piperidines has been researched along with Infarction--Middle-Cerebral-Artery* in 41 studies
1 review(s) available for piperidines and Infarction--Middle-Cerebral-Artery
Article | Year |
---|---|
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
The present study aimed to assess the prevalence of symptoms of anxiety and depression among health professionals in the three most affected regions in Cameroon.. The study was a descriptive cross-sectional type. Participants were health care professionals working in the three chosen regions of Cameroon. The non_probability convinient sample technique and that of the snowball were valued via a web questionnaire. The non-exhaustive sample size was 292. The diagnosis of anxiety and depression was made by the HAD (Hospital Anxiety and Depression scale).. Les auteurs rapportent que le secteur médical est classé à un plus grand risque de contracter le COVID-19 et de le propager potentiellement à d’autres. Le nombre sans cesse croissant de cas confirmés et suspects, la pression dans les soins, l’épuisement des équipements de protection individuelle et le manque de médicaments spécifiques peuvent contribuer à un vécu anxio-dépressif significatif. La présente étude s’est donnée pour ambition d’évaluer la prévalence des symptômes de l’anxiété et de la dépression chez les professionnels de santé dans les trois Régions les plus concernées au Cameroun.. Le choix des trois Régions du Cameroun se justifie non seulement par le fait qu’elles totalisent 95,8 % des cas de coronavirus au pays depuis le début de la pandémie, mais aussi parce qu’elles disposent de plus de la moitié des personnels de santé (56 %). Il s’agit d’une étude transversale, descriptive et analytique. Les participants sont des professionnels de la santé en service dans les Régions du Centre, Littoral et de l’Ouest du Cameroun. La méthode d’échantillonnage non probabiliste de convenance couplée à celle de boule de neige via un web questionnaire a été adoptée. La collecte des données a duré du 5 au 19 avril 2020, intervalle de temps après lequel on n’avait plus eu de répondants. À la fin de cette période, la taille de l’échantillon non exhaustive était de 292 professionnels. Le diagnostic de l’état anxio-dépressive était posé via l’échelle de HAD (Hospital Anxiety and Depression scale). Dans le HAD, chaque réponse cotée évalue de manière semi-quantitative l’intensité du symptôme au cours de la semaine écoulée. Un score total est obtenu ainsi que des scores aux deux sous-échelles : le score maximal est de 42 pour l’échelle globale et de 21 pour chacune des sous-échelles. Le coefficient alpha de Cronbach est de 0,70 pour la dépression et de 0,74 pour l’anxiété. Certains auteurs après plusieurs travaux ont proposé qu’une note inférieure ou égale à 7 indique une absence d’anxiété ou de dépression ; celle comprise entre 8 et 10 suggère une anxiété ou une dépression faible à bénigne ; entre 11 et 14, pour une anxiété ou une dépression modérée ; enfin, une note comprise entre 15 et 21 est révélatrice d’une anxiété sévère. Le logiciel Excel 2013 et Epi Info version 7.2.2.6 ont été utilisés pour les traitements statistiques. Les liens entre les variables ont été considérées significatifs pour une valeur de. L’amélioration des conditions de travail et notamment la fourniture d’équipement de protection, la mise en place des cellules spéciales d’écoute pour le personnel de santé pourraient être proposées.. Taken together with satisfactory selectivity index (SI) values, the acetone and methanol extracts of. During a mean follow-up period of 25.6 ± 13.9 months, 38 (18.4%) VAs and 78 (37.7%) end-stage events occurred. Big ET-1 was positively correlated with NYHA class (. In primary prevention ICD indication patients, plasma big ET-1 levels can predict VAs and end-stage events and may facilitate ICD-implantation risk stratification.. Beyond age, cognitive impairment was associated with prior MI/stroke, higher hsCRP, statin use, less education, lower eGFR, BMI and LVEF.. These data demonstrate that even a short period of detraining is harmful for elderly women who regularly participate in a program of strength training, since it impairs physical performance, insulin sensitivity and cholesterol metabolism.. Exposure to PM. Respiratory sinus arrhythmia is reduced after PVI in patients with paroxysmal AF. Our findings suggest that this is related to a decrease in cardiac vagal tone. Whether and how this affects the clinical outcome including exercise capacity need to be determined.. BDNF and leptin were not associated with weight. We found that miR-214-5p exerted a protective role in I/R injured cardiac cells by direct targeting FASLG. The results indicated that the MGO injection reduced all CCl. The hepatoprotective effects of MGO might be due to histopathological suppression and inflammation inhibition in the liver.. OVEO showed moderate antifungal activity, whereas its main components carvacrol and thymol have great application potential as natural fungicides or lead compounds for commercial fungicides in preventing and controlling plant diseases caused by. PF trajectories were mainly related to income, pregestational BMI, birth weight, hospitalisation due to respiratory diseases in childhood, participant's BMI, report of wheezing, medical diagnosis and family history of asthma, gestational exposure to tobacco and current smoking status in adolescence and young adult age.. In chronic pain patients on opioids, administration of certain benzodiazepine sedatives induced a mild respiratory depression but paradoxically reduced sleep apnoea risk and severity by increasing the respiratory arousal threshold.. Quantitative measurements of sensory disturbances using the PainVision. The serum level of 20S-proteasome may be a useful marker for disease activity in AAV.. The electrophysiological data and MD simulations collectively suggest a crucial role of the interactions between the HA helix and S4-S5 linker in the apparent Ca. Invited for the cover of this issue are Vanesa Fernández-Moreira, Nils Metzler-Nolte, M. Concepción Gimeno and co-workers at Universidad de Zaragoza and Ruhr-Universität Bochum. The image depicts the reported bimetallic bioconjugates as planes directing the gold fragment towards the target (lysosomes). Read the full text of the article at 10.1002/chem.202002067.. The optimal CRT pacing configuration changes during dobutamine infusion while LV and RV activation timing does not. Further studies investigating the usefulness of automated dynamic changes to CRT pacing configuration according to physiologic condition may be warranted. Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acrylic Resins; Actinobacillus; Acute Disease; Acute Kidney Injury; Adaptor Proteins, Signal Transducing; Adenosine; Adenosine Triphosphate; Administration, Inhalation; Administration, Oral; Adolescent; Adult; Advance Care Planning; Africa, Northern; Age Factors; Aged; Aged, 80 and over; Air Pollutants; Air Pollution; Air Pollution, Indoor; Albendazole; Aluminum Oxide; Anastomosis, Surgical; Ancylostoma; Ancylostomiasis; Androstadienes; Angiogenesis Inhibitors; Angiotensin II; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Antibodies, Bispecific; Antibodies, Viral; Anticoagulants; Antihypertensive Agents; Antinematodal Agents; Antineoplastic Agents; Antineoplastic Agents, Immunological; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antiporters; Antiviral Agents; Apoptosis; Aptamers, Nucleotide; Aromatase Inhibitors; Asian People; Astrocytes; Atrial Fibrillation; Auditory Threshold; Aurora Kinase B; Australia; Autophagy; Autophagy-Related Protein 5; Autotrophic Processes; Bacillus cereus; Bacillus thuringiensis; Bacterial Proteins; Beclin-1; Belgium; Benzene; Benzene Derivatives; Benzhydryl Compounds; beta Catenin; beta-Arrestin 2; Biliary Tract Diseases; Biofilms; Biofuels; Biomarkers; Biomarkers, Tumor; Biomass; Biomechanical Phenomena; Bioreactors; Biosensing Techniques; Biosynthetic Pathways; Bismuth; Blood Platelets; Bone and Bones; Bone Regeneration; Bortezomib; Botulinum Toxins, Type A; Brain; Brain Injuries; Brain Ischemia; Brain Neoplasms; Breast Neoplasms; Breath Tests; Bronchodilator Agents; Calcium Phosphates; Cannabis; Carbon Dioxide; Carbon Isotopes; Carcinogenesis; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Squamous Cell; Cardiac Resynchronization Therapy; Cardiac Resynchronization Therapy Devices; Cardiomyopathies; Cardiovascular Diseases; Cariostatic Agents; Case Managers; Case-Control Studies; Catalysis; Cation Transport Proteins; CD8-Positive T-Lymphocytes; Cecropia Plant; Cell Adhesion; Cell Count; Cell Differentiation; Cell Division; Cell Line; Cell Line, Tumor; Cell Membrane; Cell Movement; Cell Proliferation; Cell Self Renewal; Cell Survival; Cells, Cultured; Cellular Reprogramming; Cellulose; Charcoal; Chemical and Drug Induced Liver Injury; Chemical Phenomena; Chemokines; Chemoradiotherapy; Chemoreceptor Cells; Child; Child Abuse; Child, Preschool; China; Chlorogenic Acid; Chloroquine; Chromatography, Gas; Chronic Disease; Clinical Competence; Coated Materials, Biocompatible; Cochlea; Cohort Studies; Color; Comorbidity; Computer Simulation; Computer-Aided Design; Contraception; Contraceptive Agents, Female; Contrast Media; COP-Coated Vesicles; Coronavirus Infections; Cost of Illness; Coturnix; COVID-19; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Culex; Curriculum; Cyclic N-Oxides; Cytokines; Cytoplasm; Cytotoxicity, Immunologic; Cytotoxins; Databases, Factual; Deep Learning; Delivery, Obstetric; Denitrification; Dental Caries; Denture, Complete; Dexamethasone; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dielectric Spectroscopy; Diet, High-Fat; Dietary Fiber; Disease Models, Animal; Disease Progression; DNA; DNA Copy Number Variations; DNA, Mitochondrial; Dog Diseases; Dogs; Dopaminergic Neurons; Double-Blind Method; Down-Regulation; Doxorubicin; Drug Carriers; Drug Design; Drug Interactions; Drug Resistance, Bacterial; Drug Resistance, Neoplasm; Drug-Related Side Effects and Adverse Reactions; Drugs, Chinese Herbal; Dry Powder Inhalers; Dust; E2F1 Transcription Factor; Ecosystem; Education, Nursing; Education, Nursing, Baccalaureate; Electric Impedance; Electricity; Electrocardiography; Electrochemical Techniques; Electrochemistry; Electrodes; Electrophoresis, Polyacrylamide Gel; Endoplasmic Reticulum; Endothelial Cells; Environmental Monitoring; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Estrogen Receptor Modulators; Europe; Evoked Potentials, Auditory, Brain Stem; Exosomes; Feasibility Studies; Female; Ferricyanides; Ferrocyanides; Fibrinogen; Finite Element Analysis; Fistula; Fluorescent Dyes; Fluorides, Topical; Fluorodeoxyglucose F18; Fluticasone; Follow-Up Studies; Food Contamination; Food Microbiology; Foods, Specialized; Forensic Medicine; Frail Elderly; France; Free Radicals; Fresh Water; Fungi; Fungicides, Industrial; Galactosamine; Gastrointestinal Neoplasms; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Frequency; Genetic Predisposition to Disease; Genotype; Gingival Hemorrhage; Glioblastoma; Glioma; Glomerular Filtration Rate; Glomerulosclerosis, Focal Segmental; Glucose; Glucose Transport Proteins, Facilitative; Glucosides; Glutamine; Glycolysis; Gold; GPI-Linked Proteins; Gram-Negative Bacteria; Gram-Positive Bacteria; Graphite; Haplotypes; HCT116 Cells; Healthy Volunteers; Hearing Loss; Heart Failure; Hedgehog Proteins; HEK293 Cells; HeLa Cells; Hemodynamics; Hemorrhage; Hepatocytes; Hippo Signaling Pathway; Histone Deacetylases; Homeostasis; Hospital Mortality; Hospitalization; Humans; Hydantoins; Hydrazines; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Hydroxylamines; Hypoglycemic Agents; Immunity, Innate; Immunoglobulin G; Immunohistochemistry; Immunologic Factors; Immunomodulation; Immunophenotyping; Immunotherapy; Incidence; Indazoles; Indonesia; Infant; Infant, Newborn; Infarction, Middle Cerebral Artery; Inflammation; Injections, Intramuscular; Insecticides; Insulin-Like Growth Factor I; Insurance, Health; Intention to Treat Analysis; Interleukin-1 Receptor-Associated Kinases; Interleukin-6; Intrauterine Devices; Intrauterine Devices, Copper; Iron; Ischemia; Jordan; Keratinocytes; Kidney; Kidney Diseases; Kir5.1 Channel; Klebsiella Infections; Klebsiella pneumoniae; Lab-On-A-Chip Devices; Laparoscopy; Lasers; Lasers, Semiconductor; Lenalidomide; Leptin; Lethal Dose 50; Levonorgestrel; Limit of Detection; Lipid Metabolism; Lipid Metabolism Disorders; Lipogenesis; Lipopolysaccharides; Liquid Biopsy; Liver; Liver Abscess, Pyogenic; Liver Cirrhosis; Liver Diseases; Liver Neoplasms; Longevity; Lung Neoplasms; Luteolin; Lymph Nodes; Lymphocyte Activation; Macaca fascicularis; Macrophages; Mad2 Proteins; Magnetic Resonance Imaging; Male; Mammary Glands, Human; Manganese; Manganese Compounds; MAP Kinase Signaling System; Materials Testing; Maternal Health Services; MCF-7 Cells; Medicaid; Medicine, Chinese Traditional; Melanoma; Membrane Proteins; Mental Health; Mercury; Metal Nanoparticles; Metals, Heavy; Metformin; Methionine Adenosyltransferase; Mice; Mice, Inbred BALB C; Mice, Inbred C3H; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Knockout; Mice, Nude; Microalgae; Microbial Sensitivity Tests; Microglia; MicroRNAs; Microscopy, Atomic Force; Microscopy, Electron, Scanning; Middle Aged; Mitochondria; Mitochondrial Proteins; Mitral Valve; Mitral Valve Insufficiency; Models, Anatomic; Molecular Structure; Molybdenum; Monocarboxylic Acid Transporters; Moths; MPTP Poisoning; Multigene Family; Multiparametric Magnetic Resonance Imaging; Multiple Myeloma; Muscle, Skeletal; Mutagens; Mutation; Myeloid Cells; Nanocomposites; Nanofibers; Nanomedicine; Nanoparticles; Nanowires; Neoadjuvant Therapy; Neomycin; Neoplasm Grading; Neoplasm Recurrence, Local; Neoplasms; Neoplastic Stem Cells; Neostriatum; Neovascularization, Pathologic; Netherlands; Neuromuscular Agents; Neurons; NF-E2-Related Factor 2; NF-kappa B; Nickel; Nitrogen Oxides; Non-alcoholic Fatty Liver Disease; Nucleosides; Nucleotidyltransferases; Nutritional Status; Obesity, Morbid; Ofloxacin; Oils, Volatile; Oligopeptides; Oncogene Protein v-akt; Optical Imaging; Organic Cation Transport Proteins; Organophosphonates; Osteoarthritis; Osteoarthritis, Hip; Osteoarthritis, Knee; Osteoblasts; Osteogenesis; Oxidation-Reduction; Oxidative Stress; Oxides; Oxygen Isotopes; Pancreas; Pancreaticoduodenectomy; Pandemics; Particle Size; Particulate Matter; Patient Acceptance of Health Care; Patient Compliance; PC-3 Cells; Peptide Fragments; Peptides; Periodontal Attachment Loss; Periodontal Index; Periodontal Pocket; Periodontitis; Peroxides; Peru; Pest Control, Biological; Phosphatidylinositol 3-Kinase; Phosphatidylinositol 3-Kinases; Phylogeny; Pilot Projects; Piperidines; Plant Bark; Plant Extracts; Plant Leaves; Plasmids; Platelet Function Tests; Pneumonia, Viral; Podocytes; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Polyethylene Terephthalates; Polymers; Polymorphism, Single Nucleotide; Porosity; Portugal; Positron-Emission Tomography; Postoperative Complications; Postural Balance; Potassium Channels, Inwardly Rectifying; Povidone; Powders; Precancerous Conditions; Precision Medicine; Predictive Value of Tests; Pregnancy; Prenatal Care; Prognosis; Promoter Regions, Genetic; Prospective Studies; Prostatectomy; Prostatic Neoplasms; Proteasome Inhibitors; Protective Agents; Protein Binding; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Protein Transport; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-akt; Psychiatric Nursing; PTEN Phosphohydrolase; Pulmonary Embolism; Pyrimethamine; Radiopharmaceuticals; Rats; Rats, Sprague-Dawley; Rats, Wistar; Reactive Oxygen Species; Receptor, ErbB-2; Receptor, IGF Type 1; Receptors, Estrogen; Receptors, G-Protein-Coupled; Recombinational DNA Repair; Recovery of Function; Regional Blood Flow; Renal Dialysis; Renin; Renin-Angiotensin System; Reperfusion Injury; Reproducibility of Results; Republic of Korea; Respiratory Distress Syndrome; Retrospective Studies; Rhodamines; Risk Assessment; Risk Factors; RNA, Long Noncoding; RNA, Messenger; Running; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salinity; Salmeterol Xinafoate; Sarcoma; Seasons; Shoulder Injuries; Signal Transduction; Silicon Dioxide; Silver; Sirtuin 1; Sirtuins; Skull Fractures; Social Determinants of Health; Sodium; Sodium Fluoride; Sodium Potassium Chloride Symporter Inhibitors; Sodium-Glucose Transporter 2 Inhibitors; Soil; Soil Pollutants; Spain; Spectrophotometry; Spectroscopy, Fourier Transform Infrared; Staphylococcal Protein A; Staphylococcus aureus; Stem Cells; Stereoisomerism; Stomach Neoplasms; Streptomyces; Strontium; Structure-Activity Relationship; Students, Nursing; Substance-Related Disorders; Succinic Acid; Sulfur; Surface Properties; Survival Rate; Survivin; Symporters; T-Lymphocytes; Temozolomide; Tensile Strength; Thiazoles; Thiobacillus; Thiohydantoins; Thiourea; Thrombectomy; Time Factors; Titanium; Tobacco Mosaic Virus; Tobacco Use Disorder; Toll-Like Receptor 4; Toluene; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Toxicity Tests, Acute; Toxicity Tests, Subacute; Transcriptional Activation; Treatment Outcome; Troponin I; Tumor Cells, Cultured; Tumor Escape; Tumor Hypoxia; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Tyrosine; Ubiquitin-Protein Ligases; Ubiquitination; Ultrasonic Waves; United Kingdom; United States; United States Department of Veterans Affairs; Up-Regulation; Urea; Uric Acid; Urinary Bladder Neoplasms; Urinary Bladder, Neurogenic; Urine; Urodynamics; User-Computer Interface; Vemurafenib; Verbenaceae; Veterans; Veterans Health; Viral Load; Virtual Reality; Vitiligo; Water Pollutants, Chemical; Wildfires; Wnt Signaling Pathway; Wound Healing; X-Ray Diffraction; Xenograft Model Antitumor Assays; Xylenes; Young Adult; Zinc; Zinc Oxide; Zinc Sulfate; Zoonoses | 2021 |
1 trial(s) available for piperidines and Infarction--Middle-Cerebral-Artery
Article | Year |
---|---|
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
The present study aimed to assess the prevalence of symptoms of anxiety and depression among health professionals in the three most affected regions in Cameroon.. The study was a descriptive cross-sectional type. Participants were health care professionals working in the three chosen regions of Cameroon. The non_probability convinient sample technique and that of the snowball were valued via a web questionnaire. The non-exhaustive sample size was 292. The diagnosis of anxiety and depression was made by the HAD (Hospital Anxiety and Depression scale).. Les auteurs rapportent que le secteur médical est classé à un plus grand risque de contracter le COVID-19 et de le propager potentiellement à d’autres. Le nombre sans cesse croissant de cas confirmés et suspects, la pression dans les soins, l’épuisement des équipements de protection individuelle et le manque de médicaments spécifiques peuvent contribuer à un vécu anxio-dépressif significatif. La présente étude s’est donnée pour ambition d’évaluer la prévalence des symptômes de l’anxiété et de la dépression chez les professionnels de santé dans les trois Régions les plus concernées au Cameroun.. Le choix des trois Régions du Cameroun se justifie non seulement par le fait qu’elles totalisent 95,8 % des cas de coronavirus au pays depuis le début de la pandémie, mais aussi parce qu’elles disposent de plus de la moitié des personnels de santé (56 %). Il s’agit d’une étude transversale, descriptive et analytique. Les participants sont des professionnels de la santé en service dans les Régions du Centre, Littoral et de l’Ouest du Cameroun. La méthode d’échantillonnage non probabiliste de convenance couplée à celle de boule de neige via un web questionnaire a été adoptée. La collecte des données a duré du 5 au 19 avril 2020, intervalle de temps après lequel on n’avait plus eu de répondants. À la fin de cette période, la taille de l’échantillon non exhaustive était de 292 professionnels. Le diagnostic de l’état anxio-dépressive était posé via l’échelle de HAD (Hospital Anxiety and Depression scale). Dans le HAD, chaque réponse cotée évalue de manière semi-quantitative l’intensité du symptôme au cours de la semaine écoulée. Un score total est obtenu ainsi que des scores aux deux sous-échelles : le score maximal est de 42 pour l’échelle globale et de 21 pour chacune des sous-échelles. Le coefficient alpha de Cronbach est de 0,70 pour la dépression et de 0,74 pour l’anxiété. Certains auteurs après plusieurs travaux ont proposé qu’une note inférieure ou égale à 7 indique une absence d’anxiété ou de dépression ; celle comprise entre 8 et 10 suggère une anxiété ou une dépression faible à bénigne ; entre 11 et 14, pour une anxiété ou une dépression modérée ; enfin, une note comprise entre 15 et 21 est révélatrice d’une anxiété sévère. Le logiciel Excel 2013 et Epi Info version 7.2.2.6 ont été utilisés pour les traitements statistiques. Les liens entre les variables ont été considérées significatifs pour une valeur de. L’amélioration des conditions de travail et notamment la fourniture d’équipement de protection, la mise en place des cellules spéciales d’écoute pour le personnel de santé pourraient être proposées.. Taken together with satisfactory selectivity index (SI) values, the acetone and methanol extracts of. During a mean follow-up period of 25.6 ± 13.9 months, 38 (18.4%) VAs and 78 (37.7%) end-stage events occurred. Big ET-1 was positively correlated with NYHA class (. In primary prevention ICD indication patients, plasma big ET-1 levels can predict VAs and end-stage events and may facilitate ICD-implantation risk stratification.. Beyond age, cognitive impairment was associated with prior MI/stroke, higher hsCRP, statin use, less education, lower eGFR, BMI and LVEF.. These data demonstrate that even a short period of detraining is harmful for elderly women who regularly participate in a program of strength training, since it impairs physical performance, insulin sensitivity and cholesterol metabolism.. Exposure to PM. Respiratory sinus arrhythmia is reduced after PVI in patients with paroxysmal AF. Our findings suggest that this is related to a decrease in cardiac vagal tone. Whether and how this affects the clinical outcome including exercise capacity need to be determined.. BDNF and leptin were not associated with weight. We found that miR-214-5p exerted a protective role in I/R injured cardiac cells by direct targeting FASLG. The results indicated that the MGO injection reduced all CCl. The hepatoprotective effects of MGO might be due to histopathological suppression and inflammation inhibition in the liver.. OVEO showed moderate antifungal activity, whereas its main components carvacrol and thymol have great application potential as natural fungicides or lead compounds for commercial fungicides in preventing and controlling plant diseases caused by. PF trajectories were mainly related to income, pregestational BMI, birth weight, hospitalisation due to respiratory diseases in childhood, participant's BMI, report of wheezing, medical diagnosis and family history of asthma, gestational exposure to tobacco and current smoking status in adolescence and young adult age.. In chronic pain patients on opioids, administration of certain benzodiazepine sedatives induced a mild respiratory depression but paradoxically reduced sleep apnoea risk and severity by increasing the respiratory arousal threshold.. Quantitative measurements of sensory disturbances using the PainVision. The serum level of 20S-proteasome may be a useful marker for disease activity in AAV.. The electrophysiological data and MD simulations collectively suggest a crucial role of the interactions between the HA helix and S4-S5 linker in the apparent Ca. Invited for the cover of this issue are Vanesa Fernández-Moreira, Nils Metzler-Nolte, M. Concepción Gimeno and co-workers at Universidad de Zaragoza and Ruhr-Universität Bochum. The image depicts the reported bimetallic bioconjugates as planes directing the gold fragment towards the target (lysosomes). Read the full text of the article at 10.1002/chem.202002067.. The optimal CRT pacing configuration changes during dobutamine infusion while LV and RV activation timing does not. Further studies investigating the usefulness of automated dynamic changes to CRT pacing configuration according to physiologic condition may be warranted. Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acrylic Resins; Actinobacillus; Acute Disease; Acute Kidney Injury; Adaptor Proteins, Signal Transducing; Adenosine; Adenosine Triphosphate; Administration, Inhalation; Administration, Oral; Adolescent; Adult; Advance Care Planning; Africa, Northern; Age Factors; Aged; Aged, 80 and over; Air Pollutants; Air Pollution; Air Pollution, Indoor; Albendazole; Aluminum Oxide; Anastomosis, Surgical; Ancylostoma; Ancylostomiasis; Androstadienes; Angiogenesis Inhibitors; Angiotensin II; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Antibodies, Bispecific; Antibodies, Viral; Anticoagulants; Antihypertensive Agents; Antinematodal Agents; Antineoplastic Agents; Antineoplastic Agents, Immunological; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antiporters; Antiviral Agents; Apoptosis; Aptamers, Nucleotide; Aromatase Inhibitors; Asian People; Astrocytes; Atrial Fibrillation; Auditory Threshold; Aurora Kinase B; Australia; Autophagy; Autophagy-Related Protein 5; Autotrophic Processes; Bacillus cereus; Bacillus thuringiensis; Bacterial Proteins; Beclin-1; Belgium; Benzene; Benzene Derivatives; Benzhydryl Compounds; beta Catenin; beta-Arrestin 2; Biliary Tract Diseases; Biofilms; Biofuels; Biomarkers; Biomarkers, Tumor; Biomass; Biomechanical Phenomena; Bioreactors; Biosensing Techniques; Biosynthetic Pathways; Bismuth; Blood Platelets; Bone and Bones; Bone Regeneration; Bortezomib; Botulinum Toxins, Type A; Brain; Brain Injuries; Brain Ischemia; Brain Neoplasms; Breast Neoplasms; Breath Tests; Bronchodilator Agents; Calcium Phosphates; Cannabis; Carbon Dioxide; Carbon Isotopes; Carcinogenesis; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Squamous Cell; Cardiac Resynchronization Therapy; Cardiac Resynchronization Therapy Devices; Cardiomyopathies; Cardiovascular Diseases; Cariostatic Agents; Case Managers; Case-Control Studies; Catalysis; Cation Transport Proteins; CD8-Positive T-Lymphocytes; Cecropia Plant; Cell Adhesion; Cell Count; Cell Differentiation; Cell Division; Cell Line; Cell Line, Tumor; Cell Membrane; Cell Movement; Cell Proliferation; Cell Self Renewal; Cell Survival; Cells, Cultured; Cellular Reprogramming; Cellulose; Charcoal; Chemical and Drug Induced Liver Injury; Chemical Phenomena; Chemokines; Chemoradiotherapy; Chemoreceptor Cells; Child; Child Abuse; Child, Preschool; China; Chlorogenic Acid; Chloroquine; Chromatography, Gas; Chronic Disease; Clinical Competence; Coated Materials, Biocompatible; Cochlea; Cohort Studies; Color; Comorbidity; Computer Simulation; Computer-Aided Design; Contraception; Contraceptive Agents, Female; Contrast Media; COP-Coated Vesicles; Coronavirus Infections; Cost of Illness; Coturnix; COVID-19; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Culex; Curriculum; Cyclic N-Oxides; Cytokines; Cytoplasm; Cytotoxicity, Immunologic; Cytotoxins; Databases, Factual; Deep Learning; Delivery, Obstetric; Denitrification; Dental Caries; Denture, Complete; Dexamethasone; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dielectric Spectroscopy; Diet, High-Fat; Dietary Fiber; Disease Models, Animal; Disease Progression; DNA; DNA Copy Number Variations; DNA, Mitochondrial; Dog Diseases; Dogs; Dopaminergic Neurons; Double-Blind Method; Down-Regulation; Doxorubicin; Drug Carriers; Drug Design; Drug Interactions; Drug Resistance, Bacterial; Drug Resistance, Neoplasm; Drug-Related Side Effects and Adverse Reactions; Drugs, Chinese Herbal; Dry Powder Inhalers; Dust; E2F1 Transcription Factor; Ecosystem; Education, Nursing; Education, Nursing, Baccalaureate; Electric Impedance; Electricity; Electrocardiography; Electrochemical Techniques; Electrochemistry; Electrodes; Electrophoresis, Polyacrylamide Gel; Endoplasmic Reticulum; Endothelial Cells; Environmental Monitoring; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Estrogen Receptor Modulators; Europe; Evoked Potentials, Auditory, Brain Stem; Exosomes; Feasibility Studies; Female; Ferricyanides; Ferrocyanides; Fibrinogen; Finite Element Analysis; Fistula; Fluorescent Dyes; Fluorides, Topical; Fluorodeoxyglucose F18; Fluticasone; Follow-Up Studies; Food Contamination; Food Microbiology; Foods, Specialized; Forensic Medicine; Frail Elderly; France; Free Radicals; Fresh Water; Fungi; Fungicides, Industrial; Galactosamine; Gastrointestinal Neoplasms; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Frequency; Genetic Predisposition to Disease; Genotype; Gingival Hemorrhage; Glioblastoma; Glioma; Glomerular Filtration Rate; Glomerulosclerosis, Focal Segmental; Glucose; Glucose Transport Proteins, Facilitative; Glucosides; Glutamine; Glycolysis; Gold; GPI-Linked Proteins; Gram-Negative Bacteria; Gram-Positive Bacteria; Graphite; Haplotypes; HCT116 Cells; Healthy Volunteers; Hearing Loss; Heart Failure; Hedgehog Proteins; HEK293 Cells; HeLa Cells; Hemodynamics; Hemorrhage; Hepatocytes; Hippo Signaling Pathway; Histone Deacetylases; Homeostasis; Hospital Mortality; Hospitalization; Humans; Hydantoins; Hydrazines; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Hydroxylamines; Hypoglycemic Agents; Immunity, Innate; Immunoglobulin G; Immunohistochemistry; Immunologic Factors; Immunomodulation; Immunophenotyping; Immunotherapy; Incidence; Indazoles; Indonesia; Infant; Infant, Newborn; Infarction, Middle Cerebral Artery; Inflammation; Injections, Intramuscular; Insecticides; Insulin-Like Growth Factor I; Insurance, Health; Intention to Treat Analysis; Interleukin-1 Receptor-Associated Kinases; Interleukin-6; Intrauterine Devices; Intrauterine Devices, Copper; Iron; Ischemia; Jordan; Keratinocytes; Kidney; Kidney Diseases; Kir5.1 Channel; Klebsiella Infections; Klebsiella pneumoniae; Lab-On-A-Chip Devices; Laparoscopy; Lasers; Lasers, Semiconductor; Lenalidomide; Leptin; Lethal Dose 50; Levonorgestrel; Limit of Detection; Lipid Metabolism; Lipid Metabolism Disorders; Lipogenesis; Lipopolysaccharides; Liquid Biopsy; Liver; Liver Abscess, Pyogenic; Liver Cirrhosis; Liver Diseases; Liver Neoplasms; Longevity; Lung Neoplasms; Luteolin; Lymph Nodes; Lymphocyte Activation; Macaca fascicularis; Macrophages; Mad2 Proteins; Magnetic Resonance Imaging; Male; Mammary Glands, Human; Manganese; Manganese Compounds; MAP Kinase Signaling System; Materials Testing; Maternal Health Services; MCF-7 Cells; Medicaid; Medicine, Chinese Traditional; Melanoma; Membrane Proteins; Mental Health; Mercury; Metal Nanoparticles; Metals, Heavy; Metformin; Methionine Adenosyltransferase; Mice; Mice, Inbred BALB C; Mice, Inbred C3H; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Knockout; Mice, Nude; Microalgae; Microbial Sensitivity Tests; Microglia; MicroRNAs; Microscopy, Atomic Force; Microscopy, Electron, Scanning; Middle Aged; Mitochondria; Mitochondrial Proteins; Mitral Valve; Mitral Valve Insufficiency; Models, Anatomic; Molecular Structure; Molybdenum; Monocarboxylic Acid Transporters; Moths; MPTP Poisoning; Multigene Family; Multiparametric Magnetic Resonance Imaging; Multiple Myeloma; Muscle, Skeletal; Mutagens; Mutation; Myeloid Cells; Nanocomposites; Nanofibers; Nanomedicine; Nanoparticles; Nanowires; Neoadjuvant Therapy; Neomycin; Neoplasm Grading; Neoplasm Recurrence, Local; Neoplasms; Neoplastic Stem Cells; Neostriatum; Neovascularization, Pathologic; Netherlands; Neuromuscular Agents; Neurons; NF-E2-Related Factor 2; NF-kappa B; Nickel; Nitrogen Oxides; Non-alcoholic Fatty Liver Disease; Nucleosides; Nucleotidyltransferases; Nutritional Status; Obesity, Morbid; Ofloxacin; Oils, Volatile; Oligopeptides; Oncogene Protein v-akt; Optical Imaging; Organic Cation Transport Proteins; Organophosphonates; Osteoarthritis; Osteoarthritis, Hip; Osteoarthritis, Knee; Osteoblasts; Osteogenesis; Oxidation-Reduction; Oxidative Stress; Oxides; Oxygen Isotopes; Pancreas; Pancreaticoduodenectomy; Pandemics; Particle Size; Particulate Matter; Patient Acceptance of Health Care; Patient Compliance; PC-3 Cells; Peptide Fragments; Peptides; Periodontal Attachment Loss; Periodontal Index; Periodontal Pocket; Periodontitis; Peroxides; Peru; Pest Control, Biological; Phosphatidylinositol 3-Kinase; Phosphatidylinositol 3-Kinases; Phylogeny; Pilot Projects; Piperidines; Plant Bark; Plant Extracts; Plant Leaves; Plasmids; Platelet Function Tests; Pneumonia, Viral; Podocytes; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Polyethylene Terephthalates; Polymers; Polymorphism, Single Nucleotide; Porosity; Portugal; Positron-Emission Tomography; Postoperative Complications; Postural Balance; Potassium Channels, Inwardly Rectifying; Povidone; Powders; Precancerous Conditions; Precision Medicine; Predictive Value of Tests; Pregnancy; Prenatal Care; Prognosis; Promoter Regions, Genetic; Prospective Studies; Prostatectomy; Prostatic Neoplasms; Proteasome Inhibitors; Protective Agents; Protein Binding; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Protein Transport; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-akt; Psychiatric Nursing; PTEN Phosphohydrolase; Pulmonary Embolism; Pyrimethamine; Radiopharmaceuticals; Rats; Rats, Sprague-Dawley; Rats, Wistar; Reactive Oxygen Species; Receptor, ErbB-2; Receptor, IGF Type 1; Receptors, Estrogen; Receptors, G-Protein-Coupled; Recombinational DNA Repair; Recovery of Function; Regional Blood Flow; Renal Dialysis; Renin; Renin-Angiotensin System; Reperfusion Injury; Reproducibility of Results; Republic of Korea; Respiratory Distress Syndrome; Retrospective Studies; Rhodamines; Risk Assessment; Risk Factors; RNA, Long Noncoding; RNA, Messenger; Running; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salinity; Salmeterol Xinafoate; Sarcoma; Seasons; Shoulder Injuries; Signal Transduction; Silicon Dioxide; Silver; Sirtuin 1; Sirtuins; Skull Fractures; Social Determinants of Health; Sodium; Sodium Fluoride; Sodium Potassium Chloride Symporter Inhibitors; Sodium-Glucose Transporter 2 Inhibitors; Soil; Soil Pollutants; Spain; Spectrophotometry; Spectroscopy, Fourier Transform Infrared; Staphylococcal Protein A; Staphylococcus aureus; Stem Cells; Stereoisomerism; Stomach Neoplasms; Streptomyces; Strontium; Structure-Activity Relationship; Students, Nursing; Substance-Related Disorders; Succinic Acid; Sulfur; Surface Properties; Survival Rate; Survivin; Symporters; T-Lymphocytes; Temozolomide; Tensile Strength; Thiazoles; Thiobacillus; Thiohydantoins; Thiourea; Thrombectomy; Time Factors; Titanium; Tobacco Mosaic Virus; Tobacco Use Disorder; Toll-Like Receptor 4; Toluene; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Toxicity Tests, Acute; Toxicity Tests, Subacute; Transcriptional Activation; Treatment Outcome; Troponin I; Tumor Cells, Cultured; Tumor Escape; Tumor Hypoxia; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Tyrosine; Ubiquitin-Protein Ligases; Ubiquitination; Ultrasonic Waves; United Kingdom; United States; United States Department of Veterans Affairs; Up-Regulation; Urea; Uric Acid; Urinary Bladder Neoplasms; Urinary Bladder, Neurogenic; Urine; Urodynamics; User-Computer Interface; Vemurafenib; Verbenaceae; Veterans; Veterans Health; Viral Load; Virtual Reality; Vitiligo; Water Pollutants, Chemical; Wildfires; Wnt Signaling Pathway; Wound Healing; X-Ray Diffraction; Xenograft Model Antitumor Assays; Xylenes; Young Adult; Zinc; Zinc Oxide; Zinc Sulfate; Zoonoses | 2021 |
40 other study(ies) available for piperidines and Infarction--Middle-Cerebral-Artery
Article | Year |
---|---|
Geniposide attenuates postischemic long-term potentiation via GluN2A.
N-Methyl-D-aspartate receptor (NMDAR)-induced antioxidation is a significant cause of neuronal injury after ischemic stroke. In a previous work, we verified the neuroprotective roles of geniposide during tMCAO in vivo. However, it remains unknown whether geniposide ameliorates injury to hippocampal neurons during Ischemic Long Term Potentiation (iLTP) induction in vitro. After induction of cells oxygen-glucose deprivation or hydrogen peroxide, the protection of geniposide evaluated by MTT assay and electrophysiological tests. In this study, we suggested neuronal cell apoptosis was attenuated by geniposide. Furthermore, field excitatory postsynaptic potentials (fEPSCs) following postischemic LTP were assessed by electrophysiological tests. Finally, we determined that medium and high doses of geniposide attenuated oxidative stress insult and improved iLTP. Importantly, these effects were abolished by cotreatment with geniposide and the GluN2A antagonist NVP. In contrast, the GluN2B inhibitor ifenprodil failed to have an effect. In conclusion, we suggest for the first time that treatment with geniposide can attenuate postischemic LTP induction in a concentration-dependent manner. We infer that GluN2A-containing NMDARs are involved in the neuroprotection induced by geniposide treatment in ischemia. Topics: Animals; Apoptosis; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Hippocampus; Hydrogen Peroxide; Hypoxia-Ischemia, Brain; In Vitro Techniques; Infarction, Middle Cerebral Artery; Iridoids; Long-Term Potentiation; Neurons; Oxidants; PC12 Cells; Piperidines; Quinoxalines; Rats; Receptors, N-Methyl-D-Aspartate | 2021 |
The protective effects of Pimavanserin against cerebral ischemia-induced brain injury.
The integrity of the blood-brain barrier (BBB) is mainly maintained by the brain vascular endothelial cells and the tight junctions amongst them. Pimavanserin is a novel agent approved for the treatment of Parkinson's disease and exerts neuroprotective properties. The present study aims to explore the possibility that Pimavanserin might be an effective agent used for the treatment of cerebral ischemia stroke. Middle cerebral artery occlusion (MCAO) was established in mice, and oxygen-glucose deprivation/reoxygenation (OGD/R) was established in brain bEND.3 endothelial cells. Mice were randomly divided into four groups: (1) Sham operation group; (2). Pimavanserin (1 mg/kg); (3). MCAO; (4). Pimavanserin+ MCAO. We found that compared to the Sham group, the elevated neurological deficit score and brain water content increased production of inflammatory factors, increased BBB permeability, and downregulated Claudin 5 expression were observed in the MCAO group and were all dramatically reversed by the administration of Pimavanserin. Brain bEND.3 endothelial cells were treated with Pimavanserin before the exposure to OGD/R. The significantly increased lactate dehydrogenase (LDH) release, declined cell viability, increased endothelial permeability, downregulated Claudin 5 and Krüppel-like factors 6 (KLF6) were observed in the OGD/R group and were all reversed by the introduction of Pimavanserin. Lastly, the effects of Pimavanserin on the expression level of Claudin 5 and endothelial permeability in OGD/R-challenged endothelial cells were both abolished by the knockdown of KLF6. Taken together, our data revealed that Pimavanserin protected against cerebral ischemia injury by regulating the BBB integrity in a KLF6-dependent manner. Topics: Animals; Blood-Brain Barrier; Cell Line; Endothelial Cells; Infarction, Middle Cerebral Artery; Mice; Piperidines; Protective Agents; Tight Junctions; Urea | 2021 |
Neuroprotective effects of minocycline and KML29, a potent inhibitor of monoacylglycerol lipase, in an experimental stroke model: a small-animal positron emission tomography study.
Hypoxia caused by ischemia induces acidosis and neuroexcitotoxicity, resulting in neuronal death in the central nervous system (CNS). Monoacylglycerol lipase (MAGL) is a modulator of 2-arachidonoylglycerol (2-AG), which is involved in retrograde inhibition of glutamate release in the endocannabinoid system. In the present study, we used positron emission tomography (PET) to monitor MAGL-positive neurons and neuroinflammation in the brains of ischemic rats. Additionally, we performed PET imaging to evaluate the neuroprotective effects of an MAGL inhibitor in an ischemic injury model. Topics: Animals; Arachidonic Acids; Benzodioxoles; Brain; Brain Ischemia; Carbon Radioisotopes; Cell Hypoxia; Disease Models, Animal; Endocannabinoids; Glycerides; Infarction, Middle Cerebral Artery; Ischemic Stroke; Male; Minocycline; Monoacylglycerol Lipases; Neuroprotective Agents; Piperidines; Positron-Emission Tomography; Rats; Rats, Sprague-Dawley; Stroke; Tomography, X-Ray Computed | 2021 |
The neurovascular protective effect of alogliptin in murine MCAO model and brain endothelial cells.
Endothelial damage and blood brain barrier disruption contribute to ischemic stroke and brain injury. Gliptins are a novel class of treatment agents for diabetes, and recent studies have linked the use of gliptins to neuroprotection. Alogliptin is a type of orally available gliptin that was approved for clinical use by the FDA in 2013. In this study, we investigated the neurovascular protective effects of alogliptin both in vivo and in vitro. In a murine middle cerebral artery occlusion (MCAO) stroke model, administration of alogliptin ameliorated cerebral infarction and disruption of brain vascular permeability, and restored expression of the endothelial tight junction proteins occludin and zona occludens 1 (ZO-1). In brain vascular endothelial cells exposed to oxygen and glucose deprivation/reperfusion (OGD/R), alogliptin prevented OGD/R-induced high permeability of the endothelial monolayer. Alogliptin treatment recovered the reduction in occludin and ZO-1 induced by OGD/R. Moreover, alogliptin treatment prevented OGD/R-induced induction of metalloproteinase (MMP)-2 and MMP-9, and restored expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. Collectively, our data indicate that alogliptin can improve neurovascular integrity and exerts neuroprotective effects. Topics: Animals; Brain; Brain Ischemia; Cells, Cultured; Endothelial Cells; Humans; Infarction, Middle Cerebral Artery; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Occludin; Piperidines; Stroke; Uracil; Zonula Occludens-1 Protein | 2019 |
Neuroprotection and vasculoprotection using genetically targeted protease-ligands.
Thrombin and activated protein C (APC) are known coagulation factors that exhibit profound effects in brain by acting on the protease activated receptor (PAR). The wild type (WT) proteases appear to impact cell survival powerfully, and therapeutic forms of APC are under development. Engineered recombinant thrombin or APC were designed to separate their procoagulant or anticoagulant effects from their cytoprotective properties. We measured vascular disruption and neuronal degeneration after a standard rodent filament stroke model. For comparison to a robust anticoagulant, we used a GpIIb/IIIa inhibitor, GR144053. During 2 h MCAo both WT murine APC and its mutant, 5A-APC, significantly decreased neuronal death 30 min after reperfusion. During 4 h MCAo, only 5A-APC significantly protected neurons but both WT-APC and 5A-APC exacerbated vascular disruption during 4 h MCAo. Human APC mutants appeared to reduce 24 h neuronal injury significantly when given after 2 h delay after MCAo. In contrast, 24 h vascular damage was worsened by high doses of WT and mutant APCs, although only statistically significantly for high dose 3K3A-APC. Mutated thrombin worsened vascular damage significantly without affecting neuron damage. GR144053 failed to ameliorate vascular disruption or neuronal injury despite significant anticoagulation. Differential effects on neurons and the vasculature were demonstrated using wild-type and mutated proteases. The mutants murine 3K3A-APC and 5A-APC protected neurons in this rodent model but in high doses worsened vascular leakage. Cytoactive effects of plasma proteases may be separated from their coagulation effects. Further studies should explore impact of dose and timing on cytoactive and vasculoactive properties of these drugs. Topics: Animals; Anticoagulants; Brain; Brain Ischemia; Infarction, Middle Cerebral Artery; Ligands; Male; Neurons; Neuroprotection; Neuroprotective Agents; Piperazines; Piperidines; Protein C; Rats; Rats, Sprague-Dawley; Receptor, PAR-1; Receptors, Proteinase-Activated; Stroke; Thrombin | 2019 |
Monoacylglycerol lipase inhibitor, JZL-184, confers neuroprotection in the mice middle cerebral artery occlusion model of stroke.
Investigators are searching to find new therapeutic strategies to reduce stroke secondary injury. JZL-184 (JZL) is an inhibitory factor for production of arachidonic acid (AA). Thus, it suppresses production of AA metabolites which are the cause of inflammation and tissue edema. Therefore, JZL may be considered for suppression of stroke secondary injury in mice middle cerebral artery occlusion (MCAO) model. Additionally, Aspirin is a known anti-inflammatory factor which is used to reduce pro-inflammatory secondary injury. The aim of this study was to determine the effects of JZL on the reduction of stroke secondary injury and to compare them with Aspirin effects.. MCAO model has been induced and accordingly 83 male MCAO induced mice have been introduced to the study. The animals were divided to seven groups including intact, controls, vehicle, Aspirin, JZL 4, 8 and 16 mg/kg administrated groups. Brain edema and infarction, behavioral functions and brain levels of IL-10, TNF-α and matrix metaloperoteinase-9 (MMP9) have been examined in the evaluated groups.. The results revealed that JZL reduced brain edema, infarction, brain levels of TNF-α and MMP9 and also increased brain levels of IL-10 as well as improved behavioral functions in all three concentrations. The therapeutic effects of JZL were observed as well as Aspirin.. Based on the results, it seems that JZL can be considered as a good candidate for inhibition of stroke secondary injury in the case of delayed treatment. Topics: Animals; Aspirin; Behavior, Animal; Benzodioxoles; Brain; Brain Edema; Brain Ischemia; Disease Models, Animal; Edema; Infarction, Middle Cerebral Artery; Inflammation; Interleukin-10; Male; Matrix Metalloproteinase 9; Mice; Monoacylglycerol Lipases; Neuroprotective Agents; Piperidines; Stroke; Tumor Necrosis Factor-alpha | 2018 |
Monoacylglycerol Lipase Inhibitor is Safe when Combined with Delayed r-tPA Administration in Treatment of Stroke.
Administration of tissue plasminogen activator (tPA) during first 3-4.5 h after ischemic stroke is the main therapeutic strategy; however, its using after that, leads to reperfusion injury and neurotoxic effects. Additionally, inflammation has a critical role in secondary injury after late reperfusion therapy. Thus, this project was designed to explore the effects of JZL-184 (JZL), an agonist of type 1 cannabinoid receptor (CB1), on the side effects of recombinant tPA (r-tPA), which is administrated after 5 h of stroke onset in the mice middle cerebral artery occlusion (MCAO) model. After established the model of MCAO mouse, they were put to six groups, including intact, control, vehicle, JZL (4 mg/kg), r-tPA (9 mg/kg), and JZL plus r-tPA. Thereafter, brain levels of IL-10, TNF-α, and matrix metalloproteinase - 9 (MMP9), brain edema and infarction, and behavioral functions have been determined in the groups. JZL alone or in combination with r-tPA, but not r-tPA, reduced brain edema, infarct volume, brain levels of TNF-α, MMP9, and also improved behavioral tests. JZL and JZL plus r-tPA also increased brain levels of IL-10. According to the results, JZL can improve the effects of r-tPA to overcome stroke SSE, when used after 5 h of stroke onset. Based on the fact that there is limitation regarding using r-tPA after 3 h of stroke onset, using a combination of r-tPA/JZL can be considered for a future therapeutic strategy. Topics: Animals; Benzodioxoles; Drug Synergism; Drug Therapy, Combination; Enzyme Inhibitors; Infarction, Middle Cerebral Artery; Mice; Monoacylglycerol Lipases; Piperidines; Stroke; Time Factors; Tissue Plasminogen Activator | 2018 |
Effects of crenolanib, a nonselective inhibitor of PDGFR, in a mouse model of transient middle cerebral artery occlusion.
Neurogenesis in the subventricular zone (SVZ) plays a vital role in neurologic recovery after stroke. However, only a small fraction of newly generated neuroblasts from the SVZ will survive long-term. Successful migration and survival of neuroblasts requires angiogenesis, lesion-derived chemo-attractants, and appropriate local microenvironments, which are partly regulated by the platelet-derived growth factor receptor (PDGFR) signaling pathway. In this study, we investigated the effects of PDGFR inhibition in a mouse model of transient middle cerebral artery occlusion (MCAO). We blocked the pathway using a nonselective PDGFR inhibitor, crenolanib, during the acute post-MCAO phase (days 1-3) or during the sub-acute phase (days 7-9). Downregulating the PDGFR signaling pathway with crenolanib from day 1 to day 3 after MCAO significantly decreased the migration of neuroblasts from the SVZ to the peri-infarct region, decreased angiogenesis, and lowered expression of vascular endothelial growth factor, stromal cell-derived factor-1, and monocyte chemotactic protein-1. Downregulation of the PDGFR signaling pathway on days 7-9 with crenolanib significantly increased apoptosis of the neuroblasts that had migrated to the peri-infarct region, increased the number of activated microglia, and decreased the expression of brain-derived neurotrophic factor, neurotrophin-3, and interleukin-10. Crenolanib treatment increased the apoptosis of pericytes and decreased the pericyte/vascular coverage, but had no effects on apoptosis of astrocytes. We conclude that the PDGFR signaling pathway plays a vital role in the SVZ neurogenesis after stroke. It can also affect angiogenesis, lesion-derived chemo-attractants, and the local microenvironment, which are all important to stroke-induced neurogenesis. Topics: Animals; Benzimidazoles; Disease Models, Animal; Infarction, Middle Cerebral Artery; Lateral Ventricles; Male; Mice; Mice, Inbred C57BL; Neurogenesis; Piperidines; Receptors, Platelet-Derived Growth Factor; Signal Transduction | 2017 |
Neuroprotective effects of Danggui-Jakyak-San on rat stroke model through antioxidant/antiapoptotic pathway.
Dangui-Jakyak-San (DJ) is a traditional Korean medicinal polyherb, prescribed typically in patients with insufficient blood supply in Eastern Asia. The DJ also has been reported to have neuroprotective effects in vitro and in vivo studies.. The therapeutic potential of DJ was examined in stroke rat model, in comparison with donepezil, a reversible acetylcholinesterase inhibitor.. Ischemic stroke rat model was induced by surgery of permanent occlusion of middle cerebral artery (pMCAO). The model was orally administered with distilled water (pMCAO control), donepezil at 10mg/kg (Donepezil) and DJ at 200, 100 and 50mg/kg (DJ 200, DJ 100 and DJ 50, respectively). Sham had the same surgery excepting for the pMCAO, and it was administered with distilled water (sham control).. After the administration for 28 days, the groups of DJ exhibited dose-dependent reduction in infarct/defect volumes with improvement in sensorimotor and cognitive motor function, comparing to pMCAO control. The DJ treatments seemed to enhance antiapoptotic and antioxidant effects; increases in antiapoptotic expressions (STAT3 and Pim-1) and decreases in lipid peroxidation (MDA) together with increases in contents of endogenous antioxidant (GSH) and activities of antioxidant enzymes (catalase and SOD). The histopathological analyses revealed significant reduction in neuronal apoptosis (caspase-3 and PARP) and neuronal degradation with atrophy and degeneration, in the DJ treatments. Furthermore, the oxidative stresses (nitrotyrosine as an iNOS factor and 4-HNE as a marker of lipid peroxidation) were observed mild. Although the similar neuroprotective effects were observed, the body weight loss was scarcely alleviated in Donepezil comparing to pMCAO control.. These suggest that DJ ameliorate the neurological dysfunction of cerebral ischemia through augmentation of antioxidant defense system and up-regulation of STAT3 and Pim-1. Topics: Animals; Antioxidants; Apoptosis; Behavior, Animal; Biomarkers; Caspase 3; Cerebral Cortex; Cholinesterase Inhibitors; Cognition; Disease Models, Animal; Donepezil; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Indans; Infarction, Middle Cerebral Artery; Lipid Peroxidation; Male; Motor Activity; Nerve Degeneration; Neuroprotective Agents; Oxidative Stress; Piperidines; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-pim-1; Rats, Sprague-Dawley; Signal Transduction; STAT3 Transcription Factor; Time Factors | 2016 |
Effects of Chronic Alcohol Exposure on the Modulation of Ischemia-Induced Glutamate Release via Cannabinoid Receptors in the Dorsal Hippocampus.
Chronic alcohol consumption is a critical contributing factor to ischemic stroke, as it enhances ischemia-induced glutamate release, leading to more severe excitotoxicity and brain damage. But the neural mechanisms underlying this phenomenon are poorly understood.. We evaluated the effects of chronic alcohol exposure on the modulation of ischemia-induced glutamate release via CB1 and CB2 cannabinoid receptors during middle cerebral artery occlusion, using in vivo microdialysis coupled with high-performance liquid chromatography, in alcohol-naïve rats or rats after 1 or 30 days of withdrawal from chronic ethanol intake (6% v/v for 14 days).. Intra-dorsal hippocampus (DH) infusions of ACEA or JWH133, selective CB1 or CB2 receptor agonists, respectively, decreased glutamate release in the DH in alcohol-naïve rats in a dose-dependent manner. Such an effect was reversed by co-infusions of SR141716A or AM630, selective CB1 or CB2 receptor antagonists, respectively. After 30 days, but not 1 day of withdrawal, ischemia induced an enhancement in glutamate release in the DH, as compared with non-alcohol-treated control group. Intra-DH infusions of JWH133, but not ACEA, inhibited ischemia-induced glutamate release in the DH after 30 days of withdrawal. Finally, 1 day of withdrawal did not alter the protein level of CB1 or CB2 receptors in the DH, as compared to non-alcohol-treated control rats. Whereas 30 days of withdrawal robustly decreased the protein level of CB1 receptors, but failed to alter the protein level of CB2 receptors, in the DH, as compared to non-alcohol-treated control rats.. Together, these findings suggest that loss of expression/function of CB1 receptors, but not CB2 receptors in the DH, is correlated with the enhancement of ischemia-induced glutamate release after prolonged alcohol withdrawal. Topics: Animals; Arachidonic Acids; Cannabinoids; Dose-Response Relationship, Drug; Ethanol; Glutamic Acid; Hippocampus; Indoles; Infarction, Middle Cerebral Artery; Ischemia; Male; Piperidines; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant | 2015 |
Sodium-glucose transporter type 3-mediated neuroprotective effect of acetylcholine suppresses the development of cerebral ischemic neuronal damage.
Cerebral ischemia can be exacerbated by post-ischemic hyperglycemia, which may involve the cerebral sodium-glucose transporter (SGLT). However, the contribution of each SGLT isoform in cerebral ischemia is still unclear. SGLT-1, -3, -4, and -6 have been reported to be expressed in various brain regions. Among these isoforms, only SGLT-3 does not transport glucose, but depolarizes the plasma membrane when glucose is bound, suggesting that SGLT-3 is a glucose sensor. Therefore, in this study, we investigated the involvement of cerebral SGLT-3 in the development of ischemia. The mouse model of focal ischemia was generated by middle cerebral artery occlusion (MCAO). Neuronal damage was assessed by histological and behavioral analyses. Fasting blood glucose levels on day 1 after MCAO were not affected in SGLT-3 siRNA-mediated knockdown of SGLT-3. The development of infarct volume and behavioral abnormalities on day 1 after MCAO were exacerbated in SGLT-3 knockdown mice (control group: n=7, 94.2 ± 21.8 mm(3), 2 (1.6-2.4), SGLT-3 knockdown group: n=6, 1414.8 ± 492.4 mm(3), 6 (5.8-6.3), P<0.05). Moreover, SGLT-3 expression levels were significantly decreased in the striatum (65.0 ± 8.1%, P<0.05) on day 1, and in the hippocampus (67.6 ± 7.2%, P<0.05) and hypothalamus (47.5 ± 5.1%, P<0.01) on day 3 after MCAO (n=12-13). These effects were significantly inhibited by donepezil (DPZ) treatment (SGLT-3 knockdown group: n=6, 1419.0 ± 181.5 mm(3), 3.6 (3.4-3.7), SGLT-3 knockdown and 3mg/kg DPZ-treated group: n=5, 611.3 ± 205.3 mm(3), 1.5 (1.4-1.8), P<0.05). Immunofluorescence revealed that SGLT-3 and choline acetyltransferase were co-localized in the cortex. Our results indicated that cerebral SGLT-3 suppressed neuronal damage by the activation of cholinergic neurons, which are neuroprotective. In contrast, other cerebral SGLT isoforms may be involved in the development of ischemia. Topics: Acetylcholine; Animals; Animals, Outbred Strains; Astrocytes; Blood Glucose; Brain Ischemia; Cholinesterase Inhibitors; Corpus Striatum; Disease Models, Animal; Donepezil; Gene Knockdown Techniques; Hippocampus; Hypothalamus; Indans; Infarction, Middle Cerebral Artery; Male; Mice; Neurons; Piperidines; RNA, Small Interfering; Sodium-Glucose Transport Proteins; Sodium-Glucose Transporter 1; Stress, Physiological | 2014 |
Neuroprotective effects of remifentanil against transient focal cerebral ischemia in rats.
Opioid agonists have been implicated in neuroprotection from hypoxic injury through regulating mitogen-activated protein kinases and cytokines. We determined the effects of remifentanil in focal brain ischemia and reperfusion (I/R) injury. Mechanisms linked to mitogen-activated protein kinases, including extracellular signaling-regulated kinase (ERK) 1/2, p38 kinases, and c-Jun N-terminal kinase (JNK), and various cytokines were also examined.. Male Sprague-Dawley rats were subjected to an I/R insult consisting of 90 minutes' middle cerebral artery occlusion (MCAO) followed by reperfusion under general anesthesia. Neurological deficit scores and infarct volume were determined after 24 hours of reperfusion. Remifentanil (5 μg/kg/min) was given alone or combined with naltrindole (δ-opioid receptor antagonist; 1 mg/kg), D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (μ-opioid receptor antagonist; 1 mg/kg), or 5'-guanidinonaltrindole (κ-opioid receptor antagonist; 1 mg/kg). Opioid antagonists were administered 20 minutes before MCAO. Remifentanil infusion was started 10 minutes before MCAO and continued throughout. The control group was without drugs. The expression levels of ERK1/2, p38, and JNK, and also those of tumor necrosis factor-α (TNF-α) and interleukin-6, were determined after 1, 3, and 24 hours of reperfusion.. Remifentanil significantly improved the functional outcome and reduced the infarct volumes (69.0±24.3 mm(3) vs. 108.9±24.8 mm(3)), which were not affected by D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) or 5'-guanidinonaltrindole, but were abolished by naltrindole. The I/R insult enhanced the phosphorylation of ERK 1/2 and the expression of TNF-α, which were significantly reduced by remifentanil. Neither the phosphorylation of p38 and JNK nor the production of interleukin-6 was altered throughout the experiment.. Remifentanil may be neuroprotective against focal I/R injury, possibly through the activation of δ-opioid receptors and attenuation of ERK 1/2 activity and TNF-α production, in the rat brain. Topics: Anesthetics, Intravenous; Animals; Blood Pressure; Blotting, Western; Carbon Dioxide; Dose-Response Relationship, Drug; Infarction, Middle Cerebral Artery; Interleukin-6; Ischemic Attack, Transient; Male; Mitogen-Activated Protein Kinases; Naltrexone; Narcotic Antagonists; Nervous System Diseases; Neuroprotective Agents; Piperidines; Rats; Rats, Sprague-Dawley; Remifentanil; Reperfusion Injury; Tumor Necrosis Factor-alpha | 2012 |
Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-κB in middle cerebral artery occlusion rat model.
The pathophysiological mechanisms leading to neuronal injury in middle cerebral artery occlusion (MCAO) model of cerebral stroke are complex and multifactorial that form the bases of behavioral deficits and inflammation mediated damage. The present study demonstrates the effect of piperine pretreatment (10 mg/kg b wt, once daily p.o. for 15 days) on cerebral ischemia-induced inflammation in male Wistar rats. The right middle cerebral artery was occluded for 2 h followed by reperfusion for 22 h. A maximum infarct volume (57.80 %) was observed in ischemic MCAO group. However, piperine administration prior to ischemia showed a significant reduction in infarct volume (28.29 %; p < 0.05) and neuronal loss (12.72 %; p < 0.01). As a result of piperine pretreatment, a significant improvement in behavioral outputs of MCAO rats (p < 0.05-0.01) was observed. Piperine successfully reduced the level of proinflammatory cytokines IL-1β, IL-6 and TNF-α, in ischemic group (p < 0.01). Ischemic group brain has shown edematous morphology with vacuolated architecture and pyknotic nuclei in H & E staining which was successfully ameliorated by piperine administration. Moreover, piperine also succeeded in lowering the expression of COX-2, NOS-2, and NF-κB (p < 0.01). Both cytosolic and nuclear NF-κB were down-regulated in ischemic group pre-administered with piperine (p < 0.01). The present study suggests that piperine is able to salvage the ischemic penumbral zone neurons by virtue of its anti-inflammatory property, thereby limiting ischemic cell death. Topics: Alkaloids; Animals; Anti-Inflammatory Agents; Benzodioxoles; Cyclooxygenase 2; Cytokines; Down-Regulation; Infarction, Middle Cerebral Artery; Inflammation Mediators; Male; Motor Activity; Muscle Strength; Neuroprotective Agents; NF-kappa B; Nitric Oxide Synthase Type II; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Wistar; Reperfusion Injury | 2012 |
Effects of cannabinoid receptor agonist WIN 55,212-2 on blood-brain barrier disruption in focal cerebral ischemia in rats.
This study was performed to investigate whether WIN 55,212-2 (WIN), a cannabinoid receptor agonist, could attenuate blood-brain barrier (BBB) disruption in focal cerebral ischemia in rats and whether the CB 1 receptor antagonist rimonabant could prevent this attenuation. A total of 0.3 or 1 mg/kg of WIN was injected intravenously before and after permanent middle cerebral artery (MCA) occlusion. Some animals were pretreated with rimonabant 2 mg/kg i.p. before receiving 0.3 mg/kg of WIN. At 1 h after MCA occlusion, BBB permeability was determined by measuring the transfer coefficient (K(i)) of (14)C-α-aminoisobutyric acid and the volume of dextran distribution. With MCA occlusion, K(i) increased in the ischemic cortex (IC) in all of the experimental groups. However, the K(i) of the IC of the WIN 0.3 and 1 mg/kg groups was lower (–46 and –42%, respectively, p < 0.05) than that of the control group. With rimonabant pretreatment, the K(i) of the IC became higher ((+)88%, p < 0.05) than with WIN 0.3 mg/kg alone and similar to that of the control rats. The difference in the volume of dextran distribution between the IC and the contralateral cortex was significant in the control but not in the WIN-treated rats. With rimonabant pretreatment, however, the difference became significant. Our data demonstrated that WIN could attenuate BBB disruption in focal cerebral ischemia and this attenuation could be prevented with rimonabant. Our data suggest an involvement of CB(1) receptors in the regulation of BBB disruption in the early stage of stroke. Topics: Animals; Benzoxazines; Blood-Brain Barrier; Infarction, Middle Cerebral Artery; Male; Morpholines; Naphthalenes; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Rimonabant | 2012 |
Contribution of hypothermia and CB1 receptor activation to protective effects of TAK-937, a cannabinoid receptor agonist, in rat transient MCAO model.
Cannabinoid (CB) receptor agonists are expected to alleviate ischemic brain damage by modulating neurotransmission and neuroinflammatory responses via CB(1) and CB(2) receptors, respectively. In a previous study, TAK-937, a novel potent and selective CB(1) and CB(2) receptor agonist, was shown to exert significant cerebroprotective effects accompanied by hypothermia after transient middle cerebral artery occlusion (MCAO) in rats. Sustained hypothermia itself induces significant neuroprotective effects. In the present studies, we examined the relative contribution of hypothermia and CB(1) receptor activation to the cerebroprotective effects of TAK-937.. Using a multichannel brain temperature controlling system we developed, the brain temperature of freely moving rats was telemetrically monitored and maintained between 37 and 38°C during intravenous infusion of TAK-937 (100 µg/kg/h) or vehicle for 24 h after 2 h MCAO. AM251, a selective CB(1) receptor antagonist, was administered intraperitoneally at 30 mg/kg 30 min before starting intravenous infusion of TAK-937 (100 µg/kg/h) for 24 h. Rats were sacrificed and their brains were isolated 26 h after MCAO in both experiments. When the hypothermic effect of TAK-937 was completely reversed by a brain temperature controlling system, the infarct-reducing effect of TAK-937 was attenuated in part, but remained significant. On the other hand, concomitant AM251 treatment with TAK-937 completely abolished the hypothermic and infarct-reducing effects of TAK-937.. We conclude that the cerebroprotective effects of TAK-937 were at least in part mediated by induction of hypothermia, and mainly mediated by CB(1) receptor activation. Topics: Amides; Animals; Benzofurans; Body Temperature; Disease Models, Animal; Hypothermia; Infarction, Middle Cerebral Artery; Male; Neuroprotective Agents; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1 | 2012 |
Neuroprotection afforded by antagonists of endothelin-1 receptors in experimental stroke.
Endothelin-1 (ET-1) is involved on the development of cerebral edema in acute ischemic stroke. As edema is a therapeutic target in cerebral ischemia, our aim was to study the effect of antagonists for ET-1 receptors (Clazosentan® and BQ-788, specific antagonists for receptors A and B, respectively) on the development of edema, infarct volume and sensorial-motor deficits in rats subjected to ischemia by occlusion of the middle cerebral artery (MCAO). We used Wistar rats (280-320 g) submitted to ischemia by intraluminal transient (90 min) MCAO. After ischemia, rats were randomized into 4 groups (n = 6) treated with; 1) control group (saline), 2) Clazosentan® group (10 mg/kg iv), 3) BQ-788 group (3 mg/kg iv), and 4) combined treatment (Clazosentan® 10 mg/kg plus BQ-788 3 mg/kg iv). We observed that rats treated with Clazosentan® showed a reduction of edema, measured by MRI, at 72 h (hours) and at day 7 (both p < 0.0001), and a decrease in the serum levels of ET-1 at 72 h (p < 0.0001) and at day 7 (p = 0.009). The combined treatment also induced a reduction of edema at 24 h (p = 0.004), 72 h (p < 0.0001) and at day 7 (p < 0.0001), a reduction on infarct volume, measured by MRI, at 24 and 72 h, and at day 7 (all p < 0.01), and a better sensorimotor recovery at 24 and 72 h, and at day 7 (all p < 0.01). Moreover, Clazosentan® induced a decrease in AQP4 expression, while BQ-788 induced an increase in AQP9 expression. These results suggest that antagonists for ET-1 receptors may be a good therapeutic target for cerebral ischemia. Topics: Animals; Aquaporins; Blotting, Western; Brain Edema; Brain Ischemia; Dioxanes; Endothelin A Receptor Antagonists; Endothelin B Receptor Antagonists; Endothelin-1; Evoked Potentials, Somatosensory; Image Processing, Computer-Assisted; Infarction, Middle Cerebral Artery; Magnetic Resonance Imaging; Male; Nervous System Diseases; Neuroprotective Agents; Oligopeptides; Piperidines; Pyridines; Pyrimidines; Rats; Rats, Wistar; Stroke; Sulfonamides; Tetrazoles | 2012 |
Residual effects of focal brain ischaemia upon cannabinoid CB(1) receptor density and functionality in female rats.
Ischaemic insult results in short-term changes in cannabinoid-1 (CB(1)) receptor expression in the brain, but it is not known whether long-term changes occur, which could potentially mean a change in the intrinsic ability of the brain to withstand new ischaemic episodes. In this study, we have investigated the expression and functionality of CB(1) receptors in coronal brain slices obtained from ovariectomised female rats 46days after middle cerebral artery occlusion (MCAO). The animals were treated with either 17ß-oestradiol or placebo pellets 6h after MCAO and thereafter housed either in isolated or enriched environments. [(3)H]CP55,940 autoradiography indicated no significant effect of 17ß-oestradiol treatment or housing environment upon CB(1) receptor densities. There was, however, a modest but significant decrease in the CB(1) receptor density on the ipsilateral side relative to the contralateral side in the frontal cortex, parietal cortex, CA1-CA3 regions of the hippocampus, thalamus and hypothalamus. CB(1) receptor functionality was assessed by measurement of basal and CP55,940-stimulated [(35)S]GTPγS autoradiography. In the frontal cortex, parietal cortex, CA1-CA3 regions of the hippocampus and dentate gyrus, a robust stimulation, blocked by the CB(1) receptor inverse agonist AM251, was seen. There were no significant changes in the response to CP55,940 with respect either to the 17ß-oestradiol treatment, housing environment or MCAO. Our results reveal that although there are modest long-term decreases in ipsilateral CB(1) receptor densities following MCAO in female rats, these decreases do not result in a functional CB(1) receptor deficit. Topics: Animals; Autoradiography; Brain; Brain Ischemia; Cyclohexanols; Disease Models, Animal; Estradiol; Estrogens; Female; Functional Laterality; Gene Expression Regulation; Guanosine 5'-O-(3-Thiotriphosphate); Infarction, Middle Cerebral Artery; Piperidines; Protein Binding; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Sulfur Isotopes; Time Factors; Tritium | 2011 |
Endothelin B receptor agonist, IRL-1620, reduces neurological damage following permanent middle cerebral artery occlusion in rats.
Endothelin and its receptors have long been considered therapeutic targets in the treatment of ischemic stroke. Recent studies indicate that ET(B) receptors may provide both vasodilatation and neuroprotection. The purpose of this study was to determine the effect of selectively activating the ET(B) receptors following permanent middle cerebral artery occlusion in rats. IRL-1620 [Suc-[Glu9,Ala11,15]-Endothelin-1(8-12)], a highly selective ET(B) agonist, was used alone and in conjunction with BQ788, an ET(B) antagonist, to determine the role of ET(B) receptors in cerebral ischemia. Rats were assessed for neurological deficit and motor function, and their brains were evaluated to determine infarct area, oxidative stress parameters, and ET receptor protein levels. Animals treated with IRL-1620 showed significant improvement in all neurological and motor function tests when compared with both vehicle-treated and BQ788-treated middle cerebral artery occluded groups. In addition, there was a significant decrease in infarct volume 24h after occlusion in animals treated with IRL-1620 (24.47±4.37mm(3)) versus the vehicle-treated group (153.23±32.18mm(3)). Blockade of ET(B) receptors by BQ788 followed by either vehicle or IRL-1620 treatment resulted in infarct volumes similar to those of rats treated with vehicle alone (163.51±25.41 and 139.21±15.20mm(3), respectively). Lipid peroxidation, as measured by malondialdehyde, increased and antioxidants (superoxide dismutase and reduced glutathione) decreased following infarct. Treatment with IRL-1620 reversed these effects, indicating that ET(B) receptor activation reduces oxidative stress injury following ischemic stroke. Animals pretreated with BQ788 showed similar oxidative stress damage as those in the vehicle-treated group. No significant difference was observed in ET(B) receptor levels in any of the groups. The present study demonstrates that ET(B) receptor activation may be a novel neuroprotective therapy in the treatment of focal ischemic stroke. Topics: Analysis of Variance; Animals; Brain Infarction; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelin B Receptor Antagonists; Endothelins; Gene Expression Regulation; Glutathione; Infarction, Middle Cerebral Artery; Male; Malondialdehyde; Motor Activity; Muscle Strength; Nervous System Diseases; Neurologic Examination; Oligopeptides; Peptide Fragments; Piperidines; Psychomotor Performance; Rats; Rats, Sprague-Dawley; Receptor, Endothelin B; Rotarod Performance Test; Superoxide Dismutase | 2011 |
Involvement of ERK 1/2 activation in electroacupuncture pretreatment via cannabinoid CB1 receptor in rats.
Our previous study demonstrated that pretreatment with electroacupuncture (EA) elicited protective effects against transient cerebral ischemia through cannabinoid receptor type 1 receptor (CB1R). In the present study, we investigated whether or not the extracellular signal regulated-kinase 1/2 (ERK1/2) pathway was involved in the ischemic tolerance induced by EA pretreatment through CB1R. At 24h after the end of the last EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion for 120min in rats. The neurological scores and infarct volumes were evaluated at 24h after reperfusion. The expression of p-ERK1/2 in the brains was also investigated in the presence or absence of CB1R antagonist AM251. EA pretreatment reduced infarct volumes and improved neurological outcome at 24h after reperfusion, and the beneficial effects were abolished by U0126. The blockade of CB1R by AM251 reversed the up-regulation of p-ERK1/2 expression induced by EA pretreatment. Our findings suggest that the ERK1/2 pathway might be involved in EA pretreatment-induced cerebral ischemic tolerance via cannabinoid CB1 receptor in rats. Topics: Animals; Behavior, Animal; Blotting, Western; Brain Ischemia; Butadienes; Electroacupuncture; Enzyme Activation; Enzyme Inhibitors; Infarction, Middle Cerebral Artery; Ischemic Attack, Transient; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neuroprotective Agents; Nitriles; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Reperfusion Injury; Signal Transduction; Up-Regulation | 2010 |
Lack of protection with a novel, selective melanocortin receptor subtype-4 agonist RY767 in a rat transient middle cerebral artery occlusion stroke model.
Previous studies utilizing alpha-melanocyte-stimulating hormone (alpha-MSH) or the synthetic analog [Nle(4), D-Phe(7)] alpha-MSH have reported beneficial effects in animal models of ischemic stroke, with the latter studies suggesting melanocortin receptor subtype-4 (MC4R) activation as a protective mechanism. The present study directly addresses the hypothesis that MC4R activation may ameliorate ischemic brain injury by assessing the efficacy of a novel small molecule MC4R agonist RY767, administered in a pharmacokinetically guided and pharmacologically validated dosing regimen, in a rat stroke model of transient middle cerebral artery occlusion (tMCAO). Male Wistar rats were subjected to 90-min tMCAO followed by 72 h of reperfusion. Treatments were i.p. pretreatment with MK-801 (15 min prior to occlusion, positive control), or combined i.v. and p.o. daily administrations of vehicle, dextrose (negative control) or RY767 in blinded fashion initiated 2 h after occlusion. Infarct volume in MK-801-treated rats (158.7 +/- 22.3 mm(3)) was reduced significantly compared to vehicle infarct volume (243.4 +/- 12.5 mm(3)), whereas infarct volumes in dextrose- (224.3 +/- 16.5 mm(3)) and RY767- (262.1 +/- 19.2 mm(3)) treated rats did not differ from vehicle infarct volume. These results indicate that selective MC4R activation provides no significant neuroprotection, as reflected by infarct volume, in a rat stroke model utilizing a 90-min ischemic insult. Topics: Administration, Oral; Animals; CHO Cells; Cricetinae; Cricetulus; Disease Models, Animal; Dizocilpine Maleate; Humans; Infarction, Middle Cerebral Artery; Injections, Intravenous; Male; Neuroprotective Agents; Piperazines; Piperidines; Rats; Rats, Wistar; Receptor, Melanocortin, Type 4; Reperfusion Injury | 2009 |
Ameliorating effects of cloperastine on dysfunction of the urinary bladder caused by cerebral infarction in conscious rats.
We investigated the effects of the centrally acting antitussives dextromethorphan and cloperastine on urinary bladder dysfunction 24 h after cerebral infarction in rats using the cystometry technique. First, cystometrography was performed in conscious male Sprague-Dawley rats. Cerebral infarction was then induced by occlusion of the left middle cerebral artery. Twenty-four hours after cerebral infarction, the effect of each drug on micturition disorder was estimated for 5 parameters: bladder capacity, maximum voiding pressure, micturition latency, flow rate, and urethral resistance. Cerebral infarction markedly reduced bladder capacity, micturition latency, and flow rate and increased urethral resistance. After cerebral infarction, intravenous dosing of saline had no effect on these parameters. Dextromethorphan (20 mg/kg) and cloperastine (2.5 and 5.0 mg/kg) at antitussive effective doses significantly increased bladder capacity and micturition latency. Unlike dextromethorphan, cloperastine ameliorated decreases in flow rate and increases in urethral resistance caused by cerebral infarction. These results suggest that cloperastine may have therapeutic value for the treatment of disorders of the micturition reflex associated with cerebral infarction, and that the drug may become a base compound from which to develop more active drugs for such disorders. Topics: Animals; Antitussive Agents; Ataxia; Dextromethorphan; Diagnostic Techniques, Urological; Infarction, Middle Cerebral Artery; Male; Piperidines; Rats; Rats, Sprague-Dawley; Urinary Bladder; Urinary Bladder, Overactive; Urination | 2009 |
Alleviation of ischemia-induced brain edema by activation of the central histaminergic system in rats.
We have reported that facilitation of central histaminergic activity prevents the development of ischemia-induced brain injury. Since cerebral edema is a major cause of brain damage, we studied effects on brain edema of postischemic administration of L-histidine, a precursor of histamine, and thioperamide, a histamine H(3)-receptor antagonist, both of which enhance central histaminergic activity. Focal cerebral ischemia for 2 h was provoked by transient occlusion of the right middle cerebral artery in rats, and the water content and infarct size were determined 24 h after reperfusion. Changes in the extracellular concentration of histamine were examined in the striatum by a microdialysis procedure, and effects of these compounds were evaluated. Repeated administration of L-histidine (1000 mg/kg x 2, i.p.), immediately and 6 h after reperfusion, reduced the increase in the water contents in ischemic regions. Simultaneous administration of thioperamide (5 mg/kg, s.c.) with L-histidine (1000 mg/kg, i.p.) completely prevented edema formation and alleviated brain infarction, although a single dose of L-histidine, immediately after reperfusion, showed no benefits. The striatal histamine level was gradually increased after reperfusion as well as during ischemia. Simultaneous administration of thioperamide with L-histidine markedly increased the brain histamine concentration, and the value increased up to 230% of that in the saline group 5 - 6 h after reperfusion. L-Histidine alone did not affect the increase in the histamine output after ischemia. These findings suggest that further activation of the central histaminergic system after initiation of cerebral ischemia prevents development of ischemia-induced brain edema. Topics: Animals; Blood Cell Count; Body Water; Brain Chemistry; Brain Edema; Brain Ischemia; Cerebral Cortex; Cytokines; Histamine; Histamine Agonists; Histamine Antagonists; Histidine; Infarction, Middle Cerebral Artery; Male; Malondialdehyde; Microdialysis; Neostriatum; Piperidines; Rats; Rats, Wistar; Superoxide Dismutase | 2008 |
[Role of ventricular M3 receptor in arrhythmia resulted from cerebral-cardiac syndrome].
To detect the function and expression of ventricular M3 receptor (M3R) in cerebral-cardiac syndrome (CCS) model rats and to explore the relationship between the expression of M3R and the arrhythmia resulted from CCS, CCS model rats were induced by occluding right middle cerebral artery. ECG was monitored. Intracellular calcium ([Ca2+]i) changes after agitating M3R were recorded by laser scanning confocal microscope. Changes of M3R expression in the ventricular tissue were detected by Western blotting. QRS and QT intervals in CCS group were remarkably longer than that in sham group. According to the results of Western blotting, the level of M3R expression was remarkably lower in CCS group compared with that in the normal group. KCl induced [Ca2+]i increasing in CCS group could be depressed by choline and the effect of choline could be blocked by 4-DAMP. The lower expression of M3R in CCS group may be one of important reasons of arrhythmia resulted from CCS. M3R that depressed the [Ca2+]i increasing agitated by choline may become a new target to cure arrhythmia resulted from CCS. Topics: Animals; Arrhythmias, Cardiac; Calcium; Choline; Electrocardiography; Heart Ventricles; Infarction, Middle Cerebral Artery; Male; Muscarinic Antagonists; Myocardium; Myocytes, Cardiac; Piperidines; Potassium Chloride; Random Allocation; Rats; Rats, Wistar; Receptor, Muscarinic M3 | 2008 |
Effect of thioperamide on oxidative stress markers in middle cerebral artery occlusion model of focal cerebral ischemia in rats.
In view of the recent evidence for the involvement of histamine in cerebral ischemia, the present study evaluated the effect of thioperamide (THP), a selective histamine H3-receptor antagonist, on middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia in rats. The rats were subjected to 2 h of MCAO followed by 22 h reperfusion after which the grip strength, locomotor activity and spontaneous alternation performance were assessed. Animals were then killed and oxidative stress markers were estimated in the whole brain. An elevation of thiobarbituric acid reactive substance (TBARS) and a reduction in glutathione (GSH) and antioxidant enzymes, such as glutathione-S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD), was observed following MCAO, the last two being statistically insignificant. Pretreatment with THP (5.5 mg/kg i.p. and 11 mg/kg i.p.) significantly reversed the MCAO-induced increase in TBARS, but could not reverse the other parameters. Paradoxically, it further reduced the levels of GPx, GR and SOD. No significant changes were observed in the catalase levels and in the grip strength and spontaneous alternation behavior of rats. Locomotor activity was reduced slightly, but reversed on pretreatment with THP. The dual effect of THP on oxidative stress requires further investigation and raises doubts on its possible use in cerebral ischemia. Topics: Animals; Biomarkers; Disease Models, Animal; Dose-Response Relationship, Drug; Glutathione; Histamine H3 Antagonists; Infarction, Middle Cerebral Artery; Lipid Peroxidation; Male; Maze Learning; Middle Cerebral Artery; Motor Activity; Muscle Strength; Oxidative Stress; Oxidoreductases; Piperidines; Rats; Rats, Wistar; Reperfusion Injury; Thiobarbituric Acid Reactive Substances | 2008 |
Suppression of inflammatory cell recruitment by histamine receptor stimulation in ischemic rat brains.
Inflammation is a crucial factor in the development of ischemia-induced brain injury. Since facilitation of central histaminergic activity ameliorates reperfusion injury, effects of postischemic administration of L-histidine, a precursor of histamine, and thioperamide, a histamine H3 receptor antagonist, on inflammatory cell infiltration were evaluated in a rat model of transient occlusion of the middle cerebral artery. After reperfusion for 12, 24, or 72 h following 2 h of occlusion, brain slices were immunohistochemically stained with antibodies against myeloperoxidase and CD68, which were markers of polymorphonuclear leukocytes and macrophages/microglia, respectively. After reperfusion for 12-24 h, the number of neutrophils on the ischemic side increased markedly, whereas the increase was not observed on the contralateral side. Administration of L-histidine (1000 mg/kg x 2, i.p.), immediately and 6 h after reperfusion, reduced the number of neutrophils to 52%. Simultaneous administration of thioperamide (5 mg/kg, s.c.) further decreased the number of neutrophils to 32%. Likewise, the ischemia induced increase in the number of CD68-positive cells after 24 h was suppressed by L-histidine injections. The L-histidine administration decreased the number of CD4+ T lymphocytes on both ischemic and contralateral sides after 12 h, and concurrent administration of thioperamide prolonged the effect. Although administration of mepyramine (3 nmol, i.c.v.) did not affect suppression of leukocyte infiltration, ranitidine tended to reverse the effect of L-histidine. These data suggest that enhancement of central histaminergic activity suppresses inflammatory cell recruitment after ischemic events through histamine H2 receptors, which may be a mechanism underlying the protective effect of L-histidine. Topics: Animals; Antigens, CD; Brain Ischemia; CD4-Positive T-Lymphocytes; Cell Count; Drug Combinations; Histamine H1 Antagonists; Histamine H2 Antagonists; Histidine; Immunohistochemistry; Infarction, Middle Cerebral Artery; Male; Neutrophils; Peroxidase; Piperidines; Pyrilamine; Random Allocation; Ranitidine; Rats; Rats, Wistar; Receptors, Histamine; Reperfusion; Time Factors | 2007 |
Repeated treatment with cannabidiol but not Delta9-tetrahydrocannabinol has a neuroprotective effect without the development of tolerance.
Both Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and cannabidiol are known to have a neuroprotective effect against cerebral ischemia. We examined whether repeated treatment with both drugs led to tolerance of their neuroprotective effects in mice subjected to 4h-middle cerebral artery (MCA) occlusion. The neuroprotective effect of Delta(9)-THC but not cannabidiol was inhibited by SR141716, cannabinoid CB(1) receptor antagonist. Fourteen-day repeated treatment with Delta(9)-THC, but not cannabidiol, led to tolerance of the neuroprotective and hypothermic effects. In addition, repeated treatment with Delta(9)-THC reversed the increase in cerebral blood flow (CBF), while cannabidiol did not reverse that effect. Repeated treatment with Delta(9)-THC caused CB(1) receptor desensitization and down-regulation in MCA occluded mice. On the contrary, cannabidiol did not influence these effects. Moreover, the neuroprotective effect and an increase in CBF induced by repeated treatment with cannabidiol were in part inhibited by WAY100135, serotonin 5-HT(1A) receptor antagonist. Cannabidiol exhibited stronger antioxidative power than Delta(9)-THC in an in vitro study using the 1,1-diphenyl-2-picryhydrazyl (DPPH) radical. Thus, cannabidiol is a potent antioxidant agent without developing tolerance to its neuroprotective effect, acting through a CB(1) receptor-independent mechanism. It is to be hoped that cannabidiol will have a palliative action and open new therapeutic possibilities for treating cerebrovascular disorders. Topics: Analysis of Variance; Animals; Behavior, Animal; Body Temperature; Cannabidiol; Cerebral Infarction; Cerebrovascular Circulation; Dose-Response Relationship, Drug; Dronabinol; Drug Administration Schedule; Drug Interactions; Drug Tolerance; Infarction, Middle Cerebral Artery; Male; Mice; Neuroprotective Agents; Piperazines; Piperidines; Pyrazoles; Rimonabant; Serotonin Antagonists; Time Factors | 2007 |
Delayed treatment with cannabidiol has a cerebroprotective action via a cannabinoid receptor-independent myeloperoxidase-inhibiting mechanism.
We examined the neuroprotective mechanism of cannabidiol, non-psychoactive component of marijuana, on the infarction in a 4 h mouse middle cerebral artery (MCA) occlusion model in comparison with Delta(9)-tetrahydrocannabinol (Delta(9)-THC). Release of glutamate in the cortex was measured at 2 h after MCA occlusion. Myeloperoxidase (MPO) and cerebral blood flow were measured at 1 h after reperfusion. In addition, infarct size and MPO were determined at 24 and 72 h after MCA occlusion. The neuroprotective effect of cannabidiol was not inhibited by either SR141716 or AM630. Both pre- and post-ischemic treatment with cannabidiol resulted in potent and long-lasting neuroprotection, whereas only pre-ischemic treatment with Delta(9)-THC reduced the infarction. Unlike Delta(9)-THC, cannabidiol did not affect the excess release of glutamate in the cortex after occlusion. Cannabidiol suppressed the decrease in cerebral blood flow by the failure of cerebral microcirculation after reperfusion and inhibited MPO activity in neutrophils. Furthermore, the number of MPO-immunopositive cells was reduced in the ipsilateral hemisphere in cannabidiol-treated group. Cannabidiol provides potent and long-lasting neuroprotection through an anti-inflammatory CB(1) receptor-independent mechanism, suggesting that cannabidiol will have a palliative action and open new therapeutic possibilities for treating cerebrovascular disorders. Topics: Animals; Behavior, Animal; Cannabidiol; Cerebrovascular Circulation; Disease Models, Animal; Dose-Response Relationship, Drug; Dronabinol; Functional Laterality; Glutamic Acid; Infarction, Middle Cerebral Artery; Male; Mice; Motor Activity; Neuroprotective Agents; Perfusion; Peroxidase; Piperidines; Pyrazoles; Receptors, Cannabinoid; Rimonabant; Tetrazolium Salts; Time Factors | 2007 |
NR2B subunit exerts a critical role in postischemic synaptic plasticity.
We characterized the differential effect of the NR2B subunit antagonist ifenprodil in the induction of activity-dependent long-term potentiation (LTP) and of postischemic LTP as well as in the neuronal damage induced by focal ischemia.. Intracellular recordings were obtained from rat corticostriatal slice preparations. High-frequency stimulation of corticostriatal fibers was used as a LTP-inducing protocol. In vitro ischemia was induced by oxygen and glucose deprivation. In vivo ischemia was induced by permanent middle cerebral artery occlusion. Intracellular recordings were also performed in the ischemic penumbra.. Antagonists selectively targeting N-methyl-d-aspartate receptors containing the NR2B subunit blocked postischemic LTP without affecting activity-dependent LTP. In a model of focal ischemia, blockade of NR2B subunit in vivo caused reduction of brain damage, amelioration of neurological outcome, and normalization of the synaptic levels of NR2B subunits. Moreover, the antagonism of NR2B subunit was able to rescue the activity-dependent LTP in the ischemic penumbra.. We suggest that NR2B subunits contribute to the striatal damage caused by in vivo and in vitro ischemia and play a critical role in the induction of postischemic LTP as well as in the suppression of activity-dependent LTP in the ischemic penumbra. Topics: Animals; Brain Damage, Chronic; Cerebral Infarction; Cerebrovascular Circulation; Corpus Striatum; Down-Regulation; Drug Evaluation, Preclinical; Excitatory Amino Acid Antagonists; Infarction, Middle Cerebral Artery; Laser-Doppler Flowmetry; Long-Term Potentiation; Male; Neurons; Neuroprotective Agents; Patch-Clamp Techniques; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate | 2006 |
Acetylcholinesterase inhibitor acting on the brain improves detrusor overactivity caused by cerebral infarction in rats.
The functional contribution of the cholinergic pathway in the frontal cortex to micturition was evaluated following cerebral ischemia. Furthermore, it was examined whether reactivation of this regulatory system using acetylcholinesterase inhibitor could improve detrusor overactivity.. Left middle cerebral artery occlusion (MCAO) was performed in female Sprague-Dawley rats. Choline acetyltransferase (ChAT) activities after MCAO were assayed to assess the damage to cholinergic neurons. ChAT activities in the bilateral cortex, hippocampus, and pons were calculated by measuring the conversion of 1-[14C] acetyl-coenzyme A to [14C] acetylcholine. Effects on cystometrography of i.v. or i.c.v. donepezil hydrochloride (DON), a centrally acting acetylcholinesterase inhibitor, were investigated in conscious sham-operated (SO) and cerebral infarcted (CI) rats. To investigate whether DON in the forebrain was affected, we decerebrated rats after CI or SO, and investigated the effects on cystometrography of i.v. DON.. Bladder capacity was markedly decreased after MCAO, and remained below half of the pre-occlusion capacity. The greatest increase in bladder capacity was attained at 1.2 x 10(-2) nM/kg of DON given i.v., with a change of 52.8% (P < 0.05). In cases of i.c.v. DON, the greatest increase in bladder capacity was at the dose of 6 x 10(-2) pmol with the change of 95.8% (P < 0.01). The activity of ChAT was decreased in the left cortex and hippocampus 24 h after MCAO (P < 0.05). In decerebrated rats, low dose of DON did not change micturition parameters.. These results suggest that by upregulation of the forebrain muscarinic inhibitory mechanism, acetylcholinesterase inhibitor improves detrusor overactivity by cerebral infarction. Topics: Analysis of Variance; Animals; Brain; Choline O-Acetyltransferase; Cholinesterase Inhibitors; Donepezil; Dose-Response Relationship, Drug; Female; Indans; Infarction, Middle Cerebral Artery; Piperidines; Rats; Rats, Sprague-Dawley; Time Factors; Urinary Bladder; Urinary Bladder, Overactive | 2006 |
FK419, a novel nonpeptide GPIIb/IIIa antagonist, restores microvascular patency and improves outcome in the guinea-pig middle cerebral artery thrombotic occlusion model: comparison with tirofiban.
The antithrombotic efficacy of FK419, a novel nonpeptide platelet glycoprotein IIb/IIIa antagonist, was compared with tirofiban in guinea-pigs. FK419 and tirofiban similarly inhibited platelet aggregation in vitro (IC50 values: 0.43+/-0.076 and 0.41+/-0.053 micromol/L) and dispersed aggregated platelets (EC50 values: 2.3+/-0.88 and 2.0+/-0.81 micromol/L). FK419 inhibited retention of platelets and neutrophils in a collagen-coated bead column with greater potency than tirofiban (IC50 values of 0.90+/-0.133 and 2.4+/-0.21 micromol/L for platelet retention and 0.32+/-0.078 and 0.57+/-0.180 micromol/L for neutrophil retention). When FK419 or tirofiban were administered after photochemically induced middle cerebral artery (MCA) occlusion in guinea-pigs, they dose-dependently improved MCA patency. FK419 reduced neurological deficits and ischemic brain damage in a dose-dependent fashion, whereas tirofiban did not. Reduced regional cerebral blood flow in the striatum gradually returned to the preoccluded level with FK419 treatment; however, no restoration was observed with tirofiban even though the MCA was recanalized. These results indicate that FK419 ameliorates ischemic brain damage by not only lysing the obstructive thrombus in MCA but also preventing or restoring microcirculation deficits after occlusion/reperfusion, suggesting that FK419 would be an attractive intervention for the treatment of ischemic stroke patients. Topics: Animals; Blood Platelets; Brain; Brain Ischemia; Cerebrovascular Circulation; Disease Models, Animal; Dose-Response Relationship, Drug; Guinea Pigs; Infarction, Middle Cerebral Artery; Intracranial Thrombosis; Male; Microcirculation; Neutrophils; Piperidines; Platelet Aggregation; Platelet Aggregation Inhibitors; Platelet Glycoprotein GPIIb-IIIa Complex; Propionates; Recovery of Function; Reperfusion Injury; Tirofiban; Tyrosine | 2005 |
FK419, a nonpeptide platelet glycoprotein IIb/IIIa antagonist, ameliorates brain infarction associated with thrombotic focal cerebral ischemia in monkeys: comparison with tissue plasminogen activator.
The binding of platelet glycoprotein (GP) IIb/IIIa to fibrinogen is the final common pathway in platelet aggregation, a process known to play a key role in the pathogenesis of ischemic brain damage. We compared the effects of FK419, a novel nonpeptide GPIIb/IIIa antagonist, with recombinant tissue plasminogen activator (rt-PA) on middle cerebral artery (MCA) patency and ischemic brain damage in a thrombotic stroke model in squirrel monkeys. FK419 not only inhibited in vitro platelet aggregation (IC50: 88 nmol/L), but also showed disaggregatory activity to aggregated platelet (EC50: 286 nmol/L). FK419 dose-dependently reduced the time to first reperfusion and total occlusion time of MCA blood flow when administered immediately after the termination of photoirradiation. FK419 reduced cerebral infarction and ameliorated neurologic deficits with similar dose-dependency. Although rt-PA reduced the time to first reperfusion, total occlusion time, and cerebral infarction, it did not significantly ameliorate neurologic deficits and induced petechial intracerebral hemorrhages. These results indicate: (1) FK419 restored cerebral blood flow after thrombotic occlusion of MCA, (2) FK419 reduced ischemic brain injury by its thrombolytic actions in a non-human primate stroke model, and (3) FK419 has superior antithrombotic efficacy and is safer than rt-PA. Topics: Animals; Blood Platelets; Brain; Brain Ischemia; Cerebral Hemorrhage; Cerebrovascular Circulation; Dose-Response Relationship, Drug; Fibrinolytic Agents; Infarction, Middle Cerebral Artery; Male; Microcirculation; Middle Cerebral Artery; Piperidines; Platelet Aggregation; Platelet Aggregation Inhibitors; Platelet Glycoprotein GPIIb-IIIa Complex; Propionates; Recovery of Function; Reperfusion Injury; Saimiri; Tissue Plasminogen Activator | 2005 |
Neuroprotective effect of donepezil, a nicotinic acetylcholine-receptor activator, on cerebral infarction in rats.
This study evaluated the potential effect of donepezil, which is known as an acetylcholinesterase inhibitor used for treatment of Alzheimer's disease, against cerebral infarction induced by permanent left middle cerebral artery (MCA) occlusion. Donepezil was given orally in various regimens, prior to MCA occlusion in rats. Pretreatment with a single oral dose of donepezil (12 mg/kg), 2 h before ischemia, significantly attenuated cerebral infarction volume (165.5 +/- 105.3 vs. 377.1 +/- 48.5 mm(3); P < 0.05). These neuroprotective effects were prevented by coinjection with mecamylamine, a nicotinic acetylcholine-receptor (nAChR) antagonist, indicating that protection was mediated by nAChR activation. Topics: Animals; Donepezil; Indans; Infarction, Middle Cerebral Artery; Ischemic Preconditioning; Male; Neuroprotective Agents; Nicotinic Agonists; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, Nicotinic | 2005 |
Ischemic neuroprotection with selective kappa-opioid receptor agonist is gender specific.
We demonstrated previously that treatment with selective kappa-opioid receptor (KOR) agonist BRL 52537 hydrochloride [(+/-)-1-(3,4-dichlorophenyl) acetyl-2-(1-pyrrolidinyl) methylpiperidine] (1) has a long therapeutic window for providing ischemic neuroprotection, and (2) attenuates ischemia-evoked NO production in vivo in rats. Neuronally derived NO has been shown to be deleterious in the male but not in the female rodent model of focal ischemic stroke. We tested the hypothesis that BRL provides significant neuroprotection from transient focal ischemia in male but not in female rats.. Halothane-anesthetized adult male and female Wistar rats (250 to 275 g) were subjected to 2 hours of middle cerebral artery occlusion (MCAO) by the intraluminal suture technique. Adequacy of MCAO and reperfusion was monitored with laser-Doppler flowmetry over the ipsilateral parietal cortex. In the first experiment, male and female rats were treated in a blinded randomized fashion with vehicle saline or 1 mg/kg per hour BRL infusion started at the onset of reperfusion and continued for 22 hours. In the second experiment, ovariectomized (OVX) female rats were treated with vehicle or BRL. Infarct volume in the cortex and caudoputamen (CP) complex was assessed by triphenyl tetrazolium chloride staining at 72 hours after MCAO.. Infarct volume (percentage of ipsilateral structure; mean+/-SEM) was attenuated significantly in male rats with BRL treatment (cortex 23+/-5%; CP 44+/-6%; n=15) compared with vehicle-treated male rats (cortex 38+/-4%; CP 66+/-4%; n=15) but not in female rats (BRL-cortex 26+/-6; CP 55+/-8%; vehicle-cortex 26+/-5; CP 62+/-5%; n=10 each). Neurologic deficit score was improved in BRL-treated male rats but not in female rats. Infarct volume was not different in OVX female rats treated with vehicle or BRL.. These data: (1) demonstrate that this dose of selective KOR agonist provides ischemic neuroprotection in male but not female rats, (2) demonstrate that the lack of protection by BRL is not attributable to circulating ovarian hormones, and (3) highlight the importance of using animal models of both sexes in preclinical studies of experimental ischemia. Topics: Animals; Blood Pressure; Brain Ischemia; Caudate Nucleus; Cerebral Cortex; Female; Hormones; Infarction, Middle Cerebral Artery; Ischemia; Laser-Doppler Flowmetry; Male; Neuroprotective Agents; Nitric Oxide; Ovary; Partial Pressure; Piperidines; Putamen; Pyrrolidines; Rats; Rats, Wistar; Receptors, Opioid, kappa; Reperfusion; Reperfusion Injury; Sex Factors | 2005 |
Discrepancy between cell injury and benzodiazepine receptor binding after transient middle cerebral artery occlusion in rats.
We investigated postischemic alterations in benzodiazepine receptor, D1 dopamine receptor, and muscarinic acetylcholine receptor binding after transient middle cerebral artery (MCA) occlusion in rats using [3H]-flumazenil, [3H]-SCH23390, and [3H]-N-methyl-4-piperidyl benzilate ([3H]-NMPB), respectively, as radioligand. These ligand bindings were determined at 3 and 24 h and at 3 and 7 days after ischemia/reperfusion of MCA by using autoradiographic methods. Ischemic cell injury was clearly detected from 3 h after ischemia/reperfusion and progressively increased from 3-24 h after ischemia/reperfusion of MCA. The area of cell injury reached maximum at 24 h after ischemia/reperfusion of MCA. [3H]-SCH23390 binding was reduced to 47% of the contralateral side at 3 days after ischemia/reperfusion of MCA. After 7 days, [3H]-SCH23390 binding was further reduced by 20% in the striatum. [3H]-NMPB binding was slightly decreased in both the striatum and cerebral cortex at 3 days after ischemia/reperfusion of MCA, and [3H]-NMPB binding in the striatum and cerebral cortex were reduced to 42 and 62% of the contralateral side at 7 days after ischemia/reperfusion of MCA. [3H]-NMPB was also decreased at 24 h. In contrast, [3H]-flumazenil binding was not decreased in the striatum and cerebral cortex within 7 days after ischemia/reperfusion of MCA. These results suggest that [3H]-SCH23390 and [3H]-NMPB binding do not correlate with cell injury by ischemia/reperfusion, although vulnerability to ischemia/reperfusion was observed with these receptors. In addition, central benzodiazepine receptor imaging might be essentially stable to neuronal cell injury induced by transient focal cerebral ischemia in rats, in contrast to the results of PET studies. Topics: Animals; Autoradiography; Benzazepines; Benzilates; Binding Sites; Binding, Competitive; Cerebral Cortex; Cerebral Infarction; Corpus Striatum; Disease Models, Animal; Down-Regulation; Flumazenil; Infarction, Middle Cerebral Artery; Male; Nerve Degeneration; Piperidines; Radioligand Assay; Rats; Rats, Wistar; Reaction Time; Receptors, Dopamine D1; Receptors, GABA-A; Receptors, Muscarinic; Reperfusion Injury; Sensitivity and Specificity; Tritium | 2004 |
Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia.
The role of endocannabinoid signaling in the response of the brain to injury is tantalizing but not clear. In this study, transient middle cerebral artery occlusion (MCAo) was used to produce ischemia/reperfusion injury. Brain content of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol were determined during MCAo. Whole brain AEA content was significantly increased after 30, 60 and 120 min MCAo compared with sham-operated brain. The increase in AEA was localized to the ischemic hemisphere after 30 min MCAo, but at 60 and 120 min, was also increased in the contralateral hemisphere. 2-Arachidonoylglycerol content was unaffected by MCAo. In a second set of studies, injury was assessed 24 h after 2 h MCAo. Rats administered a single dose (3 mg/kg) of the cannabinoid receptor type 1 (CB1) receptor antagonist SR141716 prior to MCAo exhibited a 50% reduction in infarct volume and a 40% improvement in neurological function compared with vehicle control. A second CB1 receptor antagonist, LY320135 (6 mg/kg), also significantly improved neurological function. The CB1 receptor agonist, WIN 55212-2 (0.1-1 mg/kg) did not affect either infarct volume or neurological score. Topics: Animals; Arachidonic Acids; Benzofurans; Benzoxazines; Blood Pressure; Brain Chemistry; Brain Infarction; Chromatography, Liquid; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Hemodynamics; Infarction, Middle Cerebral Artery; Ischemic Attack, Transient; Male; Mass Spectrometry; Morpholines; Naphthalenes; Neurologic Examination; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Reperfusion Injury; Rimonabant; Tetrazolium Salts; Time Factors | 2004 |
Cyclooxygenase-2 activity contributes to neuronal expression of cyclin D1 after anoxia/ischemia in vitro and in vivo.
Cyclooxygenase-2 (COX-2) activity has been implicated in the pathogenesis of neuronal cell death in ischemia and other diseases, but the mechanism by which COX-2 exacerbates cell death is unknown. COX-2 activity is known to induce expression of cyclin D1 in neoplastic cells, and cyclin D1 expression can induce cell death in postmitotic neurons. In the present study, the role of COX-2 and cyclin D1 in neuronal cell death induced by anoxia and ischemia was examined. Treatment with the COX-2 specific inhibitor (NS 398 25 microM) and cyclin D1 inhibitor (flavopiridol 1 microM) increased neuronal survival and inhibited DNA fragmentation after anoxia. NS-398 suppressed anoxia-induced expression of cyclin D1. Flavopiridol inhibited the anoxia-induced increased expression of cyclin D1, but had no effect on COX-2 expression. Treatment with the selective COX-2 inhibitor, SC58125, had no affect on COX-2 expression but partially suppressed cyclin D1 expression in the cortex following middle cerebral artery occlusion in vivo. These results show that COX-2 activity is required for cyclin D1 expression after ischemia in vivo and anoxia in vitro. These data provide support for the hypothesis that cyclin D1 expression is an important mechanism by which COX-2 activity exacerbates ischemic neuronal death. Topics: Animals; Cell Survival; Cells, Cultured; Cyclin D1; Cyclooxygenase 2; Disease Models, Animal; DNA Fragmentation; Dose-Response Relationship, Drug; Enzyme Inhibitors; Flavonoids; Hypoxia-Ischemia, Brain; Infarction, Middle Cerebral Artery; Neurons; Neuroprotective Agents; Nitrobenzenes; Piperidines; Prostaglandin-Endoperoxide Synthases; Pyrazoles; Rats; Rats, Sprague-Dawley; Sulfonamides | 2004 |
Cannabidiol prevents infarction via the non-CB1 cannabinoid receptor mechanism.
Cannabidiol, a non-psychoactive constituent of cannabis, has been reported as a neuroprotectant. Cannabidiol and Delta(9)-tetrahydrocannabinol, the primary psychoactive constituent of cannabis, significantly decreased the infarct volume at 4 h in the mouse middle cerebral artery occlusion model. The neuroprotective effects of Delta(9)-tetrahydrocannabinol but not cannabidiol were inhibited by SR141716, a cannabinoid CB1 receptor antagonist, and were abolished by warming of the animals to the levels observed in the controls. Delta(9)-Tetrahydrocannabinol significantly decreased the rectal temperature, and the hypothermic effect was inhibited by SR141716. These results surely show that the neuroprotective effect of Delta(9)-tetrahydrocannabinol are via a CB1 receptor and temperature-dependent mechanisms whereas the neuroprotective effects of cannabidiol are independent of CB1 blockade and of hypothermia. Topics: Analysis of Variance; Animals; Body Temperature; Brain Infarction; Cannabidiol; Disease Models, Animal; Dose-Response Relationship, Drug; Dronabinol; Drug Interactions; Fever; Infarction, Middle Cerebral Artery; Male; Mice; Neuroprotective Agents; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; Tetrazolium Salts; Time Factors | 2004 |
Pharmacological characterization of Ro 63-1908 (1-[2-(4-hydroxy-phenoxy)-ethyl]-4-(4-methyl-benzyl)-piperidin-4-ol), a novel subtype-selective N-methyl-D-aspartate antagonist.
Ro 63-1908, 1-[2-(4-hydroxy-phenoxy)-ethyl]-4-(4-methyl-benzyl)-piperidin-4-ol, is a novel subtype-selective N-methyl-D-aspartate (NMDA) antagonist that has been characterized in vitro and in vivo. Ro 63-1908 inhibited [(3)H]dizocilpine ((3)H-MK-801) binding in a biphasic manner with IC(50) values of 0.002 and 97 microM for the high- and low-affinity sites, respectively. Ro 63-1908 selectively blocked recombinant receptors expressed in Xenopus oocytes containing NR1C + NR2B subunits with an IC(50) of 0.003 microM and those containing NR1C + NR2A subunits with an IC(50) of >100 microM, thus demonstrating greater than 20,000-fold selectivity for the recombinant receptors expressing NR1C + NR2B. Ro 63-1908 blocked these NMDA NR2B-subtype receptors in an activity-dependent manner. Ro 63-1908 was neuroprotective against glutamate-induced toxicity and against oxygen/glucose deprivation-induced toxicity in vitro with IC(50) values of 0.68 and 0.06 microM, respectively. Thus, the in vitro pharmacological characterization demonstrated that Ro 63-1908 was a potent and highly selective antagonist of the NR2B subtype of NMDA receptors. Ro 63-1908 was active against sound-induced seizures (ED(50) = 4.5 mg/kg i.p. when administered 30 min beforehand) in DBA/2 mice. The dose required to give a full anticonvulsant effect did not produce a deficit in the Rotarod test. NMDA-induced seizures were also inhibited by Ro 63-1908 with an ED(50) of 2.31 mg/kg i.v. when administered 15 min before testing. Ro 63-1908 gave a dose-related neuroprotective effect against cortical damage in a model of permanent focal ischemia. Maximum protection of 39% was seen at a plasma concentration of 450 ng/ml. There were, however, no adverse cardiovascular or CNS side-effects seen at this dosing level. Topics: Acoustic Stimulation; Algorithms; Animals; Anticonvulsants; Brain; Cerebral Cortex; Electrophysiology; Excitatory Amino Acid Antagonists; In Vitro Techniques; Infarction, Middle Cerebral Artery; Macaca fascicularis; Male; Mice; Motor Activity; Neurons; Neuroprotective Agents; Oocytes; Phenols; Piperidines; Psychomotor Performance; Rats; Receptors, N-Methyl-D-Aspartate; Seizures; Vacuoles; Xenopus | 2002 |
Selective blockade of endothelin-B receptors exacerbates ischemic brain damage in the rat.
Endothelins act through 2 receptors, namely, ET(A) and ET(B). In the cerebral circulation, ET(A) mediates marked and prolonged vasoconstriction, and its blockade increases cerebral blood flow (CBF) and reduces ischemic brain damage. However, the role of ET(B) receptors remains unclear. In this study we examined, in rats, the kinetics of expression of ET(B) and the effects of ET(B) blockade on changes in CBF and brain damage after focal cerebral ischemia and N-methyl-D-aspartate (NMDA)-induced excitotoxic injury.. Rats were subjected to transient (60 minutes) focal cerebral ischemia or cortical injection of NMDA. The selective ET(B) antagonist BQ-788 was injected intracerebroventricularly 30 minutes before and 30 minutes after the onset of ischemia. Cortical perfusion was monitored by laser-Doppler flowmetry. The volume of infarction or NMDA-induced cortical lesion was assessed at 24 hours after the insult. The reverse transcription-polymerase chain reaction technique was used to assess ET(B) expression.. Cerebral ischemia failed to alter the expression of ET(B) mRNA in both acute and chronic stages. Administration of BQ-788 resulted in an increase in infarction volume (178%; P<0.05) accompanied by a decrease in residual CBF (-26.7% versus control; P<0.01). In these animals we found a positive correlation between the volume of infarction and the severity of the decrease in CBF. NMDA-induced cortical lesions were not affected by the administration of BQ-788.. Our results suggest that the ET(B) antagonist BQ-788 induces deleterious effects that are mediated by the reduction of residual blood flow after ischemia and argue that the optimal therapeutic strategy in stroke would be to target the use of selective ET(A) antagonists and not mixed ET(A)/ET(B) antagonists. Topics: Animals; Antihypertensive Agents; Blood Flow Velocity; Brain Ischemia; Cerebrovascular Circulation; Disease Models, Animal; Endothelin Receptor Antagonists; Excitatory Amino Acid Agonists; Gene Expression; Infarction, Middle Cerebral Artery; Injections, Intraventricular; Male; N-Methylaspartate; Oligopeptides; Piperidines; Rats; Rats, Sprague-Dawley; Receptor, Endothelin B; Receptors, Endothelin; RNA, Messenger | 2002 |
Comet assay as a novel approach for studying DNA damage in focal cerebral ischemia: differential effects of NMDA receptor antagonists and poly(ADP-ribose) polymerase inhibitors.
The single-cell gel electrophoresis (comet assay) was used to evaluate the possibility of detecting single-strand breaks of brain DNA in the early phase of ischemia. Four hours after occlusion of the middle cerebral artery (MCAO) in rats, the percentage of DNA migrating into the comet tail (indicating the presence of breaks) increased from 11.4 +/- 4.70 to 34.7 +/- 9.2 (means +/- SD) in the caudate and from 9.9 +/- 4.3 to 42.8 +/- 14.1 in the cortex. Interestingly, a subpopulation of cells exhibiting higher resistance to the ischemic insult was present in the caudate putamen, but not in the cortex. Administration of MK801, an N-methyl-d-aspartate (NMDA) glutamate receptor antagonist, (1 mg/kg subcutaneously, 10 minutes before MCAO), reduced the ischemia-induced DNA breaks and the infarct volume, suggesting that excessive stimulation of NMDA receptors contributes to the formation of both DNA damage and infarct volume. In contrast, DPQ, an inhibitor of poly(ADP-ribose) polymerase (PARP) (10 mg/kg intraperitoneally, 2 hours before and 1 hour after MCAO), reduced the infarct volume but not DNA damage, suggesting that the neuroprotective actions of PARP inhibitors occur at a later step of the processes leading to postischemic neuronal death. Topics: Animals; Brain Ischemia; Comet Assay; Dizocilpine Maleate; DNA; DNA Damage; DNA, Single-Stranded; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Infarction, Middle Cerebral Artery; Isoquinolines; Male; Neuroprotective Agents; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate | 2002 |