piperidines and Lung-Diseases--Interstitial

piperidines has been researched along with Lung-Diseases--Interstitial* in 34 studies

Reviews

3 review(s) available for piperidines and Lung-Diseases--Interstitial

ArticleYear
Tofacitinib in interstitial lung disease complicated with anti-MDA5 antibody-positive dermatomyositis: A literature review.
    Modern rheumatology, 2022, 01-05, Volume: 32, Issue:1

    Topics: Autoantibodies; Dermatomyositis; Humans; Interferon-Induced Helicase, IFIH1; Lung Diseases, Interstitial; Piperidines; Pyrimidines

2022
Insights into pathogenesis and clinical implications in myositis-associated interstitial lung diseases.
    Current opinion in pulmonary medicine, 2020, Volume: 26, Issue:5

    Interstitial lung diseases (ILDs) have been reported to be associated with myositis (including polymyositis and dermatomyositis). These myositis-associated ILDs carry significant morbidity and mortality. This review summarizes recent findings on myositis-associated ILD with a focus on pathogenesis and emerging treatment.. Recent advances in genetics have revealed 22 myositis-associated genome-wide loci, which were significantly enriched in regulatory regions in immune cells. An analysis of such disease-associated loci elucidated potential drug targets (e.g., TYK2 targeted by tofacitinib). In another study, an intronic variant in WDFY4 in association with clinically amyopathic dermatomyositis (CADM) had an effect for higher expression of a truncated WDFY4 isoform. Truncated WDFY4 markedly enhanced the MDA5-mediated NF-κB activation and cell apoptosis, indicating the dysregulated WDFY4-MDA5 pathway as a novel pathogenesis of CADM. As a novel strategy, tofacitinib treatment showed a promising improvement in survival and clinical features of CADM-associated ILD.. The genetic differences in the myositis-susceptible loci may explain the heterogeneous phenotypes and treatment responses in myositis-associated ILD. The understanding of pathogenesis with the genetic background as well as autoantibodies will enable the practice of personalized treatment in the management of the disease.

    Topics: Apoptosis; Autoantibodies; Dermatomyositis; Humans; Interferon-Induced Helicase, IFIH1; Intracellular Signaling Peptides and Proteins; Lung Diseases, Interstitial; Molecular Targeted Therapy; Myositis; NF-kappa B; Phenotype; Piperidines; Polymyositis; Pyrimidines; Signal Transduction; TYK2 Kinase

2020
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised.

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus

2016

Trials

2 trial(s) available for piperidines and Lung-Diseases--Interstitial

ArticleYear
Tofacitinib in Amyopathic Dermatomyositis-Associated Interstitial Lung Disease.
    The New England journal of medicine, 2019, 07-18, Volume: 381, Issue:3

    Topics: Adult; Autoantibodies; Dermatomyositis; Drug Therapy, Combination; Female; Glucocorticoids; Historically Controlled Study; Humans; Interferon-Induced Helicase, IFIH1; Janus Kinase Inhibitors; Lung Diseases, Interstitial; Male; Methylprednisolone; Middle Aged; Piperidines; Pyrimidines; Pyrroles

2019
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised.

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus

2016

Other Studies

30 other study(ies) available for piperidines and Lung-Diseases--Interstitial

ArticleYear
The Use of Tofacitinib Has a Potential Effect on Improving the Outcomes of Melanoma Differentiation-Associated Gene 5-Related Interstitial Lung Disease.
    The Journal of rheumatology, 2023, Volume: 50, Issue:5

    Topics: Autoantibodies; Humans; Lung Diseases, Interstitial; Melanoma; Piperidines; Pyrimidines

2023
Efficiency of tofacitinib in refractory interstitial lung disease among anti-MDA5 positive juvenile dermatomyositis patients.
    Annals of the rheumatic diseases, 2023, Volume: 82, Issue:11

    Topics: Autoantibodies; Dermatomyositis; Humans; Interferon-Induced Helicase, IFIH1; Lung Diseases, Interstitial; Piperidines; Prognosis; Pyrimidines; Retrospective Studies

2023
Janus kinase inhibition in induction treatment of anti-MDA5 juvenile dermatomyositis-associated rapidly progressive interstitial lung disease.
    International journal of rheumatic diseases, 2022, Volume: 25, Issue:2

    Tofacitinib has an important role in pediatric rapidly progressive interstitial lung disease (ILD) associated with juvenile dermatomyositis (JDM), an otherwise potentially fatal condition. It may be useful in induction of remission and can be used safely to maintain remission. Serum ferritin and interleukin-18 are useful markers for tracking activity and response of JDM-associated ILD.

    Topics: Child; Dermatomyositis; Humans; Janus Kinase Inhibitors; Lung Diseases, Interstitial; Male; Piperidines; Pyrimidines; Remission Induction

2022
A case of clinically amyopathic dermatomyositis that was refractory to intensive immunosuppressive therapy including tofacitinib, but successfully treated with plasma exchange therapy.
    Modern rheumatology case reports, 2022, 06-24, Volume: 6, Issue:2

    Clinically amyopathic dermatomyositis (CADM) patients often develop rapidly progressive interstitial lung disease (RP-ILD). A high level of anti-melanoma differentiation-associated gene 5 antibodies (anti-MDA5 Ab) before treatment is associated with RP-ILD development, a poor treatment response, and poor survival. The prognosis of CADM patients remains poor due to ILD even with combined intensive immunosuppressive therapy. Recently, several additional therapies, including tofacitinib (TOF) and plasma exchange (PE) therapy, have been reported to be effective. We herein report a case of CADM-ILD with a high level of anti-MDA5 Ab that was refractory to combined intensive immunosuppressive therapy including TOF, but successfully treated with PE. The following are possible reasons why TOF was ineffective: (1) cytokines that were not suppressed by TOF played an important role in RP-ILD; (2) TOF was administered later than previously reported; and (3) TOF did not suppress pathological substances such as antibodies. On the other hand, PE removes cytokines and various pathological substances. Therefore, PE may be a more reasonable additional therapy for intractable CADM-ILD.

    Topics: Autoantibodies; Cytokines; Dermatomyositis; Humans; Immunosuppression Therapy; Immunosuppressive Agents; Interferon-Induced Helicase, IFIH1; Lung Diseases, Interstitial; Piperidines; Plasma Exchange; Pyrimidines

2022
Efficacy and safety of tofacitinib in rheumatoid arthritis-associated interstitial lung disease: TReasure real-life data.
    Clinical and experimental rheumatology, 2022, Volume: 40, Issue:11

    Rheumatoid arthritis associated interstitial lung disease (RA-ILD) is a major concern in RA. These patients have been included in clinical trials and in the post-marketing setting of RA patients using tofacitinib. We aimed to assess the real-life efficacy and safety of tofacitinib in patients with RA-ILD.. RA patients with ILD diagnosis based on the HRCT images of the lungs from eight different centres recruited to study. As a control group, RA patients without ILD under tofacitinib were included. Demographic data, patients' characteristics, available pulmonary function tests regarding RA and RA-ILD at the visit in which tofacitinib was initiated and for the last follow-up visit under tofacitinib were recorded. Reasons for tofacitinib discontinuation were also recorded. Drug retention rates were compared by log-rank test. p-value <0.05 was considered statistically significant.. A total of 47(42.6% male) RA patients with RA-ILD and a control group of 387 (17.8% male) patients without RA-ILD were included in analysis. After the median of 12 (9-19) months follow-up, mean FEV1%; 82.1 vs. 82.8 (pre/post-treatment, respectively, p=0.08), mean FVC%; 79.8 vs. 82.8 (pre/post-treatment, respectively, p=0.014) were stable and worsening was observed in 2/18 (11.1%) patients. Retention rates were similar (p=0.21, log-rank). In RA-ILD group, most common cause of drug discontinuation was infections (6.3 vs. 2.4 per 100 patient-years).. Treatment strategy of RA-ILD patients is still based on small observational studies. A high rate of discontinuation due to infections was observed in RA-ILD patients under tofacitinib; however, RA-ILD patients were older than RA patients without ILD.

    Topics: Arthritis, Rheumatoid; Female; Humans; Lung Diseases, Interstitial; Male; Piperidines; Pyrimidines

2022
Treatment of MDA5-positive dermatomyositis complicated by gangrenous cholecystitis with tofacitinib.
    European journal of medical research, 2022, May-15, Volume: 27, Issue:1

    Dermatomyositis is a rare idiopathic inflammatory disease with diverse presentations that can have varying degrees of cutaneous and systemic involvement. This phenotypic heterogeneity makes DM a therapeutic challenge. Some therapeutic drugs, such as hormones and immunosuppressants, have poor therapeutic effects. In recent years, tofacitinib has been reported to be effective in the treatment of dermatomyositis.. We report a case of anti-MDA5 antibody-positive dermatomyositis that was relieved after treatment with tofacitinib, during which gallbladder gangrene and suppurative cholecystitis occurred. After cholecystectomy, we continued to use tofacitinib and achieved a good therapeutic effect.. Tofacitinib is effective in the treatment of anti-MDA5 antibody-positive dermatomyositis, but the risk of infection is increased. It can still be used after infection control. Close follow-up should be performed during the use of tofacitinib.

    Topics: Autoantibodies; Cholecystitis; Dermatomyositis; Humans; Interferon-Induced Helicase, IFIH1; Lung Diseases, Interstitial; Piperidines; Pyrimidines

2022
Evaluation of Lung Toxicity Related to the Treatment With Alectinib Using a Pharmacovigilance Database.
    Anticancer research, 2022, Volume: 42, Issue:6

    The anaplastic lymphoma kinase (ALK) inhibitor alectinib is recommended as a first-line treatment for ALK lung cancer. Interstitial lung disease is the most common adverse event leading to discontinuation of alectinib. The purpose of this study was to use the Japanese Adverse Drug Event Report database for the evaluation of incidence trends and timing of alectinib toxicity in the lungs.. Adverse drug reactions (ADRs) by alectinib were extracted between April 2004 and March 2021. Data related to lung toxicity ADRs were analyzed, and the relative risk was estimated using the reporting odds ratio (ROR) and 95% confidence interval (CI). The time of onset of the lung toxicity signs was noted.. We obtained 524 reports of ADRs associated with alectinib. Of these, 157 were lung toxicity, including interstitial lung disease, lung disorder, pneumonitis, and pulmonary edema. The RORs for these signs were 10.28 (95%CI=8.38-12.60), 9.19 (5.58-15.13), 7.40 (3.67-14.88), and 7.01 (3.13-15.69), respectively. The median onset times (quartiles, 25-75%) of interstitial lung disease, lung disorder, pneumonitis, and pulmonary edema associated with alectinib treatment were 92 (36-195), 57 (51-129), 228 (62-431), and 83 (22-96) days, respectively.. Among the lung toxicity signs, interstitial lung disease had the highest ROR, suggesting a strong causal relationship with alectinib treatment. Interstitial lung disease most frequently developed within 60 days after the start of treatment. These results will be useful for monitoring adverse events associated with the use of alectinib.

    Topics: Adverse Drug Reaction Reporting Systems; Carbazoles; Humans; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Pharmacovigilance; Piperidines; Protein Kinase Inhibitors; Pulmonary Edema; Receptor Protein-Tyrosine Kinases

2022
Efficacy of lorlatinib after alectinib-induced interstitial lung disease in a patient with anaplastic lymphoma kinase-positive non-small cell lung cancer: a case report.
    Journal of medical case reports, 2022, Aug-24, Volume: 16, Issue:1

    Anaplastic lymphoma kinase tyrosine kinase inhibitors are standard therapeutic agents prescribed for anaplastic lymphoma kinase-positive non-small cell lung cancer, and treatment with these agents has been shown to contribute to long-term survival in patients. However, there is no consensus regarding the course of treatment after the onset of anaplastic lymphoma kinase tyrosine kinase inhibitors related drug-induced interstitial lung disease. Here, we present a case of successful lorlatinib treatment after the onset of drug-induced interstitial lung disease caused by alectinib.. A 57-year-old Japanese man was diagnosed with stage IVB non-small cell lung cancer by bronchoscopy, but gene mutation testing could not be performed because of the small amount of specimen. After diagnosis, first-line therapy with cisplatin/pemetrexed was initiated, but the patient developed renal dysfunction. Bronchoscopy was performed again to guide further treatment, and the non-small cell lung cancer was found to be anaplastic lymphoma kinase positive. Alectinib was started after the onset of progressive disease, but it resulted in drug-induced interstitial lung disease, necessitating alternative treatments. He subsequently received nanoparticle albumin bound paclitaxel, which was halted in view of the renal dysfunction. Thereafter, lorlatinib was administered, which was continued without drug-induced interstitial lung disease relapse.. Since alectinib can occasionally cause drug-induced interstitial lung disease, as in the present case, lorlatinib may be an option to continue treatment in patients without other treatment alternatives.

    Topics: Aminopyridines; Anaplastic Lymphoma Kinase; Antineoplastic Agents; Carbazoles; Carcinoma, Non-Small-Cell Lung; Humans; Kidney Diseases; Lactams; Lung Diseases, Interstitial; Lung Neoplasms; Male; Middle Aged; Neoplasm Recurrence, Local; Piperidines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyrazoles

2022
Combination Therapy with Rituximab, Tofacitinib and Pirfenidone in a Patient with Rapid Progressive Interstitial Lung Disease (RP-ILD) Due to MDA5 Antibody-Associated Dermatomyositis: A Case Report.
    Medicina (Kaunas, Lithuania), 2021, Dec-13, Volume: 57, Issue:12

    Anti-melanoma differentiation-associated protein 5 (MDA5)-positive rapidly progressive interstitial lung disease (RP-ILD) is associated with poor prognosis, and the most effective therapeutic intervention has not been established. Herein we report a case of a 45-year-old female patient who presented with myalgia, Gottron's papules with ulceration, and dyspnea on exertion which became aggravated within weeks. Laboratory examination and electromyography confirmed myopathy changes, and a survey of myositis-specific antibodies was strongly positive for anti-MDA5 antibody. High-resolution chest tomography suggested organizing pneumonia with rapidly progressive changes within the first month after diagnosis of the disease. Anti-MDA5-associated dermatomyositis with RP-ILD was diagnosed. Following combination therapy with rituximab, tofacitinib and pirfenidone, clinical symptoms, including cutaneous manifestation, respiratory conditions and radiographic changes, showed significant and sustainable improvement. To our knowledge, this is the first reported case of anti-MDA5-associated dermatomyositis with RP-ILD successfully treated with the combination of rituximab, tofacitinib, and pirfenidone.

    Topics: Autoantibodies; Dermatomyositis; Female; Humans; Lung Diseases, Interstitial; Middle Aged; Piperidines; Pyridones; Pyrimidines; Rituximab

2021
Successful Drug Rechallenge Following Severe Acute Alectinib-induced Interstitial Lung Disease in a Patient With Advanced ALK-rearranged Lung Adenocarcinoma.
    Clinical lung cancer, 2021, Volume: 22, Issue:3

    Topics: Adenocarcinoma of Lung; Anaplastic Lymphoma Kinase; Carbazoles; Gene Rearrangement; Humans; Lung Diseases, Interstitial; Lung Neoplasms; Male; Middle Aged; Patient Acuity; Piperidines

2021
Incidence Rates of Interstitial Lung Disease Events in Tofacitinib-Treated Rheumatoid Arthritis Patients: Post Hoc Analysis From 21 Clinical Trials.
    Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases, 2021, Dec-01, Volume: 27, Issue:8

    Tofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA). Interstitial lung disease (ILD) is an extra-articular manifestation of RA. We investigated incidence rates of ILD in patients with RA, receiving tofacitinib 5 or 10 mg twice daily, and identified potential risk factors for ILD.. This post hoc analysis comprised a pooled analysis of patients receiving tofacitinib 5 or 10 mg twice daily or placebo from 2 phase (P)1, 10 P2, 6 P3, 1 P3b/4, and 2 long-term extension studies. Interstitial lung disease events were adjudicated as "probable" (supportive clinical evidence) or "possible" (no supportive clinical evidence) compatible adverse events. Incidence rates (patients with events per 100 patient-years) were calculated for ILD events.. Of 7061 patients (patient-years of exposure = 23,393.7), 42 (0.6%) had an ILD event; median time to ILD event was 1144 days. Incidence rates for ILD with both tofacitinib doses were 0.18 per 100 patient-years. Incidence rates generally remained stable over time. There were 17 of 42 serious adverse events (40.5%) of ILD; for all ILD events (serious and nonserious), 35 of 42 events (83.3%) were mild to moderate in severity. A multivariable Cox regression analysis identified age 65 years or older (hazard ratio 2.43 [95% confidence interval, 1.13-5.21]), current smokers (2.89 [1.33-6.26]), and Disease Activity Score in 28 joints-erythrocyte sedimentation rate score (1.30 [1.04-1.61]) as significant risk factors for ILD events.. Across P1/2/3/4/long-term extension studies, incidence rates for ILD events were 0.18 following tofacitinib treatment, and ILD events were associated with known risk factors for ILD in RA.

    Topics: Aged; Antirheumatic Agents; Arthritis, Rheumatoid; Humans; Incidence; Lung Diseases, Interstitial; Piperidines; Pyrimidines; Pyrroles; Treatment Outcome

2021
Successful dose escalation of tofacitinib for refractory dermatomyositis and interstitial lung disease with anti-melanoma differentiation-associated gene 5 antibodies.
    Modern rheumatology case reports, 2021, Volume: 5, Issue:1

    Anti-melanoma differentiation-associated gene 5 (MDA-5) antibodies have widely known to be associated with amyopathic dermatomyositis with rapidly progressive interstitial lung disease (ILD). Although the triple combination therapy with high-dose glucocorticoids, cyclophosphamide, and a calcineurin inhibitor has been used to treat anti-MDA-5 antibody-positive rapidly progressive ILD, the prognosis of these patients remains poor despite this intensive therapy. Recently, several investigators have shown that combination therapy with tofacitinib might be potentially efficacious in those patients. We herein report a case of anti-MDA-5 antibody-positive dermatomyositis and associated ILD who had not responded to the triple therapy and tofacitinib 10 mg/day but markedly responded after increasing the dose of tofacitinib to 20 mg/day.

    Topics: Autoantibodies; Dermatomyositis; Dose-Response Relationship, Drug; Humans; Interferon-Induced Helicase, IFIH1; Lung Diseases, Interstitial; Male; Middle Aged; Piperidines; Pyrimidines; Recurrence; Treatment Outcome

2021
Fatal outcome of anti-MDA5 juvenile dermatomyositis in a paediatric COVID-19 patient: a case report.
    Modern rheumatology case reports, 2021, Volume: 5, Issue:1

    Anti-melanoma differentiation-associated gene 5 juvenile dermatomyositis (anti-MDA5 JDM) is associated with high risk of developing rapidly progressive interstitial lung disease (RP-ILD). Here we report an 11-year-old girl with anti-MDA5 JDM and RP-ILD which led to a fatal outcome, further aggravated by SARS-CoV-2 infection. She was referred to our hospital after being diagnosed with anti-MDA5 JDM and respiratory failure due to RP-ILD. On admission, fibrobronchoscopy with bronchoalveolar lavage (BAL) revealed

    Topics: Adenosine Monophosphate; Alanine; Anti-Bacterial Agents; Antibodies, Monoclonal, Humanized; Antiviral Agents; Autoantibodies; Bronchoscopy; Child; COVID-19; COVID-19 Nucleic Acid Testing; Cyclophosphamide; Dermatomyositis; Disease Progression; Fatal Outcome; Female; Humans; Hydroxychloroquine; Immunocompromised Host; Immunoglobulins, Intravenous; Immunologic Factors; Immunosuppressive Agents; Interferon-Induced Helicase, IFIH1; Lung; Lung Diseases, Interstitial; Lymphohistiocytosis, Hemophagocytic; Mediastinal Emphysema; Methylprednisolone; Piperidines; Pneumonia, Pneumocystis; Pneumothorax; Pyrimidines; Respiratory Insufficiency; Shock, Septic; Subcutaneous Emphysema; Tomography, X-Ray Computed; Trimethoprim, Sulfamethoxazole Drug Combination

2021
Successful rechallenge of alectinib after remission of severe alectinib-induced interstitial lung disease.
    Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners, 2021, Volume: 27, Issue:5

    Even though alectinib is a potent second-generation ALK inhibitor with a favorable safety profile, alectinib-induced interstitial lung disease (ILD) could be fatal. There are case reports described successful alectinib rechallenge in mild ILD. However, the feasibility and safety of rechallenge in severe cases remains to be elucidated.. A 76-year-old female was a case of stage IV lung adenocarcinoma harboring ALK rearrangement. Respiratory failure following severe ILD developed one month after alectinib administration. She received mechanical ventilation in intensive care uint. ILD subsided gradually after methylprednisolone pulse therapy and discontinuation of alectinib.. Given that the ALK inhibitors are the treatment of choice for advanced lung cancer patients with ALK rearrangement. Our report demonstrated the potential feasibility of alectinib re-use in cases of severe druginduced ILD.

    Topics: Adenocarcinoma of Lung; Aged; Carbazoles; Female; Humans; Lung Diseases, Interstitial; Lung Neoplasms; Piperidines; Protein Kinase Inhibitors

2021
A Case of Refractory Interstitial Lung Disease in Anti-MDA5-Positive Dermatomyositis That Improved After Switching to Tofacitinib.
    Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases, 2021, Dec-01, Volume: 27, Issue:8S

    Topics: Autoantibodies; Dermatomyositis; Humans; Interferon-Induced Helicase, IFIH1; Lung Diseases, Interstitial; Piperidines; Pyrimidines

2021
Successful Treatment for Refractory Interstitial Lung Disease and Pneumomediastinum With Multidisciplinary Therapy Including Tofacitinib in a Patient With Anti-MDA5 Antibody-Positive Dermatomyositis.
    Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases, 2021, Dec-01, Volume: 27, Issue:8S

    Topics: Adult; Autoantibodies; Dermatomyositis; Humans; Interferon-Induced Helicase, IFIH1; Lung Diseases, Interstitial; Male; Mediastinal Emphysema; Piperidines; Pyrimidines

2021
STING-Associated Vasculopathy with Onset in Infancy in Three Children with New Clinical Aspect and Unsatisfactory Therapeutic Responses to Tofacitinib.
    Journal of clinical immunology, 2020, Volume: 40, Issue:1

    STING-associated vasculopathy with onset in infancy (SAVI) is a new rare auto-inflammatory disease. The purpose of this study is to report new cases and summarize the manifestations and outcome of SAVI.. We made a retrospective analysis of three pediatric patients diagnosed with SAVI between March 2016 and July 2018 in Beijing Children's Hospital.. Three patients comprised one boy and two girls. The median age of onset was 4 months. All patients had the same de novo heterozygous mutation (c.463G>A, p. V155M) of TMEM173. All patients presented with interstitial lung disease and one coexisted with diffuse alveolar hemorrhage. Rashes were presented in two patients. Other clinical manifestations include febrile attacks, failure to thrive, arthritis, myositis, cerebrovascular involvement, ureteral calculus, gastroesophageal reflux, and malnutrition. Ground-glass opacities were the most common features of chest computed tomography, followed with cysts and reticular opacities. Transbronchial lung biopsy was performed in one patient revealing pulmonary vasculitis. Skin biopsy was performed in one patient with changes of vasculitis. All patients were treated with corticosteroids and two patients received combined treatment of tofacitinib. The therapeutic effects of tofacitinib were limited on interstitial lung disease in both patients and were poor on rashes in one patient. One patient under the treatment of tofacitinib died.. New clinical aspect of diffuse alveolar hemorrhage is first reported to be associated with SAVI. Unsatisfactory therapeutic effects of tofacitinib are observed in this study and further evaluations are needed.

    Topics: Child, Preschool; Female; Hemorrhage; Humans; Infant; Inflammation; Lung; Lung Diseases, Interstitial; Male; Membrane Proteins; Mutation; Piperidines; Pyrimidines; Retrospective Studies; Skin; Vascular Diseases

2020
Efficacy of tofacitinib for slowly progressive interstitial lung disease in a patient with anti-MDA5 antibody-positive dermatomyositis.
    Clinical immunology (Orlando, Fla.), 2020, Volume: 215

    Topics: Autoantibodies; Dermatomyositis; Female; Humans; Interferon-Induced Helicase, IFIH1; Lung Diseases, Interstitial; Middle Aged; Piperidines; Protein Kinase Inhibitors; Pyrimidines

2020
Combined anti-fibrotic and anti-inflammatory properties of JAK-inhibitors on macrophages in vitro and in vivo: Perspectives for scleroderma-associated interstitial lung disease.
    Biochemical pharmacology, 2020, Volume: 178

    Janus kinase (JAK) inhibitors (also termed Jakinibs) constitute a family of small drugs that target various isoforms of JAKs (JAK1, JAK2, JAK3 and/or tyrosine kinase 2 (Tyk2)). They exert anti-inflammatory properties linked, in part, to the modulation of the activation state of pro-inflammatory M1 macrophages. The exact impact of JAK inhibitors on a wider spectrum of activation states of macrophages is however still to be determined, especially in the context of disorders involving concomitant activation of pro-inflammatory M1 macrophages and profibrotic M2 macrophages. This is especially the case in autoimmune pulmonary fibrosis like scleroderma-associated interstitial lung disease (ILD), in which M1 and M2 macrophages play a key pathogenic role. In this study, we directly compared the anti-inflammatory and anti-fibrotic effects of three JAK inhibitors (ruxolitinib (JAK2/1 inhibitor); tofacitinib (JAK3/2 inhibitor) and itacitinib (JAK1 inhibitor)) on five different activation states of primary human monocyte-derived macrophages (MDM). These three JAK inhibitors exert anti-inflammatory properties towards macrophages, as demonstrated by the down-expression of key polarization markers (CD86, MHCII, TLR4) and the limited secretion of key pro-inflammatory cytokines (CXCL10, IL-6 and TNFα) in M1 macrophages activated by IFNγ and LPS or by IFNγ alone. We also highlighted that these JAK inhibitors can limit M2a activation of macrophages induced by IL-4 and IL-13, as notably demonstrated by the down-regulation of the M2a associated surface marker CD206 and of the secretion of CCL18. Moreover, these JAK inhibitors reduced the expression of markers such as CXCL13, MARCO and SOCS3 in alternatively activated macrophages induced by IL-10 and dexamethasone (M2c + dex) or IL-10 alone (M2c MDM). For all polarization states, Jakinibs with inhibitory properties over JAK2 had the highest effects, at both 1 μM or 0.1 μM. Based on these in vitro results, we also explored the effects of JAK2/1 inhibition by ruxolitinib in vivo, on mouse macrophages in a model of HOCl-induced ILD, that mimics scleroderma-associated ILD. In this model, we showed that ruxolitinib significantly prevented the upregulation of pro-inflammatory M1 markers (TNFα, CXCL10, NOS2) and pro-fibrotic M2 markers (Arg1 and Chi3L3). These results were associated with an improvement of skin and pulmonary involvement. Overall, our results suggest that the combined anti-inflammatory and anti-fibrotic properties of

    Topics: Animals; Anti-Inflammatory Agents; Cell Differentiation; Chemokine CXCL13; Female; Gene Expression Regulation; Hypochlorous Acid; Janus Kinase 1; Janus Kinase 2; Janus Kinase 3; Lung; Lung Diseases, Interstitial; Macrophage Activation; Macrophages; Mice; Mice, Inbred C57BL; Nitriles; Piperidines; Primary Cell Culture; Protein Kinase Inhibitors; Pyrazoles; Pyrimidines; Pyrroles; Receptors, Immunologic; Scleroderma, Systemic; Suppressor of Cytokine Signaling 3 Protein

2020
Tofacitinib in antisynthetase syndrome-related rapidly progressive interstitial lung disease.
    Rheumatology (Oxford, England), 2020, Dec-01, Volume: 59, Issue:12

    Topics: Disease Progression; Humans; Lung Diseases, Interstitial; Male; Middle Aged; Myositis; Piperidines; Pyrimidines; Time Factors

2020
Successful re-introduction of alectinib after inducing interstitial lung disease in a patient with lung cancer.
    Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners, 2019, Volume: 25, Issue:6

    Alectinib is a member of the family of anaplastic lymphoma kinase inhibitors. This agent is effective in the treatment of advanced anaplastic lymphoma kinase-positive non-small cell lung cancer and has excellent blood-brain barrier penetrability. It is generally well tolerated; however, significant toxicities such as interstitial lung disease have been reported. We present herein an instance of interstitial lung disease four weeks into alectinib treatment. Alectinib was held, and the patient showed clinical and radiographic improvement of her interstitial lung disease. Alectinib was then resumed at half dosage without further complications. Prompt recognition of adverse reactions to this targeted agent is paramount. Cessation of therapy may be needed on a case-to-case basis. However, as our case highlights, safe re-introduction of alectinib can be accomplished in some cases.

    Topics: Carbazoles; Carcinoma, Non-Small-Cell Lung; Female; Humans; Lung Diseases, Interstitial; Lung Neoplasms; Middle Aged; Piperidines; Protein Kinase Inhibitors

2019
Successful treatment of extensive calcifications and acute pulmonary involvement in dermatomyositis with the Janus-Kinase inhibitor tofacitinib - A report of two cases.
    Journal of autoimmunity, 2019, Volume: 100

    Dermatomyositis (DM) can be complicated by calcinosis and interstitial lung disease (ILD). Calcinosis can be severely debilitating or life-threatening and to date there is no treatment with proven efficacy. In DM type I interferon contributes to pathophysiology by inducing the expression of proinflammatory cytokines and the JAK-STAT (signal transducer and activator of transcription) pathway may be involved in the regulation of mitochondrial calcium store release, a process potentially important for calcification in DM. JAK-inhibition may therefore be an attractive therapy in DM complicated by calcifications.. We report on the fast and persistent response of extensive and rapidly progressive DM-associated calcifications in two patients treated with the JAK-inhibitor tofacitinib. During the 28-week observation period in both patients no new calcifications formed and existing calcifications were either regressive or stable. Furthermore, concomitant life-threatening DM-associated ILD (acute fibrinous and organizing pneumonia; AFOP) in one patient rapidly responded to tofacitinib monotherapy. Both patients were able to taper concomitant glucocorticoids. Tofacitinib was well tolerated and safe.. The results of our study support the role of JAK/STAT signaling in the development of calcinosis and ILD in DM. Tofacitinib may be an effective and safe treatment for calcinosis in DM and potentially for other connective tissue disease complicated by calcinosis.

    Topics: Calcinosis; Dermatomyositis; Female; Humans; Lung Diseases, Interstitial; MAP Kinase Kinase 4; Middle Aged; Piperidines; Pyrimidines; Pyrroles

2019
Tofacitinib facilitates the expansion of myeloid-derived suppressor cells and ameliorates interstitial lung disease in SKG mice.
    Arthritis research & therapy, 2019, 08-06, Volume: 21, Issue:1

    Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a sometimes life-threatening complication in RA patients. SKG mice develop not only arthritis but also an ILD resembling RA-ILD. We previously reported that tofacitinib, a JAK inhibitor, facilitates the expansion of myeloid-derived suppressor cells (MDSCs) and ameliorates arthritis in SKG mice. The aim of this study was to elucidate the effect of tofacitinib on the ILD in SKG mice.. We assessed the effect of tofacitinib on the zymosan (Zym)-induced ILD in SKG mice histologically and examined the cells infiltrating the lung by flow cytometry. The effects of lung MDSCs on T cell proliferation and Th17 cell differentiation were assessed in vitro. We also evaluated the effects of tofacitinib on MDSCs and dendritic cells in vitro.. Tofacitinib significantly suppressed the progression of ILD compared to the control SKG mice. The MDSCs were increased, while Th17 cells, group 1 innate lymphoid cells (ILC1s), and GM-CSF+ILCs were decreased in the lungs of tofacitinib-treated mice. MDSCs isolated from the inflamed lungs suppressed T cell proliferation and Th17 cell differentiation in vitro. Tofacitinib promoted MDSC expansion and suppressed bone marrow-derived dendritic cell (BMDC) differentiation in vitro.. Tofacitinib facilitates the expansion of MDSCs in the lung and ameliorates ILD in SKG mice.

    Topics: Animals; Cell Differentiation; Cell Proliferation; Dendritic Cells; Disease Models, Animal; Immunity, Innate; Lung Diseases, Interstitial; Male; Mice; Piperidines; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Th17 Cells

2019
[Analysis of Time-to-onset of Interstitial Lung Disease after the Administration of Small Molecule Molecularly-targeted Drugs].
    Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, 2018, Volume: 138, Issue:2

     The aim of this study was to investigate the time-to-onset of drug-induced interstitial lung disease (DILD) following the administration of small molecule molecularly-targeted drugs via the use of the spontaneous adverse reaction reporting system of the Japanese Adverse Drug Event Report database. DILD datasets for afatinib, alectinib, bortezomib, crizotinib, dasatinib, erlotinib, everolimus, gefitinib, imatinib, lapatinib, nilotinib, osimertinib, sorafenib, sunitinib, temsirolimus, and tofacitinib were used to calculate the median onset times of DILD and the Weibull distribution parameters, and to perform the hierarchical cluster analysis. The median onset times of DILD for afatinib, bortezomib, crizotinib, erlotinib, gefitinib, and nilotinib were within one month. The median onset times of DILD for dasatinib, everolimus, lapatinib, osimertinib, and temsirolimus ranged from 1 to 2 months. The median onset times of the DILD for alectinib, imatinib, and tofacitinib ranged from 2 to 3 months. The median onset times of the DILD for sunitinib and sorafenib ranged from 8 to 9 months. Weibull distributions for these drugs when using the cluster analysis showed that there were 4 clusters. Cluster 1 described a subgroup with early to later onset DILD and early failure type profiles or a random failure type profile. Cluster 2 exhibited early failure type profiles or a random failure type profile with early onset DILD. Cluster 3 exhibited a random failure type profile or wear out failure type profiles with later onset DILD. Cluster 4 exhibited an early failure type profile or a random failure type profile with the latest onset DILD.

    Topics: Adverse Drug Reaction Reporting Systems; Afatinib; Bortezomib; Carbazoles; Cluster Analysis; Crizotinib; Dasatinib; Databases as Topic; Datasets as Topic; Drug-Related Side Effects and Adverse Reactions; Humans; Japan; Lung Diseases, Interstitial; Molecular Targeted Therapy; Particle Size; Piperidines; Pyrazoles; Pyridines; Quinazolines; Time Factors

2018
Tofacitinib for refractory interstitial lung diseases in anti-melanoma differentiation-associated 5 gene antibody-positive dermatomyositis.
    Rheumatology (Oxford, England), 2018, 12-01, Volume: 57, Issue:12

    We aimed to determine the outcome of combination therapy with tofacitinib (TOF) in a case series of refractory rapidly progressive interstitial lung disease (ILD) associated with anti-melanoma differentiation-associated 5 gene (MDA5) antibody-positive (Ab+) DM. Patients who had poor prognostic factors and failed to respond to immunosuppressive therapy were selected for TOF treatment.. Five patients with anti-MDA5 Ab+ DM-ILD who failed to respond to triple therapy with high dose glucocorticoids, CSA and CYC were given additional TOF (10 mg/day). To identify the poor prognostic factors, data from 15 consecutive patients (seven survived and eight died) with anti-MDA5 Ab+ DM-ILD before induction of TOF were analysed.. Three poor prognostic factors were identified: serum ferritin level >1000 ng/ml before therapy; ground-glass opacities in all six lung fields before therapy; and worsening of pulmonary infiltrates during therapy. All six patients who had all of the three factors and received triple therapy died before TOF therapy. There were five patients who had all of the three prognostic factors and failed to respond to triple therapy, but were able to receive the combination therapy with TOF; among them, three survived and two died. The survival rate of patients who received TOF was significantly better than that of the historical controls with immunosuppressive therapy before TOF. The patients who received TOF experienced complicated adverse events, particularly viral infection.. Combination therapy with TOF might have the potential to control refractory anti-MDA5 Ab+ DM-ILD.

    Topics: Adult; Aged; Dermatomyositis; Drug Therapy, Combination; Female; Ferritins; Glucocorticoids; Humans; Interferon-Induced Helicase, IFIH1; Lung; Lung Diseases, Interstitial; Male; Middle Aged; Piperidines; Prognosis; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Survival Rate; Treatment Outcome

2018
Case report: continued treatment with alectinib is possible for patients with lung adenocarcinoma with drug-induced interstitial lung disease.
    BMC pulmonary medicine, 2017, Dec-06, Volume: 17, Issue:1

    Alectinib, a second-generation anaplastic lymphoma kinase (ALK) inhibitor, is a key drug for ALK rearranged lung adenocarcinoma. Interstitial lung disease (ILD) is an important adverse effect of alectinib, which generally requires termination of treatment. However, we treated two patients with drug-induced ILD who continued to receive alectinib.. Patient 1 was a 57-year-old male with an ALK-rearranged Stage IV lung adenocarcinoma who was administered alectinib as first-line therapy. Computed tomography (CT) detected asymptomatic ground-glass opacity (GGO) on day 33 of treatment. Alectinib therapy was therefore discontinued for 7 days and then restarted. GGO disappeared, and the progression of ILD ceased. Patient 2 was a 64-year-old woman with an ALK-positive lung adenocarcinoma who was administered alectinib as third-line therapy. One year later, CT detected GGO; and she had a slight, nonproductive cough. Alectinib therapy was continued in the absence of other symptoms, and GGO slightly diminished after 7 days. Two months later, CT detected increased GGO, and alectinib therapy was continued. GGO diminished again after 7 days. The patient has taken alectinib for more than 2 years without progression of ILD.. Certain patients with alectinib-induced ILD Grade 2 or less may continue alectinib therapy if they are closely managed.

    Topics: Adenocarcinoma; Carbazoles; Female; Humans; Lung Diseases, Interstitial; Lung Neoplasms; Male; Middle Aged; Oncogene Proteins, Fusion; Piperidines; Protein Kinase Inhibitors; Tomography, X-Ray Computed

2017
Ibrutinib-induced pneumonitis in patients with chronic lymphocytic leukemia.
    Blood, 2016, Feb-25, Volume: 127, Issue:8

    Topics: Adenine; Aged; Antineoplastic Agents; Female; Humans; Leukemia, Lymphocytic, Chronic, B-Cell; Lung Diseases, Interstitial; Male; Middle Aged; Piperidines; Pyrazoles; Pyrimidines

2016
Interstitial lung disease induced by alectinib (CH5424802/RO5424802).
    Japanese journal of clinical oncology, 2015, Volume: 45, Issue:2

    A 75-year-old woman with anaplastic lymphoma kinase (ALK)-rearranged Stage IV lung adenocarcinoma was administered the selective anaplastic lymphoma kinase inhibitor, alectinib, as a third-line treatment in a Phase 1-2 study. On the 102nd day, chest computed tomography showed diffuse ground glass opacities. Laboratory data revealed high serum levels of KL-6, SP-D and lactate dehydrogenase without any clinical symptoms. There was no evidence of infection. Marked lymphocytosis was seen in bronchoalveolar lavage fluid analysis, and transbronchial lung biopsy showed mild thickening of alveolar septa and lymphocyte infiltration. Interstitial lung disease was judged to be related to alectinib based on improvements in imaging findings and serum biomarkers after discontinuation of alectinib. To our knowledge, this is the first reported case of alectinib-induced interstitial lung disease. Alectinib is a promising drug for ALK-rearranged non-small cell lung cancer. Clinical trials of this selective anaplastic lymphoma kinase inhibitor will facilitate the meticulous elucidation of its long-term safety profile.

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Aged; Anaplastic Lymphoma Kinase; Antineoplastic Agents; Bronchoalveolar Lavage Fluid; Carbazoles; Female; Humans; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Piperidines; Protein Kinase Inhibitors; Receptor Protein-Tyrosine Kinases; Tomography, X-Ray Computed

2015
Severe acute interstitial lung disease in a patient with anaplastic lymphoma kinase rearrangement-positive non-small cell lung cancer treated with alectinib.
    Investigational new drugs, 2015, Volume: 33, Issue:5

    Alectinib, the second generation anaplastic lymphoma kinase (ALK) inhibitor, has significant potency in patients with ALK rearrangement positive non-small cell lung cancer (NSCLC), and its toxicity is generally well tolerable. We report a patient who developed severe acute interstitial lung disease after alectinib treatment. An 86-year-old woman with stage IV lung adenocarcinoma positive for rearrangement of ALK gene was treated with alectinib. On the 215th day after initiation of alectinib administration, she was admitted to our hospital with the symptom of progressive dyspnea. Computed tomography (CT) revealed diffuse ground glass opacities and consolidations in both lungs, and analysis of bronchoalveolar lavage fluid revealed pronounced lymphocytosis. There was no evidence of infection or other specific causes of her condition, and she was therefore diagnosed with interstitial lung disease induced by alectinib. Her CT findings and respiratory condition improved after steroid pulse therapy. As far as we are aware, this is the first reported case of alectinib-induced severe interstitial lung disease (ILD). We should be aware of the possibility of such a severe adverse event and should therefore carefully monitor patients treated with this drug.

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Adrenal Cortex Hormones; Aged, 80 and over; Anaplastic Lymphoma Kinase; Antineoplastic Agents; Carbazoles; Carcinoma, Non-Small-Cell Lung; Female; Humans; Lung Diseases, Interstitial; Lung Neoplasms; Piperidines; Receptor Protein-Tyrosine Kinases

2015
Successful treatment with alectinib after crizotinib-induced interstitial lung disease.
    Lung cancer (Amsterdam, Netherlands), 2015, Volume: 90, Issue:3

    We herein report a case of a 46-year-old woman with anaplastic lymphoma kinase (ALK)-rearranged stage IV lung adenocarcinoma who received the ALK inhibitor crizotinib as second-line therapy. On the 47th day following crizotinib initiation, a chest computed tomography scan revealed ground-glass opacities with a clinical manifestation of desaturation, although a partial response to treatment was detected. The diagnosis of crizotinib-induced interstitial lung disease (ILD) was confirmed, and crizotinib was discontinued, followed by the initiation of corticosteroid therapy. After improvement of ILD with corticosteroid therapy, alectinib was administered as salvage therapy, resulting in tumor shrinkage without any recurrence of ILD. To the best of our knowledge, this is the first report of successful alectinib treatment following crizotinib-induced ILD. Our results indicate that alectinib could be a promising alternative treatment option in patients with crizotinib-induced ILD.

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Antineoplastic Agents; Carbazoles; Crizotinib; Female; Humans; Lung Diseases, Interstitial; Lung Neoplasms; Middle Aged; Piperidines; Protein Kinase Inhibitors; Pyrazoles; Pyridines; Radiography, Thoracic; Tomography, X-Ray Computed; Treatment Outcome

2015