piperidines and Multiple-Myeloma

piperidines has been researched along with Multiple-Myeloma* in 59 studies

Reviews

7 review(s) available for piperidines and Multiple-Myeloma

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    The present study aimed to assess the prevalence of symptoms of anxiety and depression among health professionals in the three most affected regions in Cameroon.. The study was a descriptive cross-sectional type. Participants were health care professionals working in the three chosen regions of Cameroon. The non_probability convinient sample technique and that of the snowball were valued via a web questionnaire. The non-exhaustive sample size was 292. The diagnosis of anxiety and depression was made by the HAD (Hospital Anxiety and Depression scale).. Les auteurs rapportent que le secteur médical est classé à un plus grand risque de contracter le COVID-19 et de le propager potentiellement à d’autres. Le nombre sans cesse croissant de cas confirmés et suspects, la pression dans les soins, l’épuisement des équipements de protection individuelle et le manque de médicaments spécifiques peuvent contribuer à un vécu anxio-dépressif significatif. La présente étude s’est donnée pour ambition d’évaluer la prévalence des symptômes de l’anxiété et de la dépression chez les professionnels de santé dans les trois Régions les plus concernées au Cameroun.. Le choix des trois Régions du Cameroun se justifie non seulement par le fait qu’elles totalisent 95,8 % des cas de coronavirus au pays depuis le début de la pandémie, mais aussi parce qu’elles disposent de plus de la moitié des personnels de santé (56 %). Il s’agit d’une étude transversale, descriptive et analytique. Les participants sont des professionnels de la santé en service dans les Régions du Centre, Littoral et de l’Ouest du Cameroun. La méthode d’échantillonnage non probabiliste de convenance couplée à celle de boule de neige via un web questionnaire a été adoptée. La collecte des données a duré du 5 au 19 avril 2020, intervalle de temps après lequel on n’avait plus eu de répondants. À la fin de cette période, la taille de l’échantillon non exhaustive était de 292 professionnels. Le diagnostic de l’état anxio-dépressive était posé via l’échelle de HAD (Hospital Anxiety and Depression scale). Dans le HAD, chaque réponse cotée évalue de manière semi-quantitative l’intensité du symptôme au cours de la semaine écoulée. Un score total est obtenu ainsi que des scores aux deux sous-échelles : le score maximal est de 42 pour l’échelle globale et de 21 pour chacune des sous-échelles. Le coefficient alpha de Cronbach est de 0,70 pour la dépression et de 0,74 pour l’anxiété. Certains auteurs après plusieurs travaux ont proposé qu’une note inférieure ou égale à 7 indique une absence d’anxiété ou de dépression ; celle comprise entre 8 et 10 suggère une anxiété ou une dépression faible à bénigne ; entre 11 et 14, pour une anxiété ou une dépression modérée ; enfin, une note comprise entre 15 et 21 est révélatrice d’une anxiété sévère. Le logiciel Excel 2013 et Epi Info version 7.2.2.6 ont été utilisés pour les traitements statistiques. Les liens entre les variables ont été considérées significatifs pour une valeur de. L’amélioration des conditions de travail et notamment la fourniture d’équipement de protection, la mise en place des cellules spéciales d’écoute pour le personnel de santé pourraient être proposées.. Taken together with satisfactory selectivity index (SI) values, the acetone and methanol extracts of. During a mean follow-up period of 25.6 ± 13.9 months, 38 (18.4%) VAs and 78 (37.7%) end-stage events occurred. Big ET-1 was positively correlated with NYHA class (. In primary prevention ICD indication patients, plasma big ET-1 levels can predict VAs and end-stage events and may facilitate ICD-implantation risk stratification.. Beyond age, cognitive impairment was associated with prior MI/stroke, higher hsCRP, statin use, less education, lower eGFR, BMI and LVEF.. These data demonstrate that even a short period of detraining is harmful for elderly women who regularly participate in a program of strength training, since it impairs physical performance, insulin sensitivity and cholesterol metabolism.. Exposure to PM. Respiratory sinus arrhythmia is reduced after PVI in patients with paroxysmal AF. Our findings suggest that this is related to a decrease in cardiac vagal tone. Whether and how this affects the clinical outcome including exercise capacity need to be determined.. BDNF and leptin were not associated with weight. We found that miR-214-5p exerted a protective role in I/R injured cardiac cells by direct targeting FASLG. The results indicated that the MGO injection reduced all CCl. The hepatoprotective effects of MGO might be due to histopathological suppression and inflammation inhibition in the liver.. OVEO showed moderate antifungal activity, whereas its main components carvacrol and thymol have great application potential as natural fungicides or lead compounds for commercial fungicides in preventing and controlling plant diseases caused by. PF trajectories were mainly related to income, pregestational BMI, birth weight, hospitalisation due to respiratory diseases in childhood, participant's BMI, report of wheezing, medical diagnosis and family history of asthma, gestational exposure to tobacco and current smoking status in adolescence and young adult age.. In chronic pain patients on opioids, administration of certain benzodiazepine sedatives induced a mild respiratory depression but paradoxically reduced sleep apnoea risk and severity by increasing the respiratory arousal threshold.. Quantitative measurements of sensory disturbances using the PainVision. The serum level of 20S-proteasome may be a useful marker for disease activity in AAV.. The electrophysiological data and MD simulations collectively suggest a crucial role of the interactions between the HA helix and S4-S5 linker in the apparent Ca. Invited for the cover of this issue are Vanesa Fernández-Moreira, Nils Metzler-Nolte, M. Concepción Gimeno and co-workers at Universidad de Zaragoza and Ruhr-Universität Bochum. The image depicts the reported bimetallic bioconjugates as planes directing the gold fragment towards the target (lysosomes). Read the full text of the article at 10.1002/chem.202002067.. The optimal CRT pacing configuration changes during dobutamine infusion while LV and RV activation timing does not. Further studies investigating the usefulness of automated dynamic changes to CRT pacing configuration according to physiologic condition may be warranted.

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acrylic Resins; Actinobacillus; Acute Disease; Acute Kidney Injury; Adaptor Proteins, Signal Transducing; Adenosine; Adenosine Triphosphate; Administration, Inhalation; Administration, Oral; Adolescent; Adult; Advance Care Planning; Africa, Northern; Age Factors; Aged; Aged, 80 and over; Air Pollutants; Air Pollution; Air Pollution, Indoor; Albendazole; Aluminum Oxide; Anastomosis, Surgical; Ancylostoma; Ancylostomiasis; Androstadienes; Angiogenesis Inhibitors; Angiotensin II; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Antibodies, Bispecific; Antibodies, Viral; Anticoagulants; Antihypertensive Agents; Antinematodal Agents; Antineoplastic Agents; Antineoplastic Agents, Immunological; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antiporters; Antiviral Agents; Apoptosis; Aptamers, Nucleotide; Aromatase Inhibitors; Asian People; Astrocytes; Atrial Fibrillation; Auditory Threshold; Aurora Kinase B; Australia; Autophagy; Autophagy-Related Protein 5; Autotrophic Processes; Bacillus cereus; Bacillus thuringiensis; Bacterial Proteins; Beclin-1; Belgium; Benzene; Benzene Derivatives; Benzhydryl Compounds; beta Catenin; beta-Arrestin 2; Biliary Tract Diseases; Biofilms; Biofuels; Biomarkers; Biomarkers, Tumor; Biomass; Biomechanical Phenomena; Bioreactors; Biosensing Techniques; Biosynthetic Pathways; Bismuth; Blood Platelets; Bone and Bones; Bone Regeneration; Bortezomib; Botulinum Toxins, Type A; Brain; Brain Injuries; Brain Ischemia; Brain Neoplasms; Breast Neoplasms; Breath Tests; Bronchodilator Agents; Calcium Phosphates; Cannabis; Carbon Dioxide; Carbon Isotopes; Carcinogenesis; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Squamous Cell; Cardiac Resynchronization Therapy; Cardiac Resynchronization Therapy Devices; Cardiomyopathies; Cardiovascular Diseases; Cariostatic Agents; Case Managers; Case-Control Studies; Catalysis; Cation Transport Proteins; CD8-Positive T-Lymphocytes; Cecropia Plant; Cell Adhesion; Cell Count; Cell Differentiation; Cell Division; Cell Line; Cell Line, Tumor; Cell Membrane; Cell Movement; Cell Proliferation; Cell Self Renewal; Cell Survival; Cells, Cultured; Cellular Reprogramming; Cellulose; Charcoal; Chemical and Drug Induced Liver Injury; Chemical Phenomena; Chemokines; Chemoradiotherapy; Chemoreceptor Cells; Child; Child Abuse; Child, Preschool; China; Chlorogenic Acid; Chloroquine; Chromatography, Gas; Chronic Disease; Clinical Competence; Coated Materials, Biocompatible; Cochlea; Cohort Studies; Color; Comorbidity; Computer Simulation; Computer-Aided Design; Contraception; Contraceptive Agents, Female; Contrast Media; COP-Coated Vesicles; Coronavirus Infections; Cost of Illness; Coturnix; COVID-19; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Culex; Curriculum; Cyclic N-Oxides; Cytokines; Cytoplasm; Cytotoxicity, Immunologic; Cytotoxins; Databases, Factual; Deep Learning; Delivery, Obstetric; Denitrification; Dental Caries; Denture, Complete; Dexamethasone; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dielectric Spectroscopy; Diet, High-Fat; Dietary Fiber; Disease Models, Animal; Disease Progression; DNA; DNA Copy Number Variations; DNA, Mitochondrial; Dog Diseases; Dogs; Dopaminergic Neurons; Double-Blind Method; Down-Regulation; Doxorubicin; Drug Carriers; Drug Design; Drug Interactions; Drug Resistance, Bacterial; Drug Resistance, Neoplasm; Drug-Related Side Effects and Adverse Reactions; Drugs, Chinese Herbal; Dry Powder Inhalers; Dust; E2F1 Transcription Factor; Ecosystem; Education, Nursing; Education, Nursing, Baccalaureate; Electric Impedance; Electricity; Electrocardiography; Electrochemical Techniques; Electrochemistry; Electrodes; Electrophoresis, Polyacrylamide Gel; Endoplasmic Reticulum; Endothelial Cells; Environmental Monitoring; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Estrogen Receptor Modulators; Europe; Evoked Potentials, Auditory, Brain Stem; Exosomes; Feasibility Studies; Female; Ferricyanides; Ferrocyanides; Fibrinogen; Finite Element Analysis; Fistula; Fluorescent Dyes; Fluorides, Topical; Fluorodeoxyglucose F18; Fluticasone; Follow-Up Studies; Food Contamination; Food Microbiology; Foods, Specialized; Forensic Medicine; Frail Elderly; France; Free Radicals; Fresh Water; Fungi; Fungicides, Industrial; Galactosamine; Gastrointestinal Neoplasms; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Frequency; Genetic Predisposition to Disease; Genotype; Gingival Hemorrhage; Glioblastoma; Glioma; Glomerular Filtration Rate; Glomerulosclerosis, Focal Segmental; Glucose; Glucose Transport Proteins, Facilitative; Glucosides; Glutamine; Glycolysis; Gold; GPI-Linked Proteins; Gram-Negative Bacteria; Gram-Positive Bacteria; Graphite; Haplotypes; HCT116 Cells; Healthy Volunteers; Hearing Loss; Heart Failure; Hedgehog Proteins; HEK293 Cells; HeLa Cells; Hemodynamics; Hemorrhage; Hepatocytes; Hippo Signaling Pathway; Histone Deacetylases; Homeostasis; Hospital Mortality; Hospitalization; Humans; Hydantoins; Hydrazines; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Hydroxylamines; Hypoglycemic Agents; Immunity, Innate; Immunoglobulin G; Immunohistochemistry; Immunologic Factors; Immunomodulation; Immunophenotyping; Immunotherapy; Incidence; Indazoles; Indonesia; Infant; Infant, Newborn; Infarction, Middle Cerebral Artery; Inflammation; Injections, Intramuscular; Insecticides; Insulin-Like Growth Factor I; Insurance, Health; Intention to Treat Analysis; Interleukin-1 Receptor-Associated Kinases; Interleukin-6; Intrauterine Devices; Intrauterine Devices, Copper; Iron; Ischemia; Jordan; Keratinocytes; Kidney; Kidney Diseases; Kir5.1 Channel; Klebsiella Infections; Klebsiella pneumoniae; Lab-On-A-Chip Devices; Laparoscopy; Lasers; Lasers, Semiconductor; Lenalidomide; Leptin; Lethal Dose 50; Levonorgestrel; Limit of Detection; Lipid Metabolism; Lipid Metabolism Disorders; Lipogenesis; Lipopolysaccharides; Liquid Biopsy; Liver; Liver Abscess, Pyogenic; Liver Cirrhosis; Liver Diseases; Liver Neoplasms; Longevity; Lung Neoplasms; Luteolin; Lymph Nodes; Lymphocyte Activation; Macaca fascicularis; Macrophages; Mad2 Proteins; Magnetic Resonance Imaging; Male; Mammary Glands, Human; Manganese; Manganese Compounds; MAP Kinase Signaling System; Materials Testing; Maternal Health Services; MCF-7 Cells; Medicaid; Medicine, Chinese Traditional; Melanoma; Membrane Proteins; Mental Health; Mercury; Metal Nanoparticles; Metals, Heavy; Metformin; Methionine Adenosyltransferase; Mice; Mice, Inbred BALB C; Mice, Inbred C3H; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Knockout; Mice, Nude; Microalgae; Microbial Sensitivity Tests; Microglia; MicroRNAs; Microscopy, Atomic Force; Microscopy, Electron, Scanning; Middle Aged; Mitochondria; Mitochondrial Proteins; Mitral Valve; Mitral Valve Insufficiency; Models, Anatomic; Molecular Structure; Molybdenum; Monocarboxylic Acid Transporters; Moths; MPTP Poisoning; Multigene Family; Multiparametric Magnetic Resonance Imaging; Multiple Myeloma; Muscle, Skeletal; Mutagens; Mutation; Myeloid Cells; Nanocomposites; Nanofibers; Nanomedicine; Nanoparticles; Nanowires; Neoadjuvant Therapy; Neomycin; Neoplasm Grading; Neoplasm Recurrence, Local; Neoplasms; Neoplastic Stem Cells; Neostriatum; Neovascularization, Pathologic; Netherlands; Neuromuscular Agents; Neurons; NF-E2-Related Factor 2; NF-kappa B; Nickel; Nitrogen Oxides; Non-alcoholic Fatty Liver Disease; Nucleosides; Nucleotidyltransferases; Nutritional Status; Obesity, Morbid; Ofloxacin; Oils, Volatile; Oligopeptides; Oncogene Protein v-akt; Optical Imaging; Organic Cation Transport Proteins; Organophosphonates; Osteoarthritis; Osteoarthritis, Hip; Osteoarthritis, Knee; Osteoblasts; Osteogenesis; Oxidation-Reduction; Oxidative Stress; Oxides; Oxygen Isotopes; Pancreas; Pancreaticoduodenectomy; Pandemics; Particle Size; Particulate Matter; Patient Acceptance of Health Care; Patient Compliance; PC-3 Cells; Peptide Fragments; Peptides; Periodontal Attachment Loss; Periodontal Index; Periodontal Pocket; Periodontitis; Peroxides; Peru; Pest Control, Biological; Phosphatidylinositol 3-Kinase; Phosphatidylinositol 3-Kinases; Phylogeny; Pilot Projects; Piperidines; Plant Bark; Plant Extracts; Plant Leaves; Plasmids; Platelet Function Tests; Pneumonia, Viral; Podocytes; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Polyethylene Terephthalates; Polymers; Polymorphism, Single Nucleotide; Porosity; Portugal; Positron-Emission Tomography; Postoperative Complications; Postural Balance; Potassium Channels, Inwardly Rectifying; Povidone; Powders; Precancerous Conditions; Precision Medicine; Predictive Value of Tests; Pregnancy; Prenatal Care; Prognosis; Promoter Regions, Genetic; Prospective Studies; Prostatectomy; Prostatic Neoplasms; Proteasome Inhibitors; Protective Agents; Protein Binding; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Protein Transport; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-akt; Psychiatric Nursing; PTEN Phosphohydrolase; Pulmonary Embolism; Pyrimethamine; Radiopharmaceuticals; Rats; Rats, Sprague-Dawley; Rats, Wistar; Reactive Oxygen Species; Receptor, ErbB-2; Receptor, IGF Type 1; Receptors, Estrogen; Receptors, G-Protein-Coupled; Recombinational DNA Repair; Recovery of Function; Regional Blood Flow; Renal Dialysis; Renin; Renin-Angiotensin System; Reperfusion Injury; Reproducibility of Results; Republic of Korea; Respiratory Distress Syndrome; Retrospective Studies; Rhodamines; Risk Assessment; Risk Factors; RNA, Long Noncoding; RNA, Messenger; Running; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salinity; Salmeterol Xinafoate; Sarcoma; Seasons; Shoulder Injuries; Signal Transduction; Silicon Dioxide; Silver; Sirtuin 1; Sirtuins; Skull Fractures; Social Determinants of Health; Sodium; Sodium Fluoride; Sodium Potassium Chloride Symporter Inhibitors; Sodium-Glucose Transporter 2 Inhibitors; Soil; Soil Pollutants; Spain; Spectrophotometry; Spectroscopy, Fourier Transform Infrared; Staphylococcal Protein A; Staphylococcus aureus; Stem Cells; Stereoisomerism; Stomach Neoplasms; Streptomyces; Strontium; Structure-Activity Relationship; Students, Nursing; Substance-Related Disorders; Succinic Acid; Sulfur; Surface Properties; Survival Rate; Survivin; Symporters; T-Lymphocytes; Temozolomide; Tensile Strength; Thiazoles; Thiobacillus; Thiohydantoins; Thiourea; Thrombectomy; Time Factors; Titanium; Tobacco Mosaic Virus; Tobacco Use Disorder; Toll-Like Receptor 4; Toluene; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Toxicity Tests, Acute; Toxicity Tests, Subacute; Transcriptional Activation; Treatment Outcome; Troponin I; Tumor Cells, Cultured; Tumor Escape; Tumor Hypoxia; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Tyrosine; Ubiquitin-Protein Ligases; Ubiquitination; Ultrasonic Waves; United Kingdom; United States; United States Department of Veterans Affairs; Up-Regulation; Urea; Uric Acid; Urinary Bladder Neoplasms; Urinary Bladder, Neurogenic; Urine; Urodynamics; User-Computer Interface; Vemurafenib; Verbenaceae; Veterans; Veterans Health; Viral Load; Virtual Reality; Vitiligo; Water Pollutants, Chemical; Wildfires; Wnt Signaling Pathway; Wound Healing; X-Ray Diffraction; Xenograft Model Antitumor Assays; Xylenes; Young Adult; Zinc; Zinc Oxide; Zinc Sulfate; Zoonoses

2021
Targets for Ibrutinib Beyond B Cell Malignancies.
    Scandinavian journal of immunology, 2015, Volume: 82, Issue:3

    Ibrutinib (Imbruvica™) is an irreversible, potent inhibitor of Bruton's tyrosine kinase (BTK). Over the last few years, ibrutinib has developed from a promising drug candidate to being approved by FDA for the treatment of three B cell malignancies, a truly remarkable feat. Few, if any medicines are monospecific and ibrutinib is no exception; already during ibrutinib's initial characterization, it was found that it could bind also to other kinases. In this review, we discuss the implications of such interactions, which go beyond the selective effect on BTK in B cell malignancies. In certain cases, the outcome of ibrutinib treatment likely results from the combined inhibition of BTK and other kinases, causing additive or synergistic, effects. Conversely, there are also examples when the clinical outcome seems unrelated to inhibition of BTK. Thus, more specifically, adverse effects such as enhanced bleeding or arrhythmias could potentially be explained by different interactions. We also predict that during long-term treatment bone homoeostasis might be affected due to the inhibition of osteoclasts. Moreover, the binding of ibrutinib to molecular targets other than BTK or effects on cells other than B cell-derived malignancies could be beneficial and result in new indications for clinical applications.

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Animals; Atrial Fibrillation; Humans; Leukemia, Lymphocytic, Chronic, B-Cell; Lymphoma, Large B-Cell, Diffuse; Lymphoma, Mantle-Cell; Lymphoproliferative Disorders; Mice; Multiple Myeloma; Osteoclasts; Phosphorylation; Piperidines; Protein Binding; Protein-Tyrosine Kinases; Pyrazoles; Pyrimidines; Waldenstrom Macroglobulinemia

2015
Ibrutinib: first global approval.
    Drugs, 2014, Volume: 74, Issue:2

    Ibrutinib (Imbruvica™) is a small molecule, first-in-class, once-daily, orally available, Bruton's tyrosine kinase inhibitor that is under development for the treatment of B cell malignancies, including chronic lymphocytic leukaemia (CLL), mantle cell lymphoma (MCL) and diffuse large B cell lymphoma (DLBCL), as well as multiple myeloma (MM), follicular lymphoma (FL) and Waldenstrom's macroglobulinemia (WM). It has been developed by Pharmacyclics, Inc. and Janssen Biotech, Inc. Ibrutinib acts by blocking B-cell antigen receptor signalling, thereby reducing malignant proliferation of B cells and inducing cell death. Based chiefly on findings from a phase Ib/II study, ibrutinib has been approved in the USA for the treatment of MCL in previously treated patients and is one of the first approvals through the US FDA's Breakthrough Therapy Designation Pathway. An application has been filed in the EU seeking regulatory approval in this indication. In both the USA and EU, further applications have been filed with regulatory bodies seeking approval for the use of ibrutinib in patients with previously treated CLL/small lymphocytic lymphoma (SLL). Phase III trials are underway worldwide to evaluate ibrutinib in the treatment of patients with CLL/SLL, DLBCL and MCL, and the agent is in phase II development for use in WM, FL and MM. This article summarizes the milestones in the development of ibrutinib leading to its first approval in MCL.

    Topics: Adenine; Antineoplastic Agents; Humans; Leukemia, Lymphocytic, Chronic, B-Cell; Lymphoma, Follicular; Lymphoma, Large B-Cell, Diffuse; Lymphoma, Mantle-Cell; Multiple Myeloma; Piperidines; Pyrazoles; Pyrimidines; Waldenstrom Macroglobulinemia

2014
Novel agents for multiple myeloma to overcome resistance in phase III clinical trials.
    Seminars in oncology, 2013, Volume: 40, Issue:5

    The incorporation of novel agents such as bortezomib and lenalidomide into initial therapy for multiple myeloma has improved the response rate of induction regimens. Also, these drugs are being increasingly used in the peri-transplant setting for transplant-eligible patients, and as part of consolidation and/or maintenance after front-line treatment, including in transplant-ineligible patients. Together, these and other strategies have contributed to a prolongation of progression-free survival (PFS) and overall survival (OS) in myeloma patients, and an increasing proportion are able to sustain a remission for many years. Despite these improvements, however, the vast majority of patients continue to suffer relapses, which suggests a prominent role for either primary, innate drug resistance, or secondary, acquired drug resistance. As a result, there remains a strong need to develop new proteasome inhibitors and immunomodulatory agents, as well as new drug classes, which would be effective in the relapsed and/or refractory setting, and overcome drug resistance. This review will focus on novel drugs that have reached phase III trials, including carfilzomib and pomalidomide, which have recently garnered regulatory approvals. In addition, agents that are in phase II or III, potentially registration-enabling trials will be described as well, to provide an overview of the possible landscape in the relapsed and/or refractory arena over the next 5 years.

    Topics: Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzamides; Clinical Trials, Phase III as Topic; Disease-Free Survival; Drug Resistance, Neoplasm; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Immunologic Factors; Indoles; Multiple Myeloma; Oligopeptides; Panobinostat; Phosphorylcholine; Piperidines; Proteasome Inhibitors; Pyridines; Remission Induction; Thalidomide; Thiazoles; Treatment Outcome; Vorinostat

2013
Immunosuppressors and reversion of multidrug-resistance.
    Critical reviews in oncology/hematology, 2005, Volume: 56, Issue:1

    Drug resistance is the major reason for failure of cancer therapy. When one drug elicits a response in tumour cells resulting in resistance to a large variety of chemically unrelated drugs, this is called multidrug-resistance (MDR). ATP-binding cassette (ABC) transporters contribute to drug resistance via ATP-dependent drug efflux. P-glycoprotein (Pgp) encoded by MDR1 gene, confers resistance to certain anticancer agents. The development of agents able to modulate MDR mediated by Pgp and ABC transporters remained a major goal for the past 10 years. Immunosuppressors, cyclosporin A (CSA) in particular, were shown to modulate Pgp activity in laboratory models and entered very early into clinical trials for reversal of MDR. The proof of reversing activity of CSA was found in phase II studies with myeloma and acute leukaemia. In phase III studies, the results were less convincing regarding the response rate, progression-free survival and overall survival were detected in advanced refractory myeloma. The non-immunosuppressive derivative PSC833 was then extensively studied. This compound shows 10-fold higher potency in reversal of MDR mediated by Pgp. Results from clinical trials with this modulator are still emerging and the notable finding was the need to reduce the dose of anticancer agent used in combination with it. Other effects of CSA and PSC833 on MDR have been described. These two molecules have been shown to have an action on the metabolism of ceramide which stands as second messenger of anticancer agents-induced apoptosis. PSC833 stimulates de novo ceramide synthesis and enhances cell death induced by anticancer agents, such as camptothecins and anthracyclines. In addition, ceramide glycosylation and storage in some cell lines have been described to play a crucial role in resistance to anticancer drugs. CSA is able to inhibit ceramide glucosylation and modulate MDR phenotype. The emergence of other modulators with several ABC protein targets like VX710 are of clinical interest in malignancies expressing several efflux pumps.

    Topics: Animals; Apoptosis; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Transport, Active; Ceramides; Cyclosporine; Cyclosporins; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Humans; Immunosuppressive Agents; Multiple Myeloma; Piperidines; Pyridines

2005
Hematologic malignancies: new developments and future treatments.
    Seminars in oncology, 2002, Volume: 29, Issue:4 Suppl 13

    An increasing number of unique active new chemotherapeutic and biologic agents are currently available for clinical research studies. Nucleoside analogs in development for non-Hodgkin's lymphoma (NHL) include clofarabine, troxacitabine, and bendamustine, a hybrid of an alkylating nitrogen mustard group and a purine-like benzimidazole, with demonstrated activity in NHL. Drugs directed at the cell cycle include flavopiridol and UCN-01. The proteasome plays a pivotal role in cellular protein regulation and activation of NFkappaB, which maintains cell viability through the transcription of inhibitors of apoptosis. PS-341 is a specific, selective inhibitor of the 26S proteasome which induces apoptosis and has activity in cell types characterized by overexpression of Bcl-2. Response rates of 50%, including complete remissions, have been reported using this agent in patients with refractory multiple myeloma. Studies are ongoing in NHL and chronic lymphocytic leukemia. G3139, an antisense oligonucleotide, has shown promise in early studies. Rituximab has revolutionized the treatment of NHL. However, other active antibodies are now available, including alemtuzumab, epratuzumab, and Hu1D10. The radioimmunoconjugates (90)Y-ibritumomab tiuxetan and (131)I-tositumomab may also play an important role in the management of NHL. Future therapeutic strategies should involve rational combinations of new chemotherapy drugs, biologic agents, and antisense compounds to increase the cure rate in patients with lymphoma.

    Topics: Adenine Nucleotides; Alemtuzumab; Alkaloids; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antibodies, Monoclonal, Murine-Derived; Antibodies, Neoplasm; Antineoplastic Agents; Apoptosis; Arabinonucleosides; Bendamustine Hydrochloride; Boronic Acids; Bortezomib; Cell Cycle; Cell Survival; Clofarabine; Cytosine; Dioxolanes; Flavonoids; Hematologic Neoplasms; Humans; Immunoconjugates; Leukemia, Lymphocytic, Chronic, B-Cell; Lymphoma; Lymphoma, Non-Hodgkin; Multiple Myeloma; NF-kappa B; Nitrogen Mustard Compounds; Oligonucleotides, Antisense; Peptide Hydrolases; Piperidines; Protease Inhibitors; Proteasome Endopeptidase Complex; Pyrazines; Remission Induction; Rituximab; Staurosporine; Thionucleotides

2002
Chemoresistance and multiple myeloma: from biological to clinical aspects.
    Stem cells (Dayton, Ohio), 1995, Volume: 13 Suppl 2

    Resistance to chemotherapy represents a major cause for cancer treatment failure. Several biological mechanisms implicated in chemoresistance have been described, including multidrug resistance (MDR1/P-glycoprotein [P-gp] or p170), resistance-related proteins (p95 and p110), multidrug resistance-associated protein (p190), proteins implicated in cell detoxification such as glutathione S-transferase and genes affecting DNA structure (topoisomerases). MDR1 has been the most studied in hematological malignancies, particularly in lymphoma and multiple myeloma (MM), diseases generally considered as overexpressing such mechanisms in relapse. Overexpression of chemoresistance is generally an induced phenomenon caused or amplified by the drugs, as demonstrated by the development of drug-resistant cell lines in vitro. It may be defined as a profile of chemoresistance depending on the drug used for induction. This may have a potential implication for monitoring chemoresistance to modulate or to prevent its amplification. Several questions are always open to discussion, including the method of detection, the true prognostic impact of chemoresistance, the dynamic expression of such mechanisms, depending on the cell status, the host response and the mechanism of induction. In MM, the over-expression of MDR1/P-gp is usually less than 10% at diagnosis, leading to 59-80% at relapse, depending on the clinical status. The percentage of positivity depends on the cumulative dose of vincristine and/or doxorubicin. GST pi is (over)expressed in 10-70% of patients at diagnosis, and in 30% at relapse, but in small series, as well as for topoisomerases I and II which are concerned in 53% and 6%, respectively, at diagnosis.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Drug Resistance, Multiple; Gene Expression; Humans; Multiple Myeloma; Piperidines; Prognosis; Triazines; Tumor Cells, Cultured

1995

Trials

11 trial(s) available for piperidines and Multiple-Myeloma

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    The present study aimed to assess the prevalence of symptoms of anxiety and depression among health professionals in the three most affected regions in Cameroon.. The study was a descriptive cross-sectional type. Participants were health care professionals working in the three chosen regions of Cameroon. The non_probability convinient sample technique and that of the snowball were valued via a web questionnaire. The non-exhaustive sample size was 292. The diagnosis of anxiety and depression was made by the HAD (Hospital Anxiety and Depression scale).. Les auteurs rapportent que le secteur médical est classé à un plus grand risque de contracter le COVID-19 et de le propager potentiellement à d’autres. Le nombre sans cesse croissant de cas confirmés et suspects, la pression dans les soins, l’épuisement des équipements de protection individuelle et le manque de médicaments spécifiques peuvent contribuer à un vécu anxio-dépressif significatif. La présente étude s’est donnée pour ambition d’évaluer la prévalence des symptômes de l’anxiété et de la dépression chez les professionnels de santé dans les trois Régions les plus concernées au Cameroun.. Le choix des trois Régions du Cameroun se justifie non seulement par le fait qu’elles totalisent 95,8 % des cas de coronavirus au pays depuis le début de la pandémie, mais aussi parce qu’elles disposent de plus de la moitié des personnels de santé (56 %). Il s’agit d’une étude transversale, descriptive et analytique. Les participants sont des professionnels de la santé en service dans les Régions du Centre, Littoral et de l’Ouest du Cameroun. La méthode d’échantillonnage non probabiliste de convenance couplée à celle de boule de neige via un web questionnaire a été adoptée. La collecte des données a duré du 5 au 19 avril 2020, intervalle de temps après lequel on n’avait plus eu de répondants. À la fin de cette période, la taille de l’échantillon non exhaustive était de 292 professionnels. Le diagnostic de l’état anxio-dépressive était posé via l’échelle de HAD (Hospital Anxiety and Depression scale). Dans le HAD, chaque réponse cotée évalue de manière semi-quantitative l’intensité du symptôme au cours de la semaine écoulée. Un score total est obtenu ainsi que des scores aux deux sous-échelles : le score maximal est de 42 pour l’échelle globale et de 21 pour chacune des sous-échelles. Le coefficient alpha de Cronbach est de 0,70 pour la dépression et de 0,74 pour l’anxiété. Certains auteurs après plusieurs travaux ont proposé qu’une note inférieure ou égale à 7 indique une absence d’anxiété ou de dépression ; celle comprise entre 8 et 10 suggère une anxiété ou une dépression faible à bénigne ; entre 11 et 14, pour une anxiété ou une dépression modérée ; enfin, une note comprise entre 15 et 21 est révélatrice d’une anxiété sévère. Le logiciel Excel 2013 et Epi Info version 7.2.2.6 ont été utilisés pour les traitements statistiques. Les liens entre les variables ont été considérées significatifs pour une valeur de. L’amélioration des conditions de travail et notamment la fourniture d’équipement de protection, la mise en place des cellules spéciales d’écoute pour le personnel de santé pourraient être proposées.. Taken together with satisfactory selectivity index (SI) values, the acetone and methanol extracts of. During a mean follow-up period of 25.6 ± 13.9 months, 38 (18.4%) VAs and 78 (37.7%) end-stage events occurred. Big ET-1 was positively correlated with NYHA class (. In primary prevention ICD indication patients, plasma big ET-1 levels can predict VAs and end-stage events and may facilitate ICD-implantation risk stratification.. Beyond age, cognitive impairment was associated with prior MI/stroke, higher hsCRP, statin use, less education, lower eGFR, BMI and LVEF.. These data demonstrate that even a short period of detraining is harmful for elderly women who regularly participate in a program of strength training, since it impairs physical performance, insulin sensitivity and cholesterol metabolism.. Exposure to PM. Respiratory sinus arrhythmia is reduced after PVI in patients with paroxysmal AF. Our findings suggest that this is related to a decrease in cardiac vagal tone. Whether and how this affects the clinical outcome including exercise capacity need to be determined.. BDNF and leptin were not associated with weight. We found that miR-214-5p exerted a protective role in I/R injured cardiac cells by direct targeting FASLG. The results indicated that the MGO injection reduced all CCl. The hepatoprotective effects of MGO might be due to histopathological suppression and inflammation inhibition in the liver.. OVEO showed moderate antifungal activity, whereas its main components carvacrol and thymol have great application potential as natural fungicides or lead compounds for commercial fungicides in preventing and controlling plant diseases caused by. PF trajectories were mainly related to income, pregestational BMI, birth weight, hospitalisation due to respiratory diseases in childhood, participant's BMI, report of wheezing, medical diagnosis and family history of asthma, gestational exposure to tobacco and current smoking status in adolescence and young adult age.. In chronic pain patients on opioids, administration of certain benzodiazepine sedatives induced a mild respiratory depression but paradoxically reduced sleep apnoea risk and severity by increasing the respiratory arousal threshold.. Quantitative measurements of sensory disturbances using the PainVision. The serum level of 20S-proteasome may be a useful marker for disease activity in AAV.. The electrophysiological data and MD simulations collectively suggest a crucial role of the interactions between the HA helix and S4-S5 linker in the apparent Ca. Invited for the cover of this issue are Vanesa Fernández-Moreira, Nils Metzler-Nolte, M. Concepción Gimeno and co-workers at Universidad de Zaragoza and Ruhr-Universität Bochum. The image depicts the reported bimetallic bioconjugates as planes directing the gold fragment towards the target (lysosomes). Read the full text of the article at 10.1002/chem.202002067.. The optimal CRT pacing configuration changes during dobutamine infusion while LV and RV activation timing does not. Further studies investigating the usefulness of automated dynamic changes to CRT pacing configuration according to physiologic condition may be warranted.

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acrylic Resins; Actinobacillus; Acute Disease; Acute Kidney Injury; Adaptor Proteins, Signal Transducing; Adenosine; Adenosine Triphosphate; Administration, Inhalation; Administration, Oral; Adolescent; Adult; Advance Care Planning; Africa, Northern; Age Factors; Aged; Aged, 80 and over; Air Pollutants; Air Pollution; Air Pollution, Indoor; Albendazole; Aluminum Oxide; Anastomosis, Surgical; Ancylostoma; Ancylostomiasis; Androstadienes; Angiogenesis Inhibitors; Angiotensin II; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Antibodies, Bispecific; Antibodies, Viral; Anticoagulants; Antihypertensive Agents; Antinematodal Agents; Antineoplastic Agents; Antineoplastic Agents, Immunological; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antiporters; Antiviral Agents; Apoptosis; Aptamers, Nucleotide; Aromatase Inhibitors; Asian People; Astrocytes; Atrial Fibrillation; Auditory Threshold; Aurora Kinase B; Australia; Autophagy; Autophagy-Related Protein 5; Autotrophic Processes; Bacillus cereus; Bacillus thuringiensis; Bacterial Proteins; Beclin-1; Belgium; Benzene; Benzene Derivatives; Benzhydryl Compounds; beta Catenin; beta-Arrestin 2; Biliary Tract Diseases; Biofilms; Biofuels; Biomarkers; Biomarkers, Tumor; Biomass; Biomechanical Phenomena; Bioreactors; Biosensing Techniques; Biosynthetic Pathways; Bismuth; Blood Platelets; Bone and Bones; Bone Regeneration; Bortezomib; Botulinum Toxins, Type A; Brain; Brain Injuries; Brain Ischemia; Brain Neoplasms; Breast Neoplasms; Breath Tests; Bronchodilator Agents; Calcium Phosphates; Cannabis; Carbon Dioxide; Carbon Isotopes; Carcinogenesis; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Squamous Cell; Cardiac Resynchronization Therapy; Cardiac Resynchronization Therapy Devices; Cardiomyopathies; Cardiovascular Diseases; Cariostatic Agents; Case Managers; Case-Control Studies; Catalysis; Cation Transport Proteins; CD8-Positive T-Lymphocytes; Cecropia Plant; Cell Adhesion; Cell Count; Cell Differentiation; Cell Division; Cell Line; Cell Line, Tumor; Cell Membrane; Cell Movement; Cell Proliferation; Cell Self Renewal; Cell Survival; Cells, Cultured; Cellular Reprogramming; Cellulose; Charcoal; Chemical and Drug Induced Liver Injury; Chemical Phenomena; Chemokines; Chemoradiotherapy; Chemoreceptor Cells; Child; Child Abuse; Child, Preschool; China; Chlorogenic Acid; Chloroquine; Chromatography, Gas; Chronic Disease; Clinical Competence; Coated Materials, Biocompatible; Cochlea; Cohort Studies; Color; Comorbidity; Computer Simulation; Computer-Aided Design; Contraception; Contraceptive Agents, Female; Contrast Media; COP-Coated Vesicles; Coronavirus Infections; Cost of Illness; Coturnix; COVID-19; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Culex; Curriculum; Cyclic N-Oxides; Cytokines; Cytoplasm; Cytotoxicity, Immunologic; Cytotoxins; Databases, Factual; Deep Learning; Delivery, Obstetric; Denitrification; Dental Caries; Denture, Complete; Dexamethasone; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dielectric Spectroscopy; Diet, High-Fat; Dietary Fiber; Disease Models, Animal; Disease Progression; DNA; DNA Copy Number Variations; DNA, Mitochondrial; Dog Diseases; Dogs; Dopaminergic Neurons; Double-Blind Method; Down-Regulation; Doxorubicin; Drug Carriers; Drug Design; Drug Interactions; Drug Resistance, Bacterial; Drug Resistance, Neoplasm; Drug-Related Side Effects and Adverse Reactions; Drugs, Chinese Herbal; Dry Powder Inhalers; Dust; E2F1 Transcription Factor; Ecosystem; Education, Nursing; Education, Nursing, Baccalaureate; Electric Impedance; Electricity; Electrocardiography; Electrochemical Techniques; Electrochemistry; Electrodes; Electrophoresis, Polyacrylamide Gel; Endoplasmic Reticulum; Endothelial Cells; Environmental Monitoring; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Estrogen Receptor Modulators; Europe; Evoked Potentials, Auditory, Brain Stem; Exosomes; Feasibility Studies; Female; Ferricyanides; Ferrocyanides; Fibrinogen; Finite Element Analysis; Fistula; Fluorescent Dyes; Fluorides, Topical; Fluorodeoxyglucose F18; Fluticasone; Follow-Up Studies; Food Contamination; Food Microbiology; Foods, Specialized; Forensic Medicine; Frail Elderly; France; Free Radicals; Fresh Water; Fungi; Fungicides, Industrial; Galactosamine; Gastrointestinal Neoplasms; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Frequency; Genetic Predisposition to Disease; Genotype; Gingival Hemorrhage; Glioblastoma; Glioma; Glomerular Filtration Rate; Glomerulosclerosis, Focal Segmental; Glucose; Glucose Transport Proteins, Facilitative; Glucosides; Glutamine; Glycolysis; Gold; GPI-Linked Proteins; Gram-Negative Bacteria; Gram-Positive Bacteria; Graphite; Haplotypes; HCT116 Cells; Healthy Volunteers; Hearing Loss; Heart Failure; Hedgehog Proteins; HEK293 Cells; HeLa Cells; Hemodynamics; Hemorrhage; Hepatocytes; Hippo Signaling Pathway; Histone Deacetylases; Homeostasis; Hospital Mortality; Hospitalization; Humans; Hydantoins; Hydrazines; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Hydroxylamines; Hypoglycemic Agents; Immunity, Innate; Immunoglobulin G; Immunohistochemistry; Immunologic Factors; Immunomodulation; Immunophenotyping; Immunotherapy; Incidence; Indazoles; Indonesia; Infant; Infant, Newborn; Infarction, Middle Cerebral Artery; Inflammation; Injections, Intramuscular; Insecticides; Insulin-Like Growth Factor I; Insurance, Health; Intention to Treat Analysis; Interleukin-1 Receptor-Associated Kinases; Interleukin-6; Intrauterine Devices; Intrauterine Devices, Copper; Iron; Ischemia; Jordan; Keratinocytes; Kidney; Kidney Diseases; Kir5.1 Channel; Klebsiella Infections; Klebsiella pneumoniae; Lab-On-A-Chip Devices; Laparoscopy; Lasers; Lasers, Semiconductor; Lenalidomide; Leptin; Lethal Dose 50; Levonorgestrel; Limit of Detection; Lipid Metabolism; Lipid Metabolism Disorders; Lipogenesis; Lipopolysaccharides; Liquid Biopsy; Liver; Liver Abscess, Pyogenic; Liver Cirrhosis; Liver Diseases; Liver Neoplasms; Longevity; Lung Neoplasms; Luteolin; Lymph Nodes; Lymphocyte Activation; Macaca fascicularis; Macrophages; Mad2 Proteins; Magnetic Resonance Imaging; Male; Mammary Glands, Human; Manganese; Manganese Compounds; MAP Kinase Signaling System; Materials Testing; Maternal Health Services; MCF-7 Cells; Medicaid; Medicine, Chinese Traditional; Melanoma; Membrane Proteins; Mental Health; Mercury; Metal Nanoparticles; Metals, Heavy; Metformin; Methionine Adenosyltransferase; Mice; Mice, Inbred BALB C; Mice, Inbred C3H; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Knockout; Mice, Nude; Microalgae; Microbial Sensitivity Tests; Microglia; MicroRNAs; Microscopy, Atomic Force; Microscopy, Electron, Scanning; Middle Aged; Mitochondria; Mitochondrial Proteins; Mitral Valve; Mitral Valve Insufficiency; Models, Anatomic; Molecular Structure; Molybdenum; Monocarboxylic Acid Transporters; Moths; MPTP Poisoning; Multigene Family; Multiparametric Magnetic Resonance Imaging; Multiple Myeloma; Muscle, Skeletal; Mutagens; Mutation; Myeloid Cells; Nanocomposites; Nanofibers; Nanomedicine; Nanoparticles; Nanowires; Neoadjuvant Therapy; Neomycin; Neoplasm Grading; Neoplasm Recurrence, Local; Neoplasms; Neoplastic Stem Cells; Neostriatum; Neovascularization, Pathologic; Netherlands; Neuromuscular Agents; Neurons; NF-E2-Related Factor 2; NF-kappa B; Nickel; Nitrogen Oxides; Non-alcoholic Fatty Liver Disease; Nucleosides; Nucleotidyltransferases; Nutritional Status; Obesity, Morbid; Ofloxacin; Oils, Volatile; Oligopeptides; Oncogene Protein v-akt; Optical Imaging; Organic Cation Transport Proteins; Organophosphonates; Osteoarthritis; Osteoarthritis, Hip; Osteoarthritis, Knee; Osteoblasts; Osteogenesis; Oxidation-Reduction; Oxidative Stress; Oxides; Oxygen Isotopes; Pancreas; Pancreaticoduodenectomy; Pandemics; Particle Size; Particulate Matter; Patient Acceptance of Health Care; Patient Compliance; PC-3 Cells; Peptide Fragments; Peptides; Periodontal Attachment Loss; Periodontal Index; Periodontal Pocket; Periodontitis; Peroxides; Peru; Pest Control, Biological; Phosphatidylinositol 3-Kinase; Phosphatidylinositol 3-Kinases; Phylogeny; Pilot Projects; Piperidines; Plant Bark; Plant Extracts; Plant Leaves; Plasmids; Platelet Function Tests; Pneumonia, Viral; Podocytes; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Polyethylene Terephthalates; Polymers; Polymorphism, Single Nucleotide; Porosity; Portugal; Positron-Emission Tomography; Postoperative Complications; Postural Balance; Potassium Channels, Inwardly Rectifying; Povidone; Powders; Precancerous Conditions; Precision Medicine; Predictive Value of Tests; Pregnancy; Prenatal Care; Prognosis; Promoter Regions, Genetic; Prospective Studies; Prostatectomy; Prostatic Neoplasms; Proteasome Inhibitors; Protective Agents; Protein Binding; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Protein Transport; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-akt; Psychiatric Nursing; PTEN Phosphohydrolase; Pulmonary Embolism; Pyrimethamine; Radiopharmaceuticals; Rats; Rats, Sprague-Dawley; Rats, Wistar; Reactive Oxygen Species; Receptor, ErbB-2; Receptor, IGF Type 1; Receptors, Estrogen; Receptors, G-Protein-Coupled; Recombinational DNA Repair; Recovery of Function; Regional Blood Flow; Renal Dialysis; Renin; Renin-Angiotensin System; Reperfusion Injury; Reproducibility of Results; Republic of Korea; Respiratory Distress Syndrome; Retrospective Studies; Rhodamines; Risk Assessment; Risk Factors; RNA, Long Noncoding; RNA, Messenger; Running; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salinity; Salmeterol Xinafoate; Sarcoma; Seasons; Shoulder Injuries; Signal Transduction; Silicon Dioxide; Silver; Sirtuin 1; Sirtuins; Skull Fractures; Social Determinants of Health; Sodium; Sodium Fluoride; Sodium Potassium Chloride Symporter Inhibitors; Sodium-Glucose Transporter 2 Inhibitors; Soil; Soil Pollutants; Spain; Spectrophotometry; Spectroscopy, Fourier Transform Infrared; Staphylococcal Protein A; Staphylococcus aureus; Stem Cells; Stereoisomerism; Stomach Neoplasms; Streptomyces; Strontium; Structure-Activity Relationship; Students, Nursing; Substance-Related Disorders; Succinic Acid; Sulfur; Surface Properties; Survival Rate; Survivin; Symporters; T-Lymphocytes; Temozolomide; Tensile Strength; Thiazoles; Thiobacillus; Thiohydantoins; Thiourea; Thrombectomy; Time Factors; Titanium; Tobacco Mosaic Virus; Tobacco Use Disorder; Toll-Like Receptor 4; Toluene; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Toxicity Tests, Acute; Toxicity Tests, Subacute; Transcriptional Activation; Treatment Outcome; Troponin I; Tumor Cells, Cultured; Tumor Escape; Tumor Hypoxia; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Tyrosine; Ubiquitin-Protein Ligases; Ubiquitination; Ultrasonic Waves; United Kingdom; United States; United States Department of Veterans Affairs; Up-Regulation; Urea; Uric Acid; Urinary Bladder Neoplasms; Urinary Bladder, Neurogenic; Urine; Urodynamics; User-Computer Interface; Vemurafenib; Verbenaceae; Veterans; Veterans Health; Viral Load; Virtual Reality; Vitiligo; Water Pollutants, Chemical; Wildfires; Wnt Signaling Pathway; Wound Healing; X-Ray Diffraction; Xenograft Model Antitumor Assays; Xylenes; Young Adult; Zinc; Zinc Oxide; Zinc Sulfate; Zoonoses

2021
A phase 2 study of ibrutinib in combination with bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma.
    European journal of haematology, 2020, Volume: 104, Issue:5

    We evaluated ibrutinib, a once-daily inhibitor of Bruton's tyrosine kinase, combined with bortezomib and dexamethasone in patients with relapsed or relapsed/refractory multiple myeloma who had received 1-3 prior therapies.. This was a phase 2, single-arm, open-label, multicentre study (NCT02902965). The primary endpoint was progression-free survival (PFS).. Seventy-six patients were enrolled; 74 received ≥1 dose of study treatment. After median follow-up of 19.6 months, median PFS was 8.5 months (95% CI: 6.2-10.8); median overall survival was not reached. Overall response rate was 57% (95% CI: 45-68), and median duration of response was 9.5 months (95% CI: 6.9-10.6). Grade 3/4 AEs occurred in 73% of patients and fatal AEs occurred in 15% of patients. Incidence of major haemorrhage was 5%; one patient died from cerebral haemorrhage. After an observed increased incidence of serious (42%) and fatal (11%) infections, enrolment was suspended to implement risk-minimisation measures. The safety profile was otherwise consistent with known safety profiles of the individual drugs.. Ibrutinib combined with bortezomib and dexamethasone elicited clinical responses. However, efficacy assessments conducted at potential restart of enrolment indicated that the targeted PFS could not be reached with additional patient enrolment, and the study was terminated.

    Topics: Adenine; Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Bortezomib; Dexamethasone; Drug Resistance, Neoplasm; Female; Humans; Kaplan-Meier Estimate; Male; Middle Aged; Multiple Myeloma; Neoplasm Staging; Piperidines; Prognosis; Recurrence; Retreatment; Treatment Outcome

2020
Final analysis of a phase 1/2b study of ibrutinib combined with carfilzomib/dexamethasone in patients with relapsed/refractory multiple myeloma.
    Hematological oncology, 2020, Volume: 38, Issue:3

    Patients with multiple myeloma (MM) inevitably relapse on initial treatment regimens, and novel combination therapies are needed. Ibrutinib is a first-in-class, once-daily inhibitor of Bruton's tyrosine kinase, an enzyme implicated in growth and survival of MM cells. Preclinical data suggest supra-additivity or synergy between ibrutinib and proteasome inhibitors (PIs) against MM. This phase 1/2b study evaluated the efficacy and safety of ibrutinib plus the PI carfilzomib and dexamethasone in patients with relapsed/refractory MM (RRMM). In this final analysis, we report results in patients who received the recommended phase 2 dose (RP2D; ibrutinib 840 mg and carfilzomib 36 mg/m

    Topics: Adenine; Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Dexamethasone; Drug Resistance, Neoplasm; Female; Follow-Up Studies; Humans; Male; Middle Aged; Multiple Myeloma; Neoplasm Recurrence, Local; Oligopeptides; Piperidines; Prognosis; Pyrazoles; Pyrimidines; Salvage Therapy; Survival Rate

2020
Ibrutinib alone or with dexamethasone for relapsed or relapsed and refractory multiple myeloma: phase 2 trial results.
    British journal of haematology, 2018, Volume: 180, Issue:6

    Novel therapies with unique new targets are needed for patients who are relapsed/refractory to current treatments for multiple myeloma. Ibrutinib is a first-in-class, once-daily, oral covalent inhibitor of Bruton tyrosine kinase, which is overexpressed in the myeloma stem cell population. This study examined various doses of ibrutinib ± low-dose dexamethasone in patients who received ≥2 prior lines of therapy, including an immunomodulatory agent. Daily ibrutinib ± weekly dexamethasone 40 mg was assessed in 4 cohorts using a Simon 2-stage design. The primary objective was clinical benefit rate (CBR; ≥minimal response); secondary objectives included safety. Patients (n = 92) received a median of 4 prior regimens. Ibrutinib + dexamethasone produced the highest CBR (28%) in Cohort 4 (840 mg + dexamethasone; n = 43), with median duration of 9·2 months (range, 3·0-14·7). Progression-free survival was 4·6 months (range, 0·4-17·3). Grade 3-4 haematological adverse events included anaemia (16%), thrombocytopenia (11%), and neutropenia (2%); grade 3-4 non-haematological adverse events included pneumonia (7%), syncope (3%) and urinary tract infection (3%). Ibrutinib + dexamethasone produced notable responses in this heavily pre-treated population. The encouraging efficacy, coupled with the favourable safety and tolerability profile of ibrutinib, supports its further evaluation as part of combination treatment.

    Topics: Adenine; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Dexamethasone; Disease-Free Survival; Female; Humans; Male; Middle Aged; Multiple Myeloma; Piperidines; Pyrazoles; Pyrimidines; Recurrence; Survival Rate

2018
Phase 1 trial of ibrutinib and carfilzomib combination therapy for relapsed or relapsed and refractory multiple myeloma.
    Leukemia & lymphoma, 2018, Volume: 59, Issue:11

    This phase 1, dose-finding study investigated ibrutinib and carfilzomib ± dexamethasone in patients with relapsed or relapsed/refractory multiple myeloma (≥2 lines of therapy including bortezomib and an immunomodulatory agent). Of 43 patients enrolled, 74% were refractory to bortezomib and 23% had high-risk cytogenetics. No dose-limiting toxicities were observed. The recommended phase 2 dose was ibrutinib 840 mg and carfilzomib 36 mg/m

    Topics: Adenine; Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Dexamethasone; Diarrhea; Disease-Free Survival; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Fatigue; Female; Humans; Male; Middle Aged; Multiple Myeloma; Neoplasm Recurrence, Local; Oligopeptides; Outcome Assessment, Health Care; Piperidines; Pyrazoles; Pyrimidines

2018
A phase I trial of flavopiridol in relapsed multiple myeloma.
    Cancer chemotherapy and pharmacology, 2014, Volume: 73, Issue:2

    Flavopiridol is primarily a cyclin-dependent kinase-9 inhibitor, and we performed a dose escalation trial to determine the maximum tolerated dose and safety and generate a pharmacokinetic (PK) profile.. Patients with a diagnosis of relapsed myeloma after at least two prior treatments were included. Flavopiridol was administered as a bolus and then continuous infusion weekly for 4 weeks in a 6-week cycle.. Fifteen patients were treated at three dose levels (30 mg/m(2) bolus, 30 mg/m(2) CIV to 50 mg/m(2) bolus, and 50 mg/m(2) CIV). Cytopenias were significant, and elevated transaminases (grade 4 in 3 patients, grade 3 in 4 patients, and grade 2 in 3 patients) were noted but were transient. Diarrhea (grade 3 in 6 patients and grade 2 in 5 patients) did not lead to hospital admission. There were no confirmed partial responses although one patient with t(4;14) had a decrease in his monoclonal protein >50 % that did not persist. PK properties were similar to prior publications, and immunohistochemical staining for cyclin D1 and phospho-retinoblastoma did not predict response.. Flavopiridol as a single agent given by bolus and then infusion caused significant diarrhea, cytopenias, and transaminase elevation but only achieved marginal responses in relapsed myeloma (ClinicalTrials.gov identifier NCT00112723).

    Topics: Aged; Aged, 80 and over; Antineoplastic Agents; Dose-Response Relationship, Drug; Flavonoids; Humans; Middle Aged; Multiple Myeloma; Piperidines; Recurrence

2014
Halofuginone inhibits multiple myeloma growth in vitro and in vivo and enhances cytotoxicity of conventional and novel agents.
    British journal of haematology, 2012, Volume: 157, Issue:6

    Multiple Myeloma (MM), a malignancy of plasma cells, remains incurable despite the use of conventional and novel therapies. Halofuginone (HF), a synthetic derivative of quinazolinone alkaloid, has recently been shown to have anti-cancer activity in various preclinical settings. This study demonstrated the anti-tumour activity of HF against a panel of human MM cell lines and primary patient-derived MM cells, regardless of their sensitivity to conventional therapy or novel agents. HF showed anti-MM activity in vivo using a myeloma xenograft mouse model. HF suppressed proliferation of myeloma cells alone and when co-cultured with bone marrow stromal cells. Similarly, HF induced apoptosis in MM cells even in the presence of insulin-like growth factor 1 or interleukin 6. Importantly, HF, even at high doses, did not induce cytotoxicity against CD40 activated peripheral blood mononuclear cells from normal donors. HF treatment induced accumulation of cells in the G(0) /G(1) cell cycle and induction of apoptotic cell death associated with depletion of mitochondrial membrane potential; cleavage of poly (ADP-ribose) polymerase and caspases-3, 8 and 9 as well as down-regulation of anti-apoptotic proteins including Mcl-1 and X-IAP. Multiplex analysis of phosphorylation of diverse components of signalling cascades revealed that HF induced changes in P38MAPK activation; increased phosphorylation of c-jun, c-jun NH(2)-terminal kinase (JNK), p53 and Hsp-27. Importantly, HF triggered synergistic cytotoxicity in combination with lenalidomide, melphalan, dexamethasone, and doxorubicin. Taken together, these preclinical studies provide the preclinical framework for future clinical studies of HF in MM.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Caspases; Cell Line, Tumor; Dose-Response Relationship, Drug; Drug Synergism; Female; G1 Phase; Humans; JNK Mitogen-Activated Protein Kinases; Male; Membrane Potential, Mitochondrial; Mice; Mice, SCID; Multiple Myeloma; Myeloid Cell Leukemia Sequence 1 Protein; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Piperidines; Proto-Oncogene Proteins c-bcl-2; Quinazolinones; Resting Phase, Cell Cycle; Tumor Suppressor Protein p53; X-Linked Inhibitor of Apoptosis Protein; Xenograft Model Antitumor Assays

2012
Development and validation of a highly sensitive liquid chromatography/mass spectrometry method for simultaneous quantification of lenalidomide and flavopiridol in human plasma.
    Therapeutic drug monitoring, 2008, Volume: 30, Issue:5

    Lenalidomide, an immunomodulatory agent, and flavopiridol, a broad cyclin-dependent kinase inhibitor, are active therapies for clinical use in genomic high-risk chronic lymphocytic leukemia. A high-performance liquid chromatographic assay with tandem mass spectrometric detection has been developed to simultaneously quantify lenalidomide and flavopiridol in human and mouse plasma to facilitate their combined clinical development. Samples were prepared by liquid-liquid extraction with acetonitrile (ACN)-containing internal standard, genistein, followed by evaporation of solvent and reconstitution in 95/5 H2O/ACN. Lenalidomide and internal standard were separated by reversed-phase liquid chromatography on a C-18 column using a gradient of H2O and ACN, each with 0.1% formic acid. Atmospheric pressure chemical ionization in positive ion mode with single reaction monitoring on a triple quadrupole mass spectrometer was applied to detect transitions of lenalidomide (260.06 > 149.10) and flavopiridol (402.09 > 341.02). Lower limits of quantification of lenalidomide and flavopiridol were 1 and 0.3 nM, respectively. Recoveries of lenalidomide and flavopiridol from human plasma ranged from 99% to 116% throughout their linear ranges. Within- and between-run precision and accuracy of replicate samples were all less than 15%. This is the most sensitive analytical method reported to date for both lenalidomide and flavopiridol. This sensitivity will enable late terminal phase concentration measurements and accurate pharmacokinetic parameter estimation in a planned clinical trial with lenalidomide and flavopiridol in patients with chronic lymphocytic leukemia.

    Topics: Chromatography, Liquid; Flavonoids; Humans; Lenalidomide; Multiple Myeloma; Piperidines; Recurrence; Spectrometry, Mass, Electrospray Ionization; Thalidomide; Time Factors

2008
Flavopiridol in patients with relapsed or refractory multiple myeloma: a phase 2 trial with clinical and pharmacodynamic end-points.
    Haematologica, 2006, Volume: 91, Issue:3

    Flavopiridol downregulates anti-apoptotic regulators including Mcl-1, upregulates p53, globally attenuates transcription through inhibition of P-TEFb, binds to DNA, and inhibits angiogenesis. Eighteen myeloma patients were treated with 1-hour flavopiridol infusions for 3 consecutive days every 21 days. Immunoblotting for Mcl-1, Bcl-2, p53, cyclin D, phosphoRNA polymerase II and phosphoSTAT 3 was conducted on myeloma cells. Ex vivo flavopiridol treatment of cells resulted in cytotoxicity, but only after longer exposure times at higher flavopiridol concentrations than were anticipated to be achieved in vivo. No anti-myeloma activity was observed in vivo. As administered, flavopiridol has disappointing activity as a single agent in advanced myeloma.

    Topics: Aged; Aged, 80 and over; Female; Flavonoids; Humans; Male; Middle Aged; Multiple Myeloma; Neoplasm Recurrence, Local; Piperidines; Treatment Outcome

2006
A phase II study of ZD6474 (Zactima, a selective inhibitor of VEGFR and EGFR tyrosine kinase in patients with relapsed multiple myeloma--NCIC CTG IND.145.
    Investigational new drugs, 2006, Volume: 24, Issue:6

    Multiple myeloma is a disease in which angiogenesis is postulated to be a target for therapy. Based on this hypothesis, we conducted a phase II trial of ZD6474 (Zactima; a VEGFR inhibitor) 100 mg p.o. daily in patients with relapsed multiple myeloma. The primary efficacy endpoint was objective response as assessed by reduction in M protein. There were 18 patients with a mean age of 64 years. One patient was ineligible and one was not evaluable. Overall, ZD6474 was well tolerated and pharmacokinetic testing demonstrated that adequate drug levels were achieved. The most common drug-related adverse events were nausea, vomiting, fatigue, rash, pruritus, headache, diarrhea, dizziness, and sensory neuropathy, all of which were Grade I-II in severity. There were no drug-related serious adverse events. Laboratory adverse events were infrequent: one patient had Grade III anemia, and there were no Grade III changes in biochemistry. No significant QTc interval changes were seen. There were no responses in M protein levels. In conclusion, ZD6474 was well tolerated at a dose of 100 mg per day and achieved plasma levels predicted to inhibit VEGF signaling. However, this was not reflected in clinical benefit since none of the patients had a reduction in M protein.

    Topics: Administration, Oral; ErbB Receptors; Female; Humans; Male; Middle Aged; Multiple Myeloma; Myeloma Proteins; Piperidines; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Treatment Outcome

2006
Phase II trial of piperazinedione in Hodgkin's disease, non-Hodgkin's lymphoma, and multiple myeloma: a Southwest Oncology Group study.
    Cancer treatment reports, 1977, Volume: 61, Issue:9

    Piperazinedione given iv once every 3-4 weeks at a starting dose of 9-12 mg/m2 (4.5-12 mg/m2 for patients with myeloma) was evaluated in a Southwest Oncology Group phase II study for patients with far-advanced refractory lymphoma or multiple myeloma. Among 36 patients fully evaluable for tumor response (adequate trial), partial responses were observed in five (71%) of seven patients with Hodgkin's disease, in three (19%) of 16 patients with non-Hodgkin's lymphoma, and in none of 13 patients with multiple myeloma. Response was observed by the time of the second (five patients) or third (three patients) course. The median duration of response was 3.7 months (range, 1-17+ months). The dose-limiting toxic effects were hematologic, with 18 (50%) of 36 patients evaluable for toxicity experiencing severe leukopenia (wbc count less than 2000/mm3) and 22 (61%) experiencing severe thrombocytopenia (platelet count less than 50,000/mm3). Twenty patients had a decrease from their pretreatment hemoglobin level of greater than or equal to 2 g/100 ml. Hematologic toxic effects were often unpredictable and in several patients quite prolonged. This study indicates that piperazinedione had definite antitumor activity in patients with Hodgkin's disease and further trials in this disease using the drug at a reduced dose in combination with other effective drugs appear warranted.

    Topics: Antibiotics, Antineoplastic; Clinical Trials as Topic; Drug Evaluation; Hodgkin Disease; Humans; Leukopenia; Lymphoma; Multiple Myeloma; Piperazines; Piperidines; Thrombocytopenia

1977

Other Studies

42 other study(ies) available for piperidines and Multiple-Myeloma

ArticleYear
The Mucolipin TRPML2 Channel Enhances the Sensitivity of Multiple Myeloma Cell Lines to Ibrutinib and/or Bortezomib Treatment.
    Biomolecules, 2022, 01-09, Volume: 12, Issue:1

    Multiple myeloma (MM) is a haematological B cell malignancy characterised by clonal proliferation of plasma cells and their accumulation in the bone marrow. The aim of the present study is the evaluation of biological effects of Ibrutinib in human MM cell lines alone or in combination with different doses of Bortezomib. In addition, the relationship between the expression of TRPML2 channels and chemosensitivity of different MM cell lines to Ibrutinib administered alone or in combination with Bortezomib has been evaluated. By RT-PCR and Western blot analysis, we found that the Ibrutinib-resistant U266 cells showed lower TRPML2 expression, whereas higher TRPML2 mRNA and protein levels were evidenced in RPMI cells. Moreover, TRPML2 gene silencing in RPMI cells markedly reverted the effects induced by Ibrutinib alone or in combination with Bortezomib suggesting that the sensitivity to Ibrutinib is TRPML2 mediated. In conclusion, this study suggests that the expression of TRPML2 in MM cells increases the sensitivity to Ibrutinib treatment, suggesting for a potential stratification of Ibrutinib sensitivity of MM patients on the basis of the TRPML2 expression. Furthermore, studies in vitro and in vivo should still be necessary to completely address the molecular mechanisms and the potential role of TRPML2 channels in therapy and prognosis of MM patients.

    Topics: Adenine; Apoptosis; Bortezomib; Cell Line, Tumor; Cell Proliferation; Humans; Multiple Myeloma; Piperidines

2022
Targeting NAD
    Trends in cancer, 2020, Volume: 6, Issue:1

    Antibodies targeting CD38, a NAD

    Topics: Acrylamides; Adenosine; Adenosine Diphosphate Ribose; ADP-ribosyl Cyclase 1; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents, Immunological; Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Cytokines; Drug Synergism; Humans; Membrane Glycoproteins; Multiple Myeloma; NAD; Niacinamide; Nicotinamide Phosphoribosyltransferase; Piperidines; T-Lymphocytes, Cytotoxic; T-Lymphocytes, Regulatory; Tumor Escape; Warburg Effect, Oncologic

2020
[Adiponectin Receptor Agonist AdipoRon Inhibits the Proliferation of Myeloma Cells via the AMPK/Autophagy Pathway].
    Zhongguo shi yan xue ye xue za zhi, 2020, Volume: 28, Issue:1

    To investigate the inhibitory effect of adiponectin receptor agonist AdipoRon on proliferation of myeloma cell lines and its possible mechanism.. The myeloma cell lines Sp2/0-Ag14 and MPC-11 were treated with different concentration of AdipoRon. The cell proliferation was detected by CCK-8. Western blot was used to determine the protein level of the signaling pathway. RT-PCR was used to quantify the mRNA copy number of adiponectin receptor AdipoR1 and AdipoR2 in the bone marrow cells from 21 patients with multiple myeloma (MM). Twenty-three normal bone marrow samples were served as control.. AdipoRon significantly inhibited the proliferation of MM cell lines Sp2/0-Ag14 and MPC-11 in a concentration-dependent and time-dependent manner. Western blot showed that AdipoRon induced an increase of the expression levels of apoptosis-related proteins cleaved caspase-3 and cleaved PARP. AdipoRon upregulated p-AMPK and its downstream p-ACC in MPC-11. In addition, AdipoRon upregulated LC3-II/LC3-I level and down-regulated the protein level of p62. The expression level of AdipoR1 in MM cells was significantly higher than that in normal controls, and the expression level of AdipoR2 in MM cells was significantly lower than that in normal controls.. Adiponectin receptors are expressed differentially between MM patients and normal subjects. AdipoRon, an adiponectin receptor agonist, can inhibit myeloma cell proliferation and induce apoptosis, and AMPK/autophagy pathway may be one of its mechanisms.. 脂联素受体激动剂AdipoRon通过AMPK/自噬途径抗骨髓瘤细胞增殖.. 探讨脂联素受体激动剂AdipoRon对骨髓瘤细胞系的增殖抑制作用及其可能的机制.. 将不同浓度AdipoRon作用于骨髓瘤细胞系Sp2/0-Ag14和MPC-11,采用CCK-8法检测细胞增殖,Western blot检测信号通路蛋白表达水平,采用RT-PCR方法检测脂联素受体AdipoR1和AdipoR2在23例正常对照和21例多发性骨髓瘤(MM)患者骨髓单个核细胞中的表达情况.. AdipoRon能显著抑制小鼠骨髓瘤细胞系Sp2/0-Ag14和MPC-11的增殖,且呈浓度依赖性和时间依赖性(r=-0.951/-0.950,r=-0.993/-0.969);AdipoRon可诱导凋亡相关蛋白cleaved caspase-3和cleaved PARP的表达水平升高;AdipoRon可上调MPC-11的p-AMPK及其下游的p-ACC磷酸化水平,且可上调LC3-II/LC3-I的水平,下调p62的蛋白水平。脂联素受体AdipoR1在MM细胞中的表达水平显著高于正常对照,而AdipoR2在MM细胞中的表达水平显著低于正常对照.. 脂联素受体在MM患者和正常人之间存在差异性表达。脂联素受体激动剂AdipoRon能够抑制骨髓瘤细胞增殖及诱导细胞凋亡,AMPK/自噬途径可能是其作用机制之一.

    Topics: AMP-Activated Protein Kinases; Apoptosis; Autophagy; Cell Proliferation; Humans; Multiple Myeloma; Piperidines; Receptors, Adiponectin; Signal Transduction

2020
JZL184, A Monoacylglycerol Lipase Inhibitor, Induces Bone Loss in a Multiple Myeloma Model of Immunocompetent Mice.
    Calcified tissue international, 2020, Volume: 107, Issue:1

    Multiple myeloma (MM) patients develop osteolysis characterised by excessive osteoclastic bone destruction and lack of osteoblast bone formation. Pharmacological manipulation of monoacylglycerol lipase (MAGL), an enzyme responsible for the degradation of the endocannabinoid 2-arachidonoyl glycerol (2-AG), reduced skeletal tumour burden and osteolysis associated with osteosarcoma and advanced breast and prostate cancers. MM and hematopoietic, immune and bone marrow cells express high levels of type 2 cannabinoid receptor and osteoblasts secrete 2-AG. However, the effects of MAGL manipulation on MM have not been investigated. Here, we report that treatment of pre-osteoclasts with non-cytotoxic concentrations of JZL184, a verified MAGL inhibitor, enhanced MM- and RANKL-induced osteoclast formation and size in vitro. Exposure of osteoblasts to JZL184 in the presence of MM cell-derived factors reduced osteoblast growth but had no effect on the ability of these cells to mature or form bone nodules. In vivo, administration of JZL184 induced a modest, yet significant, bone loss at both trabecular and cortical compartments of long bones of immunocompetent mice inoculated with the syngeneic 5TGM1-GFP MM cells. Notably, JZL184 failed to inhibit the in vitro growth of a panel of mouse and human MM cell lines, or reduce tumour burden in mice. Thus, MAGL inhibitors such as JZL184 can exacerbate MM-induced bone loss.

    Topics: Animals; Benzodioxoles; Bone Resorption; Cell Line, Tumor; Humans; Mice; Monoacylglycerol Lipases; Multiple Myeloma; Piperidines; RAW 264.7 Cells

2020
Multiple myeloma increases nerve growth factor and other pain-related markers through interactions with the bone microenvironment.
    Scientific reports, 2019, 10-02, Volume: 9, Issue:1

    Interactions between multiple myeloma (MM) and bone marrow (BM) are well documented to support tumour growth, yet the cellular mechanisms underlying pain in MM are poorly understood. We have used in vivo murine models of MM to show significant induction of nerve growth factor (NGF) by the tumour-bearing bone microenvironment, alongside other known pain-related characteristics such as spinal glial cell activation and reduced locomotion. NGF was not expressed by MM cells, yet bone stromal cells such as osteoblasts expressed and upregulated NGF when cultured with MM cells, or MM-related factors such as TNF-α. Adiponectin is a known MM-suppressive BM-derived factor, and we show that TNF-α-mediated NGF induction is suppressed by adiponectin-directed therapeutics such as AdipoRON and L-4F, as well as NF-κB signalling inhibitor BMS-345541. Our study reveals a further mechanism by which cellular interactions within the tumour-bone microenvironment contribute to disease, by promoting pain-related properties, and suggests a novel direction for analgesic development.

    Topics: Adiponectin; Animals; Bone Marrow; Cell Proliferation; Disease Models, Animal; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Mice; Multiple Myeloma; Nerve Growth Factor; Neuroglia; NF-kappa B; Osteoblasts; Pain; Peptides; Piperidines; Quinoxalines; Stromal Cells; Tumor Microenvironment; Tumor Necrosis Factor-alpha

2019
Flavopiridol enhances ABT-199 sensitivity in unfavourable-risk multiple myeloma cells in vitro and in vivo.
    British journal of cancer, 2018, 02-06, Volume: 118, Issue:3

    The BCL-2-specific BH3-mimetic ABT-199 (venetoclax) has been reported to be principally active against favourable-risk multiple myeloma (MM) cells, prompting efforts to extend its activity to include more resistant, higher-risk MM subsets.. Effects of the CDK9 inhibitor flavopiridol (FP; alvocidib) on responses to ABT-199 were examined in MM cells. Cell death and protein expression were evaluated by western blot and immunofluorescence. Xenograft models were used to study combination effects in vivo.. FP synergistically increased ABT-199 lethality in both ABT-199-sensitive and insensitive MM cells. FP blocked CDK9 activation/positive transcription elongation factor B phosphorylation, downregulated MCL-1, increased BCL-2/MCL-1 ratios, and upregulated BIM. MCL-1 ectopic expression or knockdown in MM cells significantly diminished or increased ABT-199 sensitivity, respectively. CDK9 knockdown triggered MCL-1 downregulation and increased ABT-199 activity, whereas BIM knockdown significantly reduced FP/ABT-199 lethality. FP also enhanced ABT-199 lethality in unfavourable prognosis primary MM cells. HS-5 cell co-culture failed to protect MM cells from the FP/ABT-199 regimen, suggesting circumvention of microenvironmental signals. Finally, FP/ABT-199 significantly increased survival in systemic xenograft and immune-competent MM models while exhibiting minimal toxicity.. These findings argue that CDK9 inhibitors, for example, FP may increase the antimyeloma activity of ABT-199, including in unfavourable-risk MM minimally responsive to ABT-199 alone.

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Bcl-2-Like Protein 11; Bridged Bicyclo Compounds, Heterocyclic; Cell Line, Tumor; Cyclin-Dependent Kinase 9; Down-Regulation; Drug Resistance, Neoplasm; Drug Synergism; Flavonoids; Gene Knockdown Techniques; Humans; Mice; Multiple Myeloma; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Transplantation; Piperidines; Primary Cell Culture; Proto-Oncogene Proteins c-bcl-2; Risk Assessment; Sulfonamides; Up-Regulation

2018
Ibrutinib targets microRNA-21 in multiple myeloma cells by inhibiting NF-κB and STAT3.
    Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, 2018, Volume: 40, Issue:1

    The oncogenic microRNA-21 contributes to the pathogenesis of multiple myeloma. Ibrutinib (also referred to as PCI-32765), an inhibitor of Bruton's tyrosine kinase, while its effects on multiple myeloma have not been well described. Here, we show that microRNA-21 is an oncogenic marker closely linked with progression of multiple myeloma. Moreover, ibrutinib attenuates microRNA-21 expression in multiple myeloma cells by inhibiting nuclear factor-κB and signal transducer and activator of transcription 3 signaling pathways. Taken together, our results suggest that ibrutinib is a promising potential treatment for multiple myeloma. Further investigation of mechanisms of ibrutinib function in multiple myeloma will be necessary to evaluate its use as a novel multiple myeloma treatment.

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Aged; Cell Line, Tumor; Cell Proliferation; Female; Gene Expression Regulation, Neoplastic; Humans; Male; MicroRNAs; Middle Aged; Multiple Myeloma; NF-kappa B; Piperidines; Promoter Regions, Genetic; Protein Binding; Protein-Tyrosine Kinases; Pyrazoles; Pyrimidines; STAT3 Transcription Factor

2018
Multiple myeloma - a cure within reach.
    Leukemia & lymphoma, 2018, Volume: 59, Issue:11

    Topics: Adenine; Humans; Multiple Myeloma; Oligopeptides; Piperidines; Pyrazoles; Pyrimidines

2018
Repurposing tofacitinib as an anti-myeloma therapeutic to reverse growth-promoting effects of the bone marrow microenvironment.
    Haematologica, 2018, Volume: 103, Issue:7

    Topics: Animals; Bone Marrow; Cell Communication; Disease Models, Animal; Drug Repositioning; Humans; Janus Kinases; Mesenchymal Stem Cells; Mice; Multiple Myeloma; Phosphoproteins; Piperidines; Plasma Cells; Protein Kinase Inhibitors; Proteome; Proteomics; Pyrimidines; Pyrroles; Signal Transduction; STAT Transcription Factors; Tumor Microenvironment; Xenograft Model Antitumor Assays

2018
Vemurafenib in combination with cobimetinib in relapsed and refractory extramedullary multiple myeloma harboring the BRAF V600E mutation.
    Hematological oncology, 2017, Volume: 35, Issue:4

    BRAF mutations are present in a variety of cancers and cause constitutive activation of the Ras-Raf-MEK-ERK signaling pathway. In cutaneous malignant melanoma, combined treatment with BRAF and MEK inhibitors is associated with high response rates and has been shown to improve progression free as well as overall survival compared to BRAF inhibition alone. In multiple myeloma, BRAF mutations are detectable only in a minority of patients. Only few data are available regarding the clinical activity of BRAF inhibitors in BRAF-positive multiple myeloma patients, including some anecdotal reports on remarkable responses in individuals being resistant to all other available anti-myeloma treatment approaches. We here present the first report on the combination of vemurafenib and cobimetinib in a young patient with highly resistant and rapidly progressing multiple myeloma harboring the BRAF V600E mutation who achieved a rapid and sustained response to this combination therapy.

    Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Azetidines; Female; Humans; Indoles; Multiple Myeloma; Mutation; Piperidines; Proto-Oncogene Proteins B-raf; Sulfonamides; Vemurafenib

2017
58th American Society of Hematology Annual Meeting.
    The Lancet. Haematology, 2017, Volume: 4, Issue:1

    Topics: ADAMTS13 Protein; Adenine; Antibodies, Monoclonal; Antineoplastic Agents; Central Venous Catheters; fms-Like Tyrosine Kinase 3; Genetic Therapy; Graft vs Host Disease; Hematologic Diseases; Hemophilia B; Humans; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leukemia, Myeloid, Acute; Multiple Myeloma; Mutation; Piperidines; Protein Kinase Inhibitors; Purpura, Thrombotic Thrombocytopenic; Pyrazoles; Pyrimidines; Recombinant Proteins; Societies, Medical; Thrombosis

2017
Ibrutinib inhibits BTK-driven NF-κB p65 activity to overcome bortezomib-resistance in multiple myeloma.
    Cell cycle (Georgetown, Tex.), 2015, Volume: 14, Issue:14

    Multiple Myeloma (MM) is a haematologic malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. Over the last 10-15 y the introduction of the proteasome-inhibitor bortezomib has improved MM prognosis, however relapse due to bortezomib-resistance is inevitable and the disease, at present, remains incurable. To model bortezomib-resistant MM we generated bortezomib-resistant MM cell lines (n = 4 ) and utilised primary malignant plasma cells from patients relapsing after bortezomib treatment (n = 6 ). We identified enhanced Bruton's tyrosine kinase (BTK) activity in bortezomib-resistant MM cells and found that inhibition of BTK, either pharmacologically with ibrutinib (0.5 μM) or via lenti-viral miRNA-targeted BTK interference, re-sensitized previously bortezomib-resistant MM cells to further bortezomib therapy at a physiologically relevant concentration (5 nM). Further analysis of pro-survival signaling revealed a role for the NF-κB p65 subunit in MM bortezomib-resistance, thus a combination of BTK and NF-κB p65 inhibition, either pharmacologically or via further lenti-viral miRNA NF-κB p65 interference, also restored sensitivity to bortezomib, significantly reducing cell viability (37.5 ± 6 .9 %, ANOVA P ≤ 0 .001). Accordingly, we propose the clinical evaluation of a bortezomib/ibrutinib combination therapy, including in patients resistant to single-agent bortezomib.

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Bortezomib; Cell Survival; Drug Resistance, Neoplasm; Humans; Immunohistochemistry; MicroRNAs; Multiple Myeloma; Neoplasm Recurrence, Local; Piperidines; Proteasome Inhibitors; Protein-Tyrosine Kinases; Pyrazoles; Pyrimidines; Real-Time Polymerase Chain Reaction; RNA Interference; Signal Transduction; Transcription Factor RelA; Tumor Cells, Cultured

2015
Bruton tyrosine kinase is a therapeutic target in stem-like cells from multiple myeloma.
    Cancer research, 2015, Feb-01, Volume: 75, Issue:3

    Ibrutinib (Imbruvica), a small-drug inhibitor of Bruton tyrosine kinase (BTK), is currently undergoing clinical testing in patients with multiple myeloma, yet important questions on the role of BTK in myeloma biology and treatment are outstanding. Using flow-sorted side population cells from human myeloma cell lines and multiple myeloma primary samples as surrogate for the elusive multiple myeloma stem cell, we found that elevated expression of BTK in myeloma cells leads to AKT/WNT/β-catenin-dependent upregulation of key stemness genes (OCT4, SOX2, NANOG, and MYC) and enhanced self-renewal. Enforced transgenic expression of BTK in myeloma cells increased features of cancer stemness, including clonogenicity and resistance to widely used myeloma drugs, whereas inducible knockdown of BTK abolished them. Furthermore, overexpression of BTK in myeloma cells promoted tumor growth in laboratory mice and rendered side population-derived tumors that contained high levels of BTK more sensitive to the selective, second-generation BTK inhibitor, CGI1746, than side population-derived tumors that harbored low levels of BTK. Taken together, these findings implicate BTK as a positive regulator of myeloma stemness and provide additional support for the clinical testing of BTK-targeted therapies in patients with myeloma.

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Animals; Antineoplastic Agents; beta Catenin; Bone Marrow Cells; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Humans; Lentivirus; Mice; Multiple Myeloma; Neoplastic Stem Cells; Piperidines; Protein-Tyrosine Kinases; Pyrazoles; Pyrimidines; Side-Population Cells; Signal Transduction

2015
Aloperine executes antitumor effects against multiple myeloma through dual apoptotic mechanisms.
    Journal of hematology & oncology, 2015, Mar-15, Volume: 8

    Aloperine, a natural alkaloid constituent isolated from the herb Sophora alopecuroides displays anti-inflammatory properties in vitro and in vivo. Our group previously demonstrated that aloperine significantly induced apoptosis in colon cancer SW480 and HCT116 cells. However, its specific target(s) remain to be discovered in multiple myeloma (MM) and have not been investigated.. Human myeloma cell lines (n = 8), primary myeloma cells (n = 12), drug-resistant myeloma cell lines (n = 2), and animal models were tested for their sensitivity to aloperine in terms of proliferation and apoptosis both in vitro and in vivo, respectively. We also examined the functional mechanisms underlying the apoptotic pathways triggered by aloperine.. Aloperine induced MM cell death in a dose- and time-dependent manner, even in the presence of the proliferative cytokines interleukin-6 and insulin-like growth factor I. Mechanistic studies revealed that aloperine not only activated caspase-8 and reduced the expression of FADD-like interleukin-1β-converting enzyme (FLICE)-like inhibitory protein long (FLIPL) and FLICE-inhibitory proteins (FLIPS) but also activated caspase-9 and decreased the expression of phosphorylated (p)-PTEN. Moreover, co-activation of the caspase-8/cellular FLICE-inhibitory protein (cFLIP)- and caspase-9/p-PTEN/p-AKT-dependent apoptotic pathways by aloperine caused irreversible inhibition of clonogenic survival. Aloperine induce more MM apoptosis with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or borterzomib. A U266 xenograft tumor model and 5T33 MM cells recapitulated the antitumor efficacy of aloperine, and the animals displayed excellent tolerance of the drug and few adverse effects.. Aloperine has multifaceted antitumor effects on MM cells. Our data support the clinical development of aloperine for MM therapy.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Blotting, Western; Cell Line, Tumor; Cell Proliferation; Cells, Cultured; Humans; Mice; Mice, Inbred NOD; Mice, SCID; Multiple Myeloma; Piperidines; Quinolizidines; RNA, Small Interfering; Transfection; Xenograft Model Antitumor Assays

2015
The novel β2-selective proteasome inhibitor LU-102 decreases phosphorylation of I kappa B and induces highly synergistic cytotoxicity in combination with ibrutinib in multiple myeloma cells.
    Cancer chemotherapy and pharmacology, 2015, Volume: 76, Issue:2

    Proteasome-inhibiting drugs (PI) are gaining importance in hematologic oncology. The proteasome carries three proteolytically active subunits (β1, β2, β5). All established PI (bortezomib and carfilzomib), as well as experimental drugs in the field (dalanzomib, oprozomib, and ixazomib), by design target the rate-limiting β5 subunit. It is unknown whether β2-selective proteasome inhibition can also be exploited toward anticancer treatment. Combining PI with the pan B-cell-directed Bruton tyrosine kinase inhibitor ibrutinib appears a natural option for future improved treatment of multiple myeloma (MM) and B-cell lymphomas. However, bortezomib induces phosphorylation of IκB and activation of NF-κB in MM cells, while ibrutinib inhibits the IκB/NF-κB axis, suggesting antagonistic signaling. A β2-selective proteasome inhibitor may lack such antagonistic signaling effects.. We recently introduced LU-102, the first β2-selective PI available for preclinical testing. We here compare bortezomib with carfilzomib and LU-102 in MM and MCL in vitro with regard to their effects on pIκB/NF-κB signaling and their cytotoxic activity in combination with ibrutinib.. LU-102 reduced phosphorylation of IκB, in contrast to bortezomib and carfilzomib, and was a superior inhibitor of NF-κB activation in MM cells. This translated into highly synergistic cytotoxicity between LU-102 and ibrutinib, which was able to overcome BTZ resistance and CFZ resistance. By contrast, BTZ lacked consistent synergistic cytotoxicity with ibrutinib.. Ibrutinib is highly synergistic with β2-selective proteasome inhibition against MM and MCL in vitro. Novel β2-selective proteasome inhibitors may be exploited to overcome bortezomib/carfilzomib resistance and boost the activity of BTK inhibitors against B-cell-derived malignancies.

    Topics: Adenine; Antineoplastic Agents; Boronic Acids; Bortezomib; Cell Line, Tumor; Drug Resistance, Neoplasm; Drug Synergism; Humans; I-kappa B Proteins; Lymphoma, Mantle-Cell; Multiple Myeloma; Oligopeptides; Phosphorylation; Piperidines; Proteasome Inhibitors; Pyrazines; Pyrazoles; Pyrimidines

2015
Identifying bias in CCR1 antagonists using radiolabelled binding, receptor internalization, β-arrestin translocation and chemotaxis assays.
    British journal of pharmacology, 2014, Volume: 171, Issue:22

    Investigators have suggested that the chemokine receptor CCR1 plays a role in multiple myeloma. Studies using antisense and neutralizing antibodies to CCR1 showed that down-regulation of the receptor altered disease progression in a mouse model. More recently, experiments utilizing scid mice injected with human myeloma cells demonstrated that the CCR1 antagonist BX471 reduced osteolytic lesions, while the CCR1 antagonist MLN-3897 prevented myeloma cell adhesion to osteoclasts. However, information is limited regarding the pharmacology of CCR1 antagonists in myeloma cells.. We compared several well-studied CCR1 antagonists including AZD4818, BX471, CCX354, CP-481715, MLN-3897 and PS899877 for their ability to inhibit binding of [(125)I]-CCL3 in vitro using membranes prepared from RPMI 8226 cells, a human multiple myeloma cell line that endogenously expresses CCR1. In addition, antagonists were assessed for their ability to modulate CCL3-mediated internalization of CCR1 and CCL3-mediated cell migration using RPMI 8226 cells. As many GPCRs signal through β-arrestin-dependent pathways that are separate and distinct from those driven by G-proteins, we also evaluated the compounds for their ability to alter β-arrestin translocation.. There were clear differences between the CCR1 antagonists in their ability to inhibit CCL3 binding to myeloma cells, as well as in their ability to inhibit G-protein-dependent and -independent functional responses.. Our studies demonstrate that tissue phenotype seems to be relevant with regards to CCR1. Moreover, it appears that for CCR1 antagonists, inhibition of β-arrestin translocation is not necessarily linked to chemotaxis or receptor internalization.

    Topics: Animals; Arrestins; beta-Arrestins; Cell Line, Tumor; Chemokine CCL3; Chemotaxis; CHO Cells; Cricetulus; HEK293 Cells; Humans; Multiple Myeloma; Phenylurea Compounds; Piperidines; Quinoxalines; Radioligand Assay; Receptors, CCR1; Spiro Compounds

2014
[Effect of PI3Kδ inhibitor CAL-101 on myeloma cell lines and preliminary study of synergistic effects with other new drugs].
    Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi, 2014, Volume: 35, Issue:10

    To investigate the proliferation inhibitory role and mechanism of PI3Kδ inhibitor CAL-101 on multiple myeloma (MM) cells, and to provide new therapeutic options for MM treatment.. MM cell lines U266 and RPMI8226 cells were treated with various concentrations of CAL-101. MTT assay and CalcuSyn software were performed to determine the inhibitory effect of CAL-101 and the synergistic effect with PCI- 32765, SAHA (suberoylanilide hydroxamic acid), BTZ (Bortezomib) on MM cells. The protein expression level of p-AKT, p-ERK, AKT, ERK and PI3Kδ processed by CAL-101 were analyzed by Western blot.. CAL-101 at concentration of 15, 20, 25, 30 and 40 μmol/L could induce significant dose-dependent proliferation inhibition on U266 cells after treatment for 48 hours. The cell proliferation inhibition rates were (33.54 ± 1.23)%, (41.72 ± 1.78)%, (53.67 ± 2.01)%, (68.97 ± 2.11)% and (79.25 ± 1.92)%, respectively. Similar results were found in RPMI8226 cell line. Western blots showed high expression level of p-AKT, p-ERK, AKT, ERK and PI3Kδ in cell lines and MM primary cells. p-AKT and p-ERK protein expression levels were down-regulated significantly by CAL-101 treatment. Synergistic effect has been verified between CAL-101 and PCI-32765, SAHA and Bortezomib in U266 cell line, and PCI-32765, Bortezomib in RPMI8226 cell line with CI values less than 1.. CAL-101 could inhibit proliferation of MM cell lines. High levels of p-AKT, p-ERK, AKT, ERK and PI3Kδ protein expression were observed in both cell lines and primary cells. Down-regulation of p-AKT and p-ERK probably related with the mechanism of CAL-101 in MM cell proliferation inhibition. CAL-101 has significant synergistic effect with PCI-32765, SAHA and BTZ.

    Topics: Adenine; Boronic Acids; Bortezomib; Cell Line, Tumor; Cell Proliferation; Down-Regulation; Humans; Multiple Myeloma; Phosphoinositide-3 Kinase Inhibitors; Piperidines; Protein Kinase Inhibitors; Purines; Pyrazines; Pyrazoles; Pyrimidines; Quinazolinones

2014
NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity.
    Experimental hematology, 2013, Volume: 41, Issue:6

    Multiple myeloma (MM) cells typically grow in focal lesions, stimulating osteoclasts that destroy bone and support MM. Osteoclasts and MM cells are hypermetabolic. The coenzyme nicotinamide adenine dinucleotide (NAD(+)) is not only essential for cellular metabolism; it also affects activity of NAD-dependent enzymes, such as PARP-1 and SIRT-1. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin, encoded by PBEF1) is a rate-limiting enzyme in NAD(+) biosynthesis from nicotinamide. Coculture of primary MM cells with osteoclasts induced PBEF1 upregulation in both cell types. PBEF1 expression was higher in experimental myelomatous bones than in nonmyelomatous bone and higher in MM patients' plasma cells than in healthy donors' counterparts. APO866 is a specific PBEF1 inhibitor known to deplete cellular NAD(+). APO866 at low nanomolar concentrations inhibited growth of primary MM cells or MM cell lines cultured alone or cocultured with osteoclasts and induced apoptosis in these cells. PBEF1 activity and NAD(+) content were reduced in MM cells by APO866, resulting in lower activity of PARP-1 and SIRT-1. The inhibitory effect of APO866 on MM cell growth was abrogated by supplementation of extracellular NAD(+) or NAM. APO866 inhibited NF-κB activity in osteoclast precursors and suppressed osteoclast formation and activity. PBEF1 knockdown similarly inhibited MM cell growth and osteoclast formation. In the SCID-rab model, APO866 inhibited growth of primary MM and H929 cells and prevented bone disease. These findings indicate that MM cells and osteoclasts are highly sensitive to NAD(+) depletion and that PBEF1 inhibition represents a novel approach to target cellular metabolism and inhibit PARP-1 and bone disease in MM.

    Topics: Acrylamides; Animals; Bone and Bones; Cell Differentiation; Coculture Techniques; Cytokines; Enzyme Induction; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; Gene Knockdown Techniques; Humans; Mice; Mice, SCID; Multiple Myeloma; NAD; Neoplasm Proteins; NF-kappa B; Niacinamide; Nicotinamide Mononucleotide; Nicotinamide Phosphoribosyltransferase; Osteoclasts; Osteolysis; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Rabbits; Sirtuin 1; Tumor Cells, Cultured; Up-Regulation

2013
Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation.
    Blood, 2013, Aug-29, Volume: 122, Issue:9

    Multiple myeloma (MM) is the second most common hematologic malignancy. Despite recent treatment advances, it remains incurable. Here, we report that Pim2 kinase expression is highly elevated in MM cells and demonstrate that it is required for MM cell proliferation. Functional interference of Pim2 activity either by short hairpin RNAs or by a potent and selective small-molecule inhibitor leads to significant inhibition of MM cell proliferation. Pim inhibition results in a significant decrease of mammalian target of rapamycin C1 (mTOR-C1) activity, which is critical for cell proliferation. We identify TSC2, a negative regulator of mTOR-C1, as a novel Pim2 substrate and show that Pim2 directly phosphorylates TSC2 on Ser-1798 and relieves the suppression of TSC2 on mTOR-C1. These findings support Pim2 as a promising therapeutic target for MM and define a novel Pim2-TSC2-mTOR-C1 pathway that drives MM proliferation.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Humans; Mechanistic Target of Rapamycin Complex 1; Mice; Models, Biological; Multiple Myeloma; Multiprotein Complexes; Phosphorylation; Piperidines; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Pyridines; TOR Serine-Threonine Kinases; Tuberous Sclerosis Complex 2 Protein; Tumor Burden; Tumor Suppressor Proteins; Xenograft Model Antitumor Assays

2013
Intracellular NAD⁺ depletion enhances bortezomib-induced anti-myeloma activity.
    Blood, 2013, Aug-15, Volume: 122, Issue:7

    We recently demonstrated that Nicotinamide phosphoribosyltransferase (Nampt) inhibition depletes intracellular NAD⁺ content leading, to autophagic multiple myeloma (MM) cell death. Bortezomib has remarkably improved MM patient outcome, but dose-limiting toxicities and development of resistance limit its long-term utility. Here we observed higher Nampt messenger RNA levels in bortezomib-resistant patient MM cells, which correlated with decreased overall survival. We demonstrated that combining the NAD⁺ depleting agent FK866 with bortezomib induces synergistic anti-MM cell death and overcomes bortezomib resistance. This effect is associated with (1) activation of caspase-8, caspase-9, caspase-3, poly (ADP-ribose) polymerase, and downregulation of Mcl-1; (2) enhanced intracellular NAD⁺ depletion; (3) inhibition of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities; (4) inhibition of nuclear factor κB signaling; and (5) inhibition of angiogenesis. Furthermore, Nampt knockdown significantly enhances the anti-MM effect of bortezomib, which can be rescued by ectopically overexpressing Nampt. In a murine xenograft MM model, low-dose combination FK866 and Bortezomib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. Taken together, these findings indicate that intracellular NAD⁺ level represents a major determinant in the ability of bortezomib to induce apoptosis in MM cells and provide proof of concept for the combination with FK866 as a new strategy to enhance sensitivity or overcome resistance to bortezomib.

    Topics: Acrylamides; Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Biomarkers, Tumor; Blotting, Western; Boronic Acids; Bortezomib; Case-Control Studies; Caspases; Cell Proliferation; Drug Synergism; Female; Fluorescent Antibody Technique; Gene Expression Profiling; Humans; Male; Mice; Mice, SCID; Multiple Myeloma; NAD; Neoplasm Recurrence, Local; NF-kappa B; Nicotinamide Phosphoribosyltransferase; Oligonucleotide Array Sequence Analysis; Piperidines; Poly(ADP-ribose) Polymerases; Prognosis; Pyrazines; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Survival Rate; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2013
BTK inhibitor ibrutinib is cytotoxic to myeloma and potently enhances bortezomib and lenalidomide activities through NF-κB.
    Cellular signalling, 2013, Volume: 25, Issue:1

    Ibrutinib (previously known as PCI-32765) has recently shown encouraging clinical activity in chronic lymphocytic leukaemia (CLL) effecting cell death through inhibition of Bruton's tyrosine kinase (BTK). In this study we report for the first time that ibrutinib is cytotoxic to malignant plasma cells from patients with multiple myeloma (MM) and furthermore that treatment with ibrutinib significantly augments the cytotoxic activity of bortezomib and lenalidomide chemotherapies. We describe that the cytotoxicity of ibrutinib in MM is mediated via an inhibitory effect on the nuclear factor-κB (NF-κB) pathway. Specifically, ibrutinib blocks the phosphorylation of serine-536 of the p65 subunit of NF-κB, preventing its nuclear translocation, resulting in down-regulation of anti-apoptotic proteins Bcl-xL, FLIP(L) and survivin and culminating in caspase-mediated apoptosis within the malignant plasma cells. Taken together these data provide a platform for clinical trials of ibrutinib in myeloma and a rationale for its use in combination therapy, particularly with bortezomib.

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Amides; Antineoplastic Agents; Boronic Acids; Bortezomib; Caspases; Cell Survival; Humans; I-kappa B Proteins; Lenalidomide; Multiple Myeloma; NF-kappa B; NF-KappaB Inhibitor alpha; Nitriles; Phosphorylation; Piperidines; Protein-Tyrosine Kinases; Pyrazines; Pyrazoles; Pyrimidines; RNA, Messenger; Signal Transduction; Thalidomide; Tumor Cells, Cultured

2013
Intracellular NAD(+) depletion induces autophagic death in multiple myeloma cells.
    Autophagy, 2013, Volume: 9, Issue:3

    Multiple myeloma (MM) is a clonal B-cell malignancy characterized by the proliferation of plasma cells in the bone marrow. Despite recent therapeutic advances, MM remains an incurable disease. Therefore, research has focused on defining new aspects in MM biology that can be therapeutically targeted. Compelling evidence suggests that malignant cells have a higher nicotinamide adenine dinucleotide (NAD+) turnover rate than normal cells, suggesting that this biosynthetic pathway represents an attractive target for cancer treatment. We recently reported that an intracellular NAD(+)-depleting agent, FK866, exerts its anti-MM effect by triggering autophagic cell death via transcriptional-dependent (transcription factor EB, TFEB) and -independent (PI3K-MTORC1) mechanisms. Our findings link intracellular NAD(+) levels to autophagy in MM cells, providing the rationale for novel targeted therapies in MM.

    Topics: Acrylamides; Apoptosis; Autophagy; Cell Death; Cell Line, Tumor; Gene Expression Regulation, Neoplastic; Gene Transfer Techniques; Humans; Lentivirus; Multiple Myeloma; NAD; Piperidines; Transcription, Genetic

2013
Characterization of cyclin E expression in multiple myeloma and its functional role in seliciclib-induced apoptotic cell death.
    PloS one, 2012, Volume: 7, Issue:4

    Multiple Myeloma (MM) is a lymphatic neoplasm characterized by clonal proliferation of malignant plasma cell that eventually develops resistance to chemotherapy. Drug resistance, differentiation block and increased survival of the MM tumor cells result from high genomic instability. Chromosomal translocations, the most common genomic alterations in MM, lead to dysregulation of cyclin D, a regulatory protein that governs the activation of key cell cycle regulator--cyclin dependent kinase (CDK). Genomic instability was reported to be affected by over expression of another CDK regulator--cyclin E (CCNE). This occurs early in tumorigenesis in various lymphatic malignancies including CLL, NHL and HL. We therefore sought to investigate the role of cyclin E in MM. CCNE1 expression was found to be heterogeneous in various MM cell lines (hMMCLs). Incubation of hMMCLs with seliciclib, a selective CDK-inhibitor, results in apoptosis which is accompanied by down regulation of MCL1 and p27. Ectopic over expression of CCNE1 resulted in reduced sensitivity of the MM tumor cells in comparison to the paternal cell line, whereas CCNE1 silencing with siRNA increased the cell sensitivity to seliciclib. Adhesion to FN of hMMCLs was prevented by seliciclib, eliminating adhesion-mediated drug resistance of MM cells. Combination of seliciclib with flavopiridol effectively reduced CCNE1 and CCND1 protein levels, increased subG1 apoptotic fraction and promoted MM cell death in BMSCs co-culture conditions, therefore over-coming stroma-mediated protection. We suggest that seliciclib may be considered as essential component of modern anti MM drug combination therapy.

    Topics: Apoptosis; Cell Line, Tumor; Cyclin D1; Cyclin E; Flavonoids; Gene Expression Profiling; Gene Expression Regulation; Gene Silencing; Genomic Instability; Humans; Multiple Myeloma; Oncogene Proteins; Piperidines; Protein Kinase Inhibitors; Purines; RNA, Small Interfering; Roscovitine

2012
Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma.
    Blood, 2012, Aug-30, Volume: 120, Issue:9

    Bruton tyrosine kinase (Btk) has a well-defined role in B-cell development, whereas its expression in osteoclasts (OCs) further suggests a role in osteoclastogenesis. Here we investigated effects of PCI-32765, an oral and selective Btk inhibitor, on osteoclastogenesis as well as on multiple myeloma (MM) growth within the BM microenvironment. PCI-32765 blocked RANKL/M-CSF-induced phosphorylation of Btk and downstream PLC-γ2 in OCs, resulting in diminished TRAP5b (ED50 = 17 nM) and bone resorption activity. PCI-32765 also inhibited secretion of multiple cytokines and chemokines from OC and BM stromal cell cultures from both normal donors (ED50 = 0.5 nM) and MM patients. It decreased SDF-1-induced migration of MM cells, and down-regulated MIP1-α/CCL3 in MM cells. It also blocked MM cell growth and survival triggered by IL-6 or coculture with BM stromal cells or OCs in vitro. Importantly, PCI-32765 treatment significantly inhibits in vivo MM cell growth (P < .03) and MM cell-induced osteolysis of implanted human bone chips in SCID mice. Moreover, PCI-32765 prevents in vitro colony formation by stem-like cells from MM patients. Together, these results delineate functional sequelae of Btk activation mediating osteolysis and growth of MM cells, supporting evaluation of PCI-32765 as a novel therapeutic in MM.

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Animals; Bone Marrow; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chemokines; Coculture Techniques; Cytokines; Down-Regulation; Gene Expression; Humans; Immunoblotting; Mice; Mice, SCID; Multiple Myeloma; Osteoclasts; Osteolysis; Piperidines; Protein-Tyrosine Kinases; Pyrazoles; Pyrimidines; Reverse Transcriptase Polymerase Chain Reaction; Stromal Cells; Tumor Microenvironment; Xenograft Model Antitumor Assays

2012
CDK inhibitors upregulate BH3-only proteins to sensitize human myeloma cells to BH3 mimetic therapies.
    Cancer research, 2012, Aug-15, Volume: 72, Issue:16

    BH3 mimetic drugs induce cell death by antagonizing the activity of antiapoptotic Bcl-2 family proteins. Cyclin-dependent kinase (CDK) inhibitors that function as transcriptional repressors downregulate the Bcl-2 family member Mcl-1 and increase the activity of selective BH3 mimetics that fail to target this protein. In this study, we determined whether CDK inhibitors potentiate the activity of pan-BH3 mimetics directly neutralizing Mcl-1. Specifically, we evaluated interactions between the prototypical pan-CDK inhibitor flavopiridol and the pan-BH3 mimetic obatoclax in multiple myeloma (MM) cells in which Mcl-1 is critical for survival. Coadministration of flavopiridol and obatoclax synergistically triggered apoptosis in both drug-naïve and drug-resistant MM cells. Mechanistic investigations revealed that flavopiridol inhibited Mcl-1 transcription but increased transcription of Bim and its binding to Bcl-2/Bcl-xL. Obatoclax prevented Mcl-1 recovery and caused release of Bim from Bcl-2/Bcl-xL and Mcl-1, accompanied by activation of Bax/Bak. Whether administered singly or in combination with obatoclax, flavopiridol also induced upregulation of multiple BH3-only proteins, including BimEL, BimL, Noxa, and Bik/NBK. Notably, short hairpin RNA knockdown of Bim or Noxa abrogated lethality triggered by the flavopiridol/obatoclax combination in vitro and in vivo. Together, our findings show that CDK inhibition potentiates pan-BH3 mimetic activity through a cooperative mechanism involving upregulation of BH3-only proteins with coordinate downregulation of their antiapoptotic counterparts. These findings have immediate implications for the clinical trial design of BH3 mimetic-based therapies that are presently being studied intensively for the treatment of diverse hematopoietic malignancies, including lethal multiple myeloma.

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Apoptosis Regulatory Proteins; Bcl-2-Like Protein 11; bcl-X Protein; Biomimetic Materials; Cell Line, Tumor; Cyclin-Dependent Kinases; Drug Synergism; Flavonoids; Humans; Indoles; Membrane Proteins; Mice; Mice, Inbred NOD; Mice, Nude; Mice, SCID; Mitochondria; Multiple Myeloma; Myeloid Cell Leukemia Sequence 1 Protein; Peptide Fragments; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Pyrroles; Up-Regulation; Xenograft Model Antitumor Assays

2012
BTK inhibition in myeloma: targeting the seed and the soil.
    Blood, 2012, Aug-30, Volume: 120, Issue:9

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Animals; Bone Marrow; Humans; Multiple Myeloma; Piperidines; Protein-Tyrosine Kinases; Pyrazoles; Pyrimidines

2012
Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition.
    Blood, 2012, Oct-25, Volume: 120, Issue:17

    Malignant cells have a higher nicotinamide adenine dinucleotide (NAD(+)) turnover rate than normal cells, making this biosynthetic pathway an attractive target for cancer treatment. Here we investigated the biologic role of a rate-limiting enzyme involved in NAD(+) synthesis, Nampt, in multiple myeloma (MM). Nampt-specific chemical inhibitor FK866 triggered cytotoxicity in MM cell lines and patient MM cells, but not normal donor as well as MM patients PBMCs. Importantly, FK866 in a dose-dependent fashion triggered cytotoxicity in MM cells resistant to conventional and novel anti-MM therapies and overcomes the protective effects of cytokines (IL-6, IGF-1) and bone marrow stromal cells. Nampt knockdown by RNAi confirmed its pivotal role in maintenance of both MM cell viability and intracellular NAD(+) stores. Interestingly, cytotoxicity of FK866 triggered autophagy, but not apoptosis. A transcriptional-dependent (TFEB) and independent (PI3K/mTORC1) activation of autophagy mediated FK866 MM cytotoxicity. Finally, FK866 demonstrated significant anti-MM activity in a xenograft-murine MM model, associated with down-regulation of ERK1/2 phosphorylation and proteolytic cleavage of LC3 in tumor cells. Our data therefore define a key role of Nampt in MM biology, providing the basis for a novel targeted therapeutic approach.

    Topics: Acrylamides; Animals; Antineoplastic Agents; Autophagy; Cell Line, Tumor; Cell Survival; Cytokines; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; Humans; Mechanistic Target of Rapamycin Complex 1; Mice; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Molecular Targeted Therapy; Multiple Myeloma; Multiprotein Complexes; NAD; Nicotinamide Phosphoribosyltransferase; Organ Specificity; Piperidines; Proteins; RNA, Small Interfering; Signal Transduction; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays

2012
Sangivamycin-like molecule 6 exhibits potent anti-multiple myeloma activity through inhibition of cyclin-dependent kinase-9.
    Molecular cancer therapeutics, 2012, Volume: 11, Issue:11

    Despite significant treatment advances over the past decade, multiple myeloma (MM) remains largely incurable. In this study we found that MM cells were remarkably sensitive to the death-inducing effects of a new class of sangivamycin-like molecules (SLM). A panel of structurally related SLMs selectively induced apoptosis in MM cells but not other tumor or nonmalignant cell lines at submicromolar concentrations. SLM6 was the most active compound in vivo, where it was well tolerated and significantly inhibited growth and induced apoptosis of MM tumors. We determined that the anti-MM activity of SLM6 was mediated by direct inhibition of cyclin-dependent kinase 9 (CDK9), which resulted in transcriptional repression of oncogenes that are known to drive MM progression (MAF, CCND1, MYC, and others). Furthermore, SLM6 showed superior in vivo anti-MM activity more than the CDK inhibitor flavopiridol, which is currently in clinical trials for MM. These findings show that SLM6 is a novel CDK9 inhibitor with promising preclinical activity as an anti-MM agent.

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Boronic Acids; Bortezomib; Cell Death; Cell Line, Tumor; Cyclin-Dependent Kinase 9; Drug Screening Assays, Antitumor; Flavonoids; Humans; Mice; Multiple Myeloma; Oncogenes; Piperidines; Protein Kinase Inhibitors; Pyrazines; Pyrimidine Nucleosides; Translocation, Genetic; Treatment Outcome; Tubercidin

2012
Bruton's tyrosine kinase: oncotarget in myeloma.
    Oncotarget, 2012, Volume: 3, Issue:9

    Our findings therefore provide a strong rationale for investigating Btk inhibitors in MM and WM to target both tumor cells and their supporting BM microenvironment and thereby both suppress tumor cell growth and abrogate MM-induced bone disease.

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Animals; Cell Growth Processes; Disease Models, Animal; Humans; Mice; Molecular Targeted Therapy; Multiple Myeloma; Piperidines; Protein-Tyrosine Kinases; Pyrazoles; Pyrimidines; Waldenstrom Macroglobulinemia

2012
Comparative pre-clinical evaluation of receptor tyrosine kinase inhibitors for the treatment of multiple myeloma.
    Leukemia research, 2011, Volume: 35, Issue:9

    Fibroblast growth factor receptor 3 (FGFR3) is up-regulated as a result of the t(4;14)(p16;q32) translocation that occurs in up to 20% of multiple myeloma (MM) patients. Recent studies have demonstrated that up-regulation of FGFR3 promotes cell survival, growth and drug resistance in malignant plasma cells, both in vitro and in vivo. Therefore, inhibition of FGFR3 signalling is potential target for the chemotherapeutic intervention in t(4;14) MM.. Small molecule receptor tyrosine kinase inhibitors (PD173074, sunitinib (SU-11248), vandetanib (ZD6474) and vatalanib (PTK-787)) with varying degrees of inhibitory activity and selectivity against FGFR, were assessed in Ba/f3 cells expressing ZNF198-FGFR1 and MM cell lines. Cell viability, FGFR3 and ZNF198-FGFR1 phosphorylation and apoptosis were evaluated by growth inhibition assays, immunoblotting and fluorescence-activated cell sorting analysis, respectively. An in vivo study was performed with sunitinib in t(4;14)-positive and t(4;14)-negative human MM tumour xenograft models.. PD173074 and sunitinib differentially inhibited the growth of Ba/f3 cells expressing ZNF198-FGFR1 (GI(50)=10 nM and 730 nM, versus GI(50) >1 μM and 2.7 μM for parental cells; p<0.0001) and t(4;14) positive MM cell lines (GI(50)=4-10 μM and 1-3 μM, versus GI(50)=14-15 μM and 4-5 μM for t(4;14) negative MM cells; p≤0.002). In addition, both PD173074 and sunitinib inhibited the activation of FGFR3 in t(4;14)-positive MM cells. PD173074 and sunitinib induced an apoptotic response in a concentration and time-dependent manner in a t(4;14)-positive (PD174073 and sunitinib) but not a t(4;14)-negative MM cell line (sunitinib only); however, in in vivo tumours derived from the same cell lines, sunitinib was only active in the t(4;14)-negative model.. These data demonstrate that PD173074 and sunitinib are inhibitors of FGFR3 in MM cell lines, and that sunitinib has in vivo activity in a human MM tumour xenograft model. However, caution should be exercised in using the t(4;14) translocation as a predictive biomarker for patient selection in clinical trials with sunitinib.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Drug Evaluation, Preclinical; Humans; Indoles; Mice; Mice, Inbred BALB C; Mice, Nude; Multiple Myeloma; Phthalazines; Piperidines; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Receptor Protein-Tyrosine Kinases; Sunitinib; Xenograft Model Antitumor Assays

2011
AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3beta activation and RNA polymerase II inhibition.
    Oncogene, 2010, Apr-22, Volume: 29, Issue:16

    Dysregulated cell cycling is a universal hallmark of cancer and is often mediated by abnormal activation of cyclin-dependent kinases (CDKs) and their cyclin partners. Overexpression of individual complexes are reported in multiple myeloma (MM), making them attractive therapeutic targets. In this study, we investigate the preclinical activity of a novel small-molecule multi-CDK inhibitor, AT7519, in MM. We show the anti-MM activity of AT7519 displaying potent cytotoxicity and apoptosis; associated with in vivo tumor growth inhibition and prolonged survival. At the molecular level, AT7519 inhibited RNA polymerase II (RNA pol II) phosphorylation, a CDK9, 7 substrate, associated with decreased RNA synthesis confirmed by [(3)H] Uridine incorporation. In addition, AT7519 inhibited glycogen synthase kinase 3beta (GSK-3beta) phosphorylation; conversely pretreatment with a selective GSK-3 inhibitor and shRNA GSK-3beta knockdown restored MM survival, suggesting the involvement of GSK-3beta in AT7519-induced apoptosis. GSK-3beta activation was independent of RNA pol II dephosphorylation confirmed by alpha-amanitin, a specific RNA pol II inihibitor, showing potent inhibition of RNA pol II phosphorylation without corresponding effects on GSK-3beta phosphorylation. These results offer new insights into the crucial, yet controversial role of GSK-3beta in MM and show significant anti-MM activity of AT7519, providing the rationale for its clinical evaluation in MM.

    Topics: Animals; Apoptosis; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cyclin-Dependent Kinases; Dose-Response Relationship, Drug; Enzyme Activation; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Male; Mice; Mice, SCID; Multiple Myeloma; Piperidines; Pyrazoles; RNA Polymerase II

2010
Targeting MET transcription as a therapeutic strategy in multiple myeloma.
    Cancer chemotherapy and pharmacology, 2009, Volume: 63, Issue:4

    Multiple myeloma (MM) is an incurable indolent malignancy with an average lifespan of 3 years, underscoring the need for new therapies. Studies have shown that the receptor MET and its ligand hepatocyte growth factor play an important role in proliferation, migration, adhesion, and survival of MM cells. Hence, an effective way to decrease MET receptor may act as a viable therapeutic option. Since MET mRNA and protein have short half-lives, we hypothesized that transcription inhibitor will reduce MET transcript and protein levels and this will lead to cell death. Pharmacological (flavopiridol) and molecular (shRNA) transcription inhibitor were used to impede formation of MET transcripts. The diminution of global RNA synthesis with flavopiridol was related to phosphorylation status of Ser residues (r (2) = 0.90 and 0.92 for Ser2 and Ser5) on the C-terminal-domain of RNA polymerase II. This was accompanied with a time-dependent decrease in MET transcript, which reached to less than 30% (1 microM) and 10% (3 microM) by 24 h. This decline in transcript level was directly associated with a reduction in MET protein level (r (2) = 0.82) and resulted in cell death. Assessment of MET in MM survival was done by using shRNA targeted towards MET. When cells were infected with shRNA viral construct, there was increased cell death with a decline in MET transcript and protein. Taken together, our study demonstrates that MET plays a critical role in the survival and removal or lowering of MET by flavopiridol or shRNA results in the demise of MM cells.

    Topics: Antineoplastic Agents; Apoptosis; Flavonoids; Gene Expression Regulation, Neoplastic; Humans; Multiple Myeloma; Phosphorylation; Piperidines; Protein Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-met; Receptor Protein-Tyrosine Kinases; Receptors, Growth Factor; RNA Polymerase II; RNA, Messenger; RNA, Small Interfering; Transcription, Genetic; Tumor Cells, Cultured

2009
Inhibitors of the mevalonate pathway as potential therapeutic agents in multiple myeloma.
    Leukemia research, 2007, Volume: 31, Issue:3

    Clinical studies have suggested that bisphosphonates may prolong the survival of sub-sets of myeloma patients. Newer nitrogen containing bisphosphonates such as zoledronate act, at least in part, by inhibiting farnesyl diphosphate synthase and subsequent protein prenylation, furthermore, limited data suggests that zoledronate exerts a direct anti-tumour effect against human myeloma cell lines. We therefore investigated the anti-myeloma potential of zoledronate in comparison to, and in combination with, two other inhibitors of the mevalonate pathway: the HMGCoA reductase inhibitor fluvastatin and the farnesyl transferase inhibitor SCH66336. We found that fluvastatin was able to inhibit the proliferation of myeloma cells more effectively than zoledronate or SCH66336 and that combinations of zoledronate and fluvastatin, but not zoledronate and SCH66336 acted synergistically. Our data indicated that the anti-proliferative effect of mevalonate pathway inhibitors is mediated principally via prevention of geranylgeranylation and is the result of both cell cycle arrest and apoptosis induction. Microarray and quantitative real-time PCR analyses further demonstrated that genes related to apoptosis, cell cycle control, and the mevalonate pathway were particularly affected by zoledronate and fluvastatin, and that some of these genetic effects were synergistic. We conclude that the mechanisms of geranylgeranylation inhibition mediated anti-myeloma effects warrant further evaluation and may provide novel targets for future therapeutic development.

    Topics: Apoptosis; Apoptosis Regulatory Proteins; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Survival; Diphosphonates; Drug Screening Assays, Antitumor; Fatty Acids, Monounsaturated; Fluvastatin; Humans; Imidazoles; Indoles; Mevalonic Acid; Multiple Myeloma; Piperidines; Pyridines; Structure-Activity Relationship; Zoledronic Acid

2007
Flavopiridol synergizes TRAIL cytotoxicity by downregulation of FLIPL.
    Cancer chemotherapy and pharmacology, 2007, Volume: 60, Issue:3

    Flavopiridol is known to modulate the transcription of genes. We investigated the effect of flavopiridol pretreatment on TRAIL cytotoxicity and on the expression of FLIP(L) in different TRAIL-resistant cell lines, because FLIP expression is known to confer TRAIL-resistance.. Apoptosis was assessed by PI staining and protein expression by Western blotting. RT-PCR was used for mRNA quantitation. siRNA gene silencing was used to knock down FLIP(L).. Flavopiridol pretreatment synergized TRAIL-induced apoptosis in human myeloma and breast cancer cells. Flavopiridol treatment repressed the transcription of FLIP(L) and downregulated its expression in both myeloma and breast cancer cells. Silencing of FLIP(L) gene by siRNA sensitized myeloma cells to TRAIL. Flavopiridol treatment downregulated the expression of the proapoptotic members of the Bcl-2 family proteins (Bak, Bax and PUMA-alpha). The expression of the antiapoptotic Bcl-2 members (Bcl-2 and Bcl-X(L)) was not altered by flavopiridol treatment in myeloma cells.. Our data indicate that flavopiridol synergizes TRAIL cytotoxicity by downregulation of FLIP(L) and this synergistic effect is Bcl-2 family independent.

    Topics: Antineoplastic Agents; Apoptosis; Breast Neoplasms; CASP8 and FADD-Like Apoptosis Regulating Protein; Cell Line, Tumor; Coloring Agents; Down-Regulation; Drug Synergism; Female; Flavonoids; Gene Expression Regulation, Neoplastic; Gene Silencing; Humans; Multiple Myeloma; Piperidines; Proto-Oncogene Proteins c-bcl-2; Reverse Transcriptase Polymerase Chain Reaction; TNF-Related Apoptosis-Inducing Ligand

2007
Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model.
    Clinical & experimental metastasis, 2006, Volume: 23, Issue:5-6

    Multiple myeloma (MM) is a plasma cell malignancy, characterized by the localization of the MM cells in the bone marrow (BM), where they proliferate and induce osteolysis. The MM cells first need to home or migrate to the BM to receive necessary survival signals. In this work, we studied the role of CCR1 and CCR5, two known chemokine receptors, in both chemotaxis and osteolysis in the experimental 5TMM mouse model. A CCR1-specific (BX471) and a CCR5-specific (TAK779) antagonist were used to identify the function of both receptors. We could detect by RT-PCR and flow cytometric analyses the expression of both CCR1 and CCR5 on the cells and their major ligand, macrophage inflammatory protein 1alpha (MIP1alpha) could be detected by ELISA. In vitro migration assays showed that MIP1alpha induced a 2-fold increase in migration of 5TMM cells, which could only be blocked by TAK779. In vivo homing kinetics showed a 30% inhibition in BM homing when 5TMM cells were pre-treated with TAK779. We found, in vitro, that both inhibitors were able to reduce osteoclastogenesis and osteoclastic resorption. In vivo end-term treatment of 5T2MM mice with BX471 resulted in a reduction of the osteolytic lesions by 40%; while TAK779 treatment led to a 20% decrease in lesions. Furthermore, assessment of the microvessel density demonstrated a role for both receptors in MM induced angiogenesis. These data demonstrate the differential role of CCR1 and CCR5 in MM chemotaxis and MM associated osteolysis and angiogenesis.

    Topics: Amides; Animals; Bone Marrow; Bone Resorption; CCR5 Receptor Antagonists; Cell Division; Cell Line, Tumor; Cell Movement; Chemokine CCL3; Chemokine CCL4; Chemokines, CC; Chemotaxis; Female; Macrophage Inflammatory Proteins; Mice; Mice, Inbred C57BL; Multiple Myeloma; Neoplasm Proteins; Neovascularization, Pathologic; Osteoclasts; Osteolysis; Phenylurea Compounds; Piperidines; Quaternary Ammonium Compounds; Receptors, CCR1; Receptors, CCR5; Receptors, Chemokine; Recombinant Fusion Proteins; Stromal Cells; Tumor Burden

2006
The combination of the farnesyl transferase inhibitor lonafarnib and the proteasome inhibitor bortezomib induces synergistic apoptosis in human myeloma cells that is associated with down-regulation of p-AKT.
    Blood, 2005, Dec-15, Volume: 106, Issue:13

    The identification of signaling pathways critical to myeloma growth and progression has yielded an array of novel agents with clinical activity. Multiple myeloma (MM) growth is IL-6 dependent, and IL-6 is secreted in an autocrine/paracrine fashion with signaling via the Ras/Raf/mitogen-activated protein kinase (MAPK) pathway. We hypothesized that combining a Ras pathway inhibitor (lonafarnib, SCH66336) with a proteasome inhibitor (bortezomib, Velcade, PS-341) would enhance myeloma-cell killing. MM cell lines and primary human cells were used to test either single agent bortezomib, lonafarnib, or the combination on MM signaling and apoptosis. Combination therapy induced synergistic tumor-cell death in MM cell lines and primary MM plasma cells. Cell death was rapid and associated with increased caspase 3, 8, and 9 cleavage and concomitant down-regulation of p-AKT. Down-regulation of p-AKT was seen only in combination therapy and not seen with either single agent. Cells transfected with constitutively active p-AKT, wild-type AKT, or Bcl-2 continued to demonstrate synergistic cell death in response to the combination. The order of addition was critically important, supporting bortezomib followed by lonafarnib as the optimal schedule. The combination of a proteasome inhibitor and farnesyl transferase inhibitor demonstrates synergistic myeloma-cell death and warrants further preclinical and clinical studies.

    Topics: Apoptosis; Boronic Acids; Bortezomib; Down-Regulation; Enzyme Inhibitors; Farnesyltranstransferase; Humans; Insulin-Like Growth Factor I; Interleukin-6; Multiple Myeloma; Phosphorylation; Piperidines; Proteasome Inhibitors; Proto-Oncogene Proteins c-akt; Pyrazines; Pyridines; Time Factors; Tumor Cells, Cultured

2005
Potent antileukemic interactions between flavopiridol and TRAIL/Apo2L involve flavopiridol-mediated XIAP downregulation.
    Leukemia, 2004, Volume: 18, Issue:11

    Interactions between the cyclin-dependent kinase inhibitor flavopiridol (FP) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L), were examined in human leukemia cells (U937 and Jurkat). Coexposure of cells to marginally toxic concentrations of TRAIL and FP (24 h) synergistically increased mitochondrial injury (eg, cytochrome c, AIF, Smac/DIABLO release), cytoplasmic depletion of Bax, activation of Bid as well as caspase-8 and -3, PARP cleavage, and apoptosis. Coadministration of TRAIL markedly increased FP-induced apoptosis in leukemic cells ectopically expressing Bcl-2, Bcl-x(L), or a phosphorylation loop-deleted form of Bcl-2 (DeltaBcl-2), whereas lethality was substantially attenuated in cells ectopically expressing CrmA, dominant-negative-FADD, or dominant-negative-caspase-8. TRAIL/FP induced no discernible changes in FLIP, DR4, DR5, Mcl-1, or survivin expression, modest declines in levels of DcR2 and c-IAP, but resulted in the marked transcriptional downregulation of XIAP. Moreover, cells stably expressing an XIAP-antisense construct exhibited a pronounced increase in TRAIL sensitivity comparable to degrees of apoptosis achieved with TRAIL/FP. Conversely, enforced XIAP expression significantly attenuated caspase activation and TRAIL/FP lethality. Together, these findings suggest that simultaneous activation of the intrinsic and extrinsic apoptotic pathways by TRAIL and FP synergistically induces apoptosis in human leukemia cells through a mechanism that involves FP-mediated XIAP downregulation.

    Topics: Apoptosis; Apoptosis Inducing Factor; Apoptosis Regulatory Proteins; bcl-2-Associated X Protein; bcl-X Protein; BH3 Interacting Domain Death Agonist Protein; Carrier Proteins; Caspases; Cell Cycle; Complement Membrane Attack Complex; Complement System Proteins; Cytochromes c; Down-Regulation; Drug Interactions; Drug Synergism; Flavonoids; Flavoproteins; Glycoproteins; HL-60 Cells; Humans; Intracellular Signaling Peptides and Proteins; Jurkat Cells; Leukemia; Membrane Glycoproteins; Membrane Proteins; Mitochondria; Mitochondrial Proteins; Multiple Myeloma; Phosphorylation; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Proteins; Proto-Oncogene Proteins c-bcl-2; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; TNF-Related Apoptosis-Inducing Ligand; Transcription, Genetic; Tumor Necrosis Factor-alpha; U937 Cells; X-Linked Inhibitor of Apoptosis Protein

2004
The small-molecule Bcl-2 inhibitor HA14-1 interacts synergistically with flavopiridol to induce mitochondrial injury and apoptosis in human myeloma cells through a free radical-dependent and Jun NH2-terminal kinase-dependent mechanism.
    Molecular cancer therapeutics, 2004, Volume: 3, Issue:12

    Interactions between the cyclin-dependent kinase inhibitor flavopiridol and the small-molecule Bcl-2 antagonist HA14-1 were examined in human multiple myeloma cells. Whereas individual treatment of U266 myeloma cells with 10 micromol/L HA14-1 or 100 nmol/L flavopiridol had little effect, exposure of cells to flavopiridol (6 hours) followed by HA14-1 (18 hours) resulted in a striking increase in mitochondrial dysfunction (cytochrome c and Smac/DIABLO release; loss of mitochondrial membrane potential), activation of the caspase cascade, apoptosis, and diminished clonogenic survival. Similar findings were noted in other myeloma cell lines (e.g., MM.1S, RPMI8226, and NCI-H929) as well as in those resistant to dexamethasone and cytotoxic agents (e.g., MM.1R, 8226/Dox40, and 8226/LR5). Combined exposure to flavopiridol and HA14-1 was associated with down-regulation of Mcl-1 and Bcl-xL, Bid cleavage, and mitochondrial translocation of Bax. Flavopiridol/HA14-1-treated cells also exhibited a pronounced activation of Jun NH2-terminal kinase, a modest activation of p38 mitogen-activated protein kinase, and down-regulation of cyclin D1. Flavopiridol/HA14-1-induced apoptosis was associated with a marked increase in reactive oxygen species generation; moreover,both events were attenuated by the antioxidant N-acetyl-l-cysteine. Finally, in contrast to dexamethasone, flavopiridol/HA14-1-induced lethality was unaffected by exogenous interleukin-6 or insulin-like growth factor-I. Together, these findings indicate that flavopiridol and the small-molecule Bcl-2 antagonist HA14-1 cooperate to trigger oxidant injury, mitochondrial dysfunction, caspase activation, and apoptosis in human multiple myeloma cells and suggest that this approach may warrant further evaluation as an antimyeloma strategy.

    Topics: Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; bcl-X Protein; Benzopyrans; BH3 Interacting Domain Death Agonist Protein; Carrier Proteins; Cyclin D1; Cyclin-Dependent Kinases; Cytochromes c; Drug Synergism; Enzyme Activation; Enzyme Inhibitors; Flavonoids; Free Radicals; Humans; Intracellular Signaling Peptides and Proteins; JNK Mitogen-Activated Protein Kinases; Membrane Potentials; Mitochondria; Mitochondrial Proteins; Multiple Myeloma; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Proteins; Nitriles; p38 Mitogen-Activated Protein Kinases; Piperidines; Protein Transport; Proto-Oncogene Proteins c-bcl-2; Tumor Cells, Cultured

2004
The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2002, Volume: 8, Issue:11

    Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of malignant plasma cells with slow proliferative rate but enhanced survival. MM cells express multiple Bcl-2 family members, including Bcl-2, Bcl-XL, and Mcl-1, which are thought to play a key role in the survival and drug resistance of myeloma. The cyclin-dependent kinase inhibitor flavopiridol has antitumor activity against hematopoietic malignancies, including CLL, in which induction of apoptosis was associated with reduced expression of antiapoptotic proteins. Therefore, we sought to characterize the effect of flavopiridol on the proliferation and survival of myeloma cells and to define its mechanisms of action. Treatment of MM cell lines (8226, ANBL-6, ARP1, and OPM-2) with clinically achievable concentrations of flavopiridol resulted in rapid induction of apoptotic cell death that correlated temporally with the decline in Mcl-1 protein and mRNA levels. Levels of other antiapoptotic proteins did not change. Overexpression of Mcl-1 protected MM cells from flavopiridol-induced apoptosis. Additional analysis demonstrated that flavopiridol treatment resulted in a dose-dependent inhibition of phosphorylation of the RNA polymerase II COOH-terminal domain, thus blocking transcription elongation. These data indicate that Mcl-1 is an important target for flavopiridol-induced apoptosis of MM that occurs through inhibition of Mcl-1 mRNA transcription coupled with rapid protein degradation via the ubiquitin-proteasome pathway.

    Topics: Apoptosis; bcl-X Protein; Blotting, Northern; Blotting, Western; Caspases; Cell Division; Cyclin-Dependent Kinases; Dose-Response Relationship, Drug; Down-Regulation; Drug Resistance, Neoplasm; Flavonoids; Humans; In Situ Nick-End Labeling; Membrane Glycoproteins; Multiple Myeloma; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Proteins; Phosphorylation; Piperidines; Protein Structure, Tertiary; Proteoglycans; Proto-Oncogene Proteins c-bcl-2; RNA, Messenger; Syndecans; Time Factors; Transcription, Genetic; Tumor Cells, Cultured

2002
Growth inhibition and apoptosis of myeloma cells by the CDK inhibitor flavopiridol.
    Leukemia research, 2002, Volume: 26, Issue:3

    Although myeloma shows responsiveness in intensive chemotherapy, overall survival remains less than 40% at 2 years. Since myeloma appears to be dependent on cytokines, such as IL-6, we hypothesized that targeting signal transduction molecules could effectively treat myeloma. Two myeloma cell lines U266 and RPMI-8226 and CD38+ myeloma cells were studied by immune complex kinase assay or anti-phosphotyrosine blot for evidence of constitutive activation of tyrosine kinases. Growth arrest and apoptosis were evaluated in these two cell lines following their treatment with specific kinase inhibitors. We found that a variety of Src and Janus kinases were present and constitutively active in U266 and RPMI-8226 cells. Inhibitors of both Src and Janus kinases were inferior to the cyclin-dependent kinase inhibitor, flavopiridol, in inducing both growth arrest with GI50 of 100 nM and apoptosis in both cell lines and CD38+ myeloma cells. Although, flavopiridol did not affect cyclin D1 and cyclin A levels, it inhibited Mcl-1 and Bcl-2 protein levels and cyclin-dependent kinase 2 activity. Flavopiridol is a well-tolerated drug, currently in phase I-II trials for a variety of tumors. A clinical trial using flavopiridol should be performed in patients with myeloma. Its mechanism of action may involve targets other than the cyclin-dependent kinases.

    Topics: ADP-ribosyl Cyclase; ADP-ribosyl Cyclase 1; Antibodies, Monoclonal; Antigens, CD; Antigens, Differentiation; Antineoplastic Agents; Apoptosis; Bone Marrow Cells; Cell Division; Cell Survival; Cyclin-Dependent Kinases; Enzyme Activation; Enzyme Inhibitors; Flavonoids; Humans; JNK Mitogen-Activated Protein Kinases; Membrane Glycoproteins; Mitogen-Activated Protein Kinases; Multiple Myeloma; NAD+ Nucleosidase; Phosphotyrosine; Piperidines; src-Family Kinases; Tumor Cells, Cultured

2002
The clinical use of epoxypropidine (Eponate) in multiple myeloma.
    Cancer chemotherapy reports, 1963, Volume: 28

    Topics: Antineoplastic Agents; Ethers; Ethers, Cyclic; Humans; Multiple Myeloma; Piperidines

1963
Some observations on the carcinostatic activity of Eponate on Fortner hamster plasmacytoma.
    Cancer chemotherapy reports, 1963, Volume: 28

    Topics: Antineoplastic Agents; Ethers; Ethers, Cyclic; Humans; Multiple Myeloma; Neoplasms, Plasma Cell; Piperidines; Plasmacytoma

1963