1,2,4)triazolo(2,3-a)(1,3,5)triazin-5-ylamino]ethyl)phenol)] coadministered intrathecally with ATL313 abolished the action of ATL313 in rats with neuropathy-induced allodynia but had no effect on allodynia in the absence of the A(2A)R agonist. ATL313 attenuated CCI-induced upregulation of spinal cord activation markers for microglia and astrocytes in the L4-L6 spinal cord segments both 1 and 4 weeks after a single intrathecal ATL313 administration. Neutralizing IL-10 antibodies administered intrathecally transiently abolished the effect of ATL313 on neuropathic pain. In addition, IL-10 mRNA was significantly elevated in the CSF cells collected from the lumbar region. Activation of A(2A)Rs after intrathecal administration may be a novel, therapeutic approach for the treatment of neuropathic pain by increasing IL-10 in the immunocompetent cells of the CNS. Topics: Adenosine A2 Receptor Agonists; Animals; Injections, Spinal; Male; Neuralgia; Pain; Pain Measurement; Piperidines; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A | 2009 |
MDA7: a novel selective agonist for CB2 receptors that prevents allodynia in rat neuropathic pain models.
There is growing interest in using cannabinoid type 2 (CB(2)) receptor agonists for the treatment of neuropathic pain. In this report, we describe the pharmacological characteristics of MDA7 (1-[(3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-yl)carbonyl]piperidine), a novel CB(2) receptor agonist.. We characterized the pharmacological profile of MDA7 by using radioligand-binding assays and in vitro functional assays at human cannabinoid type 1 (CB(1)) and CB(2) receptors. In vitro functional assays were performed at rat CB(1) and CB(2) receptors. The effects of MDA7 in reversing neuropathic pain were assessed in spinal nerve ligation and paclitaxel-induced neuropathy models in rats.. MDA7 exhibited selectivity and agonist affinity at human and rat CB(2) receptors. MDA7 treatment attenuated tactile allodynia produced by spinal nerve ligation or by paclitaxel in a dose-related manner. These effects were selectively antagonized by a CB(2) receptor antagonist but not by CB(1) or opioid receptor antagonists. MDA7 did not affect rat locomotor activity.. MDA7, a novel selective CB(2) agonist, was effective in suppressing neuropathic nociception in two rat models without affecting locomotor behaviour. These results confirm the potential for CB(2) agonists in the treatment of neuropathic pain. Topics: Analgesics; Animals; Benzofurans; CHO Cells; Cricetinae; Cricetulus; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Ligation; Motor Activity; Neuralgia; Paclitaxel; Pain Measurement; Piperidines; Radioligand Assay; Rats; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Species Specificity; Spinal Nerves | 2008 |
NMDA receptor 2B subunit-mediated synaptic transmission in the superficial dorsal horn of peripheral nerve-injured neuropathic mice.
Previous research has shown that peripheral inflammation and peripheral nerve injury alter the properties of NMDA receptors in the spinal dorsal horn. However, there is no direct evidence that demonstrates the influence of peripheral nerve injury on NMDA receptor-mediated synaptic transmission in the spinal dorsal horn. Using whole cell tight-seal methods, NMDA receptor-mediated excitatory postsynaptic currents (NMDA EPSCs) were recorded from superficial dorsal horn neurons in adult mouse spinal cord slices. Peripheral nerve injury-induced changes in the pharmacological and electrophysiological properties of synaptic NMDA receptors were studied. The ratio of the amplitude of NMDA EPSCs to that of non-NMDA EPSCs was larger in nerve-ligated neuropathic mice than in sham-operated control mice. The decay phase of the NMDA EPSCs was slower in nerve-ligated neuropathic mice. The NR2B subunit-specific NMDA receptor antagonist ifenprodil (10 microM) reduced the amplitude of the NMDA EPSCs and shortened their decay phase. The sensitivity of NMDA EPSCs to ifenprodil was significantly larger in nerve-ligated neuropathic mice than in sham-operated control mice. Single-cell RT-PCR analysis performed on superficial dorsal horn neurons showed that the incidence of NR2A mRNA-expressing neurons was reduced in nerve-ligated neuropathic mice. This result, together with the electrophysiological findings, suggests that the subunit composition of the subsynaptic NMDA receptors in the superficial dorsal horn was altered by peripheral nerve injury. Pharmacological and electrophysiological changes observed in the present experiments might be the underlying causes of the hyperalgesia and allodynia induced by peripheral nerve injury and inflammation. Topics: Animals; Behavior, Animal; Disease Models, Animal; Excitatory Amino Acid Agents; Excitatory Postsynaptic Potentials; Gene Expression Regulation; In Vitro Techniques; Male; Mice; Mice, Inbred ICR; Neuralgia; Patch-Clamp Techniques; Peripheral Nervous System Diseases; Piperidines; Platelet Aggregation Inhibitors; Posterior Horn Cells; Receptors, N-Methyl-D-Aspartate; Reverse Transcriptase Polymerase Chain Reaction; Sensory Thresholds; Synaptic Transmission | 2007 |
Continuous infusion of the cannabinoid WIN 55,212-2 to the site of a peripheral nerve injury reduces mechanical and cold hypersensitivity.
Cannabinoids have analgesic and anti-inflammatory properties but their use is limited by psychotropic activity at CNS receptors. Restricting cannabinoid delivery to peripheral tissues at systemically inactive doses offers a potential solution to this problem.. WIN 55,212-2 was continuously delivered to the site of a partial ligation injury to the sciatic nerve via a perineural catheter connected to a mini-osmotic pump implanted at the time of injury. Bilateral reflex limb withdrawal behaviour was measured in adult male Wistar rats in response to mechanical and cooling stimulation of the hind paw.. Compared with vehicle treatment, WIN 55,212-2 (1.4 microg microl(-1) hr(-1)) reduced hypersensitivity to stimuli applied to the injured limb at 2, 4 and 6 days after injury. The effects of WIN 55,212-2 (0.6-2.8 microg microl(-1) hr(-1)) were dose-dependent. Estimated EC(50) values for reduction in mean responses to mechanical and cooling stimulation (day 4 post-surgery) were 1.55 (95% C.I, [1.11-2.16]) microg microl(-1) hr(-1) and 1.52 (95% C.I, [1.07-2.18]) microg microl(-1) hr(-1), respectively. When delivered to the contralateral side to injury, WIN 55,212-2 (1.4 or 2.8 microg microl(-1) hr(-1)) did not significantly affect nerve injury-associated hypersensitivity. Co-perineural application of a CB(1) receptor antagonist SR141716a and WIN 55,212-2 prevented the effects of WIN 55,212-2 on hypersensitivity. Co-application of CB(2) receptor antagonist SR144528 reversed WIN 55,212-2's effect on mechanical hypersensitivity on day 2 only.. These data support a peripheral antihyperalgesic effect of WIN 55,212-2 when delivered directly to the site of a nerve injury at systemically inactive doses. Topics: Analysis of Variance; Animals; Behavior, Animal; Benzoxazines; Cannabinoids; Cold Temperature; Dose-Response Relationship, Drug; Infusion Pumps; Male; Morpholines; Naphthalenes; Neuralgia; Pain Measurement; Physical Stimulation; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Rimonabant; Sciatic Nerve; Thermosensing; Time Factors | 2007 |
Activation of cannabinoid CB1 and CB2 receptors suppresses neuropathic nociception evoked by the chemotherapeutic agent vincristine in rats.
The ability of cannabinoids to suppress mechanical hypersensitivity (mechanical allodynia) induced by treatment with the chemotherapeutic agent vincristine was evaluated in rats. Sites of action were subsequently identified.. Mechanical hypersensitivity developed over the course of ten daily injections of vincristine relative to groups receiving saline at the same times. Effects of the CB1/CB2 receptor agonist WIN55,212-2, the receptor-inactive enantiomer WIN55,212-3, the CB2-selective agonist (R,S)-AM1241, the opiate agonist morphine and vehicle on chemotherapy-induced neuropathy were evaluated. WIN55,212-2 was administered intrathecally (i.t.) or locally in the hindpaw to identify sites of action. Pharmacological specificity was established using competitive antagonists for CB1 (SR141716) or CB2 receptors (SR144528).. Systemic administration of WIN55,212-2, but not WIN55,212-3, suppressed vincristine-evoked mechanical allodynia. A leftward shift in the dose-response curve was observed following WIN55,212-2 relative to morphine treatment. The CB1 (SR141716) and CB2 (SR144528) antagonists blocked the anti-allodynic effects of WIN55,212-2. (R,S)-AM1241 suppressed vincristine-induced mechanical hypersensitivity through a CB2 mechanism. Both cannabinoid agonists suppressed vincristine-induced mechanical hypersensitivity without inducing catalepsy. Spinal sites of action are implicated in cannabinoid modulation of chemotherapy-induced neuropathy. WIN55,212-2, but not WIN55,212-3, administered i.t. suppressed vincristine-evoked mechanical hypersensitivity at doses that were inactive following local hindpaw administration. Spinal coadministration of both the CB1 and CB2 antagonists blocked the anti-allodynic effects of WIN55,212-2.. Cannabinoids suppress the maintenance of vincristine-induced mechanical allodynia through activation of CB1 and CB2 receptors. These anti-allodynic effects are mediated, at least in part, at the level of the spinal cord. Topics: Animals; Benzoxazines; Body Weight; Camphanes; Cannabinoids; Catalepsy; Dose-Response Relationship, Drug; Hindlimb; Hyperesthesia; Injections, Intraperitoneal; Injections, Spinal; Male; Morphine; Morpholines; Naphthalenes; Neuralgia; Pain Measurement; Pain Threshold; Physical Stimulation; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Thermosensing; Vincristine | 2007 |
The local antinociceptive effects of paracetamol in neuropathic pain are mediated by cannabinoid receptors.
Paracetamol analgesic mechanism of action is still poorly defined but mainly involves central inhibition of cyclooxygenases. Here we tested the peripheral antinociceptive effects of paracetamol (intraplantar injections) in a rat model of neuropathic pain. Paracetamol dose-dependently decreased mechanical allodynia and lowered nociceptive scores associated with hyperalgesia testing. These effects were inhibited by the administration of cannabinoid CB(1) (AM251) and CB(2) (AM630) receptor antagonists. The participation of the peripheral cannabinoid system in paracetamol analgesia is suggested. Topics: Acetaminophen; Analgesics, Non-Narcotic; Animals; Arachidonic Acids; Cannabinoid Receptor Antagonists; Disease Models, Animal; Dose-Response Relationship, Drug; Hindlimb; Hot Temperature; Hyperalgesia; Indoles; Male; Neuralgia; Pain Measurement; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Sciatic Nerve | 2007 |
Role of histamine H3 and H4 receptors in mechanical hyperalgesia following peripheral nerve injury.
Histamine is a chemical mediator that acts at four known types of histamine receptors and has been widely implicated in the development of nociception and neuropathic pain. Blocking histamine H(1) and H(2) receptors has been shown to reduce hyperalgesia following nerve injury, but the role of histamine H(3) and H(4) receptors in neuropathic pain has not been studied. Here, we used blockers of histamine H(3) and H(4) receptors to assess their effects on neuropathic pain behavior and mast cell numbers following peripheral nerve injury. In addition, we assessed the effect of activating H(4) receptors on neuropathic pain behavior.. Rats were subjected to a partial ligation of the sciatic nerve, a model of neuropathic pain, and were treated either systemically or locally (hindpaw) with the H(3)/H(4) receptor inverse agonist thioperamide, the specific H(4) receptor antagonist JNJ 7777120, or the H(4) receptor agonist VUF 8430. Measurements of mechanical hyperalgesia were carried out by Randall-Selitto test for 1-3 weeks, and sciatic nerve tissues were analyzed for numbers of intact mast cells by histology at 9 h after surgery.. Rats treated with thioperamide or JNJ 7777120 showed significantly enhanced mechanical hyperalgesia after partial ligation of the sciatic nerve. The number of intact mast cells in the injured nerve of these rats was higher than in control rats suggesting reduced mast cell degranulation, but was still significantly lower than in intact nerves. Rats treated with VUF 8430 showed significantly reduced mechanical hyperalgesia.. We propose that the increase in mechanical hyperalgesia produced by thioperamide and JNJ 7777120 and the decrease in mechanical hyperalgesia produced by VUF 8430 may represent a direct effect of these agents on mechanospecific primary afferents, or an indirect effect of these agents via injury-induced inflammation. Topics: Animals; Guanidines; Histamine Antagonists; Hyperalgesia; Indoles; Ligation; Male; Mast Cells; Neuralgia; Pain Threshold; Piperazines; Piperidines; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, G-Protein-Coupled; Receptors, Histamine; Receptors, Histamine H3; Receptors, Histamine H4; Sciatic Nerve; Thiourea | 2007 |
Potent analgesic effects of a putative sodium channel blocker M58373 on formalin-induced and neuropathic pain in rats.
M58373, 4-[2-(4-hydroxy-4-{[N-(4-isopropoxyphenyl)-N-methylamino]methyl}piperidin-1-yl)ethyl]benzonitrile monohydrochloride, is a novel compound, which has an inhibitory activity on neurotoxin binding to the site 2 of voltage-gated sodium channels. In this study, we investigated the effects of M58373 on substance P release from sensory neurons in vitro and pain behaviors/responses in rats, compared with mexiletine. M58373 (1-10 microM) inhibited veratridine-induced release of substance P from dorsal root ganglion cells. In the formalin test, oral M58373 (0.3-10 mg/kg) reduced the time spent in nociceptive behaviors only in the late phase. In the neuropathic pain model, oral M58373 (1-10 mg/kg) attenuated mechanical allodynia and heat hyperalgesia in the nerve-injured paw without affecting normal responses in the uninjured paw. In contrast, oral mexiletine (10-100 mg/kg) had a narrow therapeutic dose range in both models because of the adverse effects on the central nervous system. These results suggest that M58373 is a favorable prototype for novel anti-neuropathic pain agents. Topics: Analgesics; Animals; Cells, Cultured; Dose-Response Relationship, Drug; Formaldehyde; Ganglia, Spinal; Hot Temperature; Hyperalgesia; Male; Mexiletine; Motor Activity; Neuralgia; Nitriles; Pain; Pain Measurement; Piperidines; Rats; Rats, Wistar; Sodium Channel Blockers; Stress, Mechanical; Substance P; Veratridine | 2006 |
Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naïve rats and in rat models of inflammatory and neuropathic pain.
Peripheral cannabinoid 2 receptors (CB2 receptors) modulate immune responses and attenuate nociceptive behaviour in models of acute and persistent pain. The aim of the present study was to investigate whether peripheral CB2 receptors modulate spinal processing of innocuous and noxious responses and to determine whether there are altered roles of CB2 receptors in models of persistent pain. Effects of local administration of the CB2 receptor agonist JWH-133 (5 and 15 microg/50 microL) on mechanically evoked responses of spinal wide dynamic range (WDR) neurons in noninflamed rats, rats with carrageenan-induced hindpaw inflammation, sham operated rats and spinal nerve-ligated (SNL) rats were determined in anaesthetized rats in vivo. Mechanical stimulation (von Frey filaments, 6-80 g) of the peripheral receptive field evoked firing of WDR neurons. Mechanically evoked responses of WDR neurons were similar in noninflamed, carrageenan-inflamed, sham-operated and SNL rats. Intraplantar injection of JWH-133 (15 microg), but not vehicle, significantly (P < 0.05) inhibited innocuous and noxious mechanically evoked responses of WDR neurons in all four groups of rats. In many cases the selective CB2 receptor antagonist, SR144528 (10 microg/50 microL), attenuated the inhibitory effects of JWH-133 (15 microg) on mechanically evoked WDR neuronal responses. The CB1 receptor antagonist, SR141716A, did not attenuate the inhibitory effects of JWH-133 on these responses. Intraplantar preadministration of JWH-133 also inhibited (P < 0.05) carrageenan-induced expansion of peripheral receptive fields of WDR dorsal horn neurons. This study demonstrates that activation of peripheral CB2 receptors attenuates both innocuous- and noxious-evoked responses of WDR neurons in models of acute, inflammatory and neuropathic pain. Topics: Action Potentials; Animals; Camphanes; Cannabinoids; Carrageenan; Disease Models, Animal; Inflammation; Ligation; Male; Neural Inhibition; Neuralgia; Nociceptors; Peripheral Nervous System Diseases; Physical Stimulation; Piperidines; Posterior Horn Cells; Pyrazoles; Rats; Rats, Sprague-Dawley; Reaction Time; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Sensory Receptor Cells; Spinal Nerves | 2004 |
CB1 receptor mediated analgesia from the Nucleus Reticularis Gigantocellularis pars alpha is activated in an animal model of neuropathic pain.
Cannabinoids are known to suppress responses to noxious stimulation in animals and man. Recent research has suggested a role for endogenous cannabinoids in the descending inhibition of dorsal horn cells via a supraspinal site of action. We have recently demonstrated [J. Physiol. 506(2) (1998) 459] that the nucleus reticularis gigantocellularis pars alpha (GiA) is a major source of such descending modulation, and importantly, that this system is activated in response to noxious stimulation. We have therefore investigated the role of CB1 receptor activation in mediating the antinociceptive effects of activation of GiA in models of acute and chronic pain. Microinjections (0.5 microl 60% DMSO) of either WIN 55,212-2 (5 microg, selective CB1 agonist), SR141716A (50 microg, competitive CB1 antagonist), both compounds together, or vehicle alone into GiA were performed prior to these tests in a randomised, blind manner. In control animals, WIN 55,212-2 markedly increased withdrawal latencies in the tail flick test and reduced responses to subcutaneous formalin. These effects were blocked by co-administration of SR141716A. These data suggest that activation of cannabinoid CB1 receptor subtypes in GiA leads to behavioural analgesia. In animals with partial sciatic nerve ligation, microinjection of drugs and injection of formalin were performed contralaterally to the site of ligation. Partial sciatic nerve ligation significantly reduced behavioural responses to contralaterally applied formalin. Microinjection of SR141716A to GiA reversed this inhibition of responses to formalin in animals with partial sciatic nerve ligation. These data provide evidence that endogenous CB1 receptor ligands are involved in GiA mediated antinociception, and that this system is important for the modulation of nociceptive transmission in an animal model of chronic neuropathic pain. Topics: Analgesia; Analgesics; Animals; Benzoxazines; Disease Models, Animal; Drug Interactions; Male; Medulla Oblongata; Morpholines; Naphthalenes; Nerve Crush; Neuralgia; Neurons; Pain Measurement; Peripheral Nervous System Diseases; Piperidines; Pyrazoles; Rats; Rats, Wistar; Reaction Time; Receptors, Cannabinoid; Receptors, Drug; Reticular Formation; Rimonabant | 2001 |
Selective neurokinin-1 receptor antagonists are anti-hyperalgesic in a model of neuropathic pain in the guinea-pig.
Neuropathic pain is poorly managed by conventional analgesic therapy, such as non-steroidal anti-inflammatory drugs and opiates. The development of animal models of peripheral neural damage has aided in our understanding of the pathology and pharmacology of neuropathic pain. This report is the first clear demonstration using selective neurokinin-1 receptor antagonists of a potentially novel therapeutic approach to the treatment of neuropathic pain resulting from peripheral nerve damage in a guinea-pig model. The neurokinin-1 receptor antagonists, SDZ NKT 343 and LY 303,870 significantly reduced mechanical hyperalgesia following oral and intrathecal administration. (R,R)-SDZ NK T343, the enantiomer of SDZ NKT 343 did not show anti-hyperalgesic activity. RPR 100,893 showed significant anti-hyperalgesic activity only following intrathecal administration suggesting poor absorption or low level penetration of the blood-brain barrier. These results imply that neurokinin-1 receptor antagonists offer a new class of anti-hyperalgesic drugs with a largely central site of action in neuropathic pain. Topics: Administration, Oral; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Guinea Pigs; Hyperalgesia; Indoles; Injections, Spinal; Isoindoles; Naphthalenes; Nerve Fibers; Neuralgia; Neurokinin-1 Receptor Antagonists; Neurons, Afferent; Piperidines; Proline; Receptors, Neurokinin-1; Spinal Cord | 1998 |
Bradycardia due to biperiden.
In a 38-year-old male patient suffering from a severe postzosteric trigeminal neuralgia, intravenous application of 10 mg biperiden lactate led to a long-lasting paradoxical reaction characterized by considerable bradycardia, dysarthria, and dysphagia. The heart rate was back to normal within 12 hours upon administration of orciprenaline under cardiac monitoring in an intensive care unit. Bradycardia induced by biperiden is attributed to the speed of injection and to a dose-related dual effect of atropine-like drugs on muscarine receptors. Topics: Adult; Biperiden; Cardiovascular Diseases; Heart Rate; Humans; Male; Neuralgia; Piperidines | 1989 |
[Treatment of painful neurological diseases using propiramfumarate].
Topics: Acute Disease; Amides; Analgesics; Chronic Disease; Drug Combinations; Drug Evaluation; Female; Fumarates; Humans; Male; Nerve Compression Syndromes; Neuralgia; Pain; Piperidines; Propionates; Pyridines | 1974 |
[Propiramfumarate in a clinical study].
Topics: Amides; Analgesics; Colic; Drug Evaluation; Female; Fumarates; Headache; Humans; Male; Neuralgia; Pain; Pain, Postoperative; Piperidines; Propionates; Pyridines; Sampling Studies; Suppositories | 1974 |