piperidines has been researched along with Colonic-Neoplasms* in 72 studies
1 review(s) available for piperidines and Colonic-Neoplasms
Article | Year |
---|---|
Flavopiridol, a novel cyclin-dependent kinase inhibitor, in clinical development.
To review preclinical and clinical information on flavopiridol, an inhibitor of cyclin-dependent kinases (CDKs), tested as an antitumor agent.. Primary and review articles were identified by MEDLINE search (1990-June 2001). Abstracts from recent meetings were also used as source materials.. Flavopiridol was reviewed with regard to its mechanisms, preclinical and clinical results, pharmacokinetics, and metabolism.. Flavopiridol is an inhibitor of several CDKs and displays unique anticancer properties. In addition to direct CDK inhibition, flavopiridol also exhibited other features such as inducing apoptosis in many cancer cell lines, decreasing cyclin D1 concentration, and inhibiting angiogenesis. Preclinical xenograft models showed significant antitumor activity for flavopiridol. The regimen using 72-hour continuous infusion every 2 weeks has been most extensively applied in clinical trials, with a 1-hour infusion currently being explored to achieve higher peak concentrations. Several Phase I and II trials have been reported, with some evidence of antitumor activity noted. Further Phase I and II trials using flavopiridol as a single agent and in combination with standard chemotherapeutic regimens and various tumor types are ongoing.. Flavopiridol is the first CDK inhibitor to enter clinical trials. Several Phase I and Phase II clinical trials with different regimens (72-h or 1-h infusion) have been completed. Initial clinical trials have been intriguing, but many questions remain: What is the best regimen (< or =72-h infusion)? Does optimal future development of this drug depend on the combination with other chemotherapy? What is the best combination of flavopiridol with other chemotherapy? Topics: Antineoplastic Agents; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Colonic Neoplasms; Cyclin-Dependent Kinases; Diarrhea; Drug Evaluation, Preclinical; Drug Therapy, Combination; Fatigue; Flavonoids; Humans; Infusion Pumps; Kidney Neoplasms; Lymphoma, Non-Hodgkin; Neoplasms; Neutropenia; Piperidines | 2002 |
1 trial(s) available for piperidines and Colonic-Neoplasms
Article | Year |
---|---|
Alvimopan for the management of postoperative ileus after bowel resection: characterization of clinical benefit by pooled responder analysis.
A pooled post hoc responder analysis was performed to assess the clinical benefit of alvimopan, a peripherally acting mu-opioid receptor (PAM-OR) antagonist, for the management of postoperative ileus after bowel resection.. Adult patients who underwent laparotomy for bowel resection scheduled for opioid-based intravenous patient-controlled analgesia received oral alvimopan or placebo preoperatively and twice daily postoperatively until hospital discharge or for 7 postoperative days. The proportion of responders and numbers needed to treat (NNT) were examined on postoperative days (POD) 3-8 for GI-2 recovery (first bowel movement, toleration of solid food) and hospital discharge order (DCO) written.. Alvimopan significantly increased the proportion of patients with GI-2 recovery and DCO written by each POD (P < 0.001 for all). More patients who received alvimopan achieved GI-2 recovery on or before POD 5 (alvimopan, 80%; placebo, 66%) and DCO written before POD 7 (alvimopan, 87%; placebo, 72%), with corresponding NNTs equal to 7.. On each POD analyzed, alvimopan significantly increased the proportion of patients who achieved GI-2 recovery and DCO written versus placebo and was associated with relatively low NNTs. The results of these analyses provide additional characterization and support for the overall clinical benefit of alvimopan in patients undergoing bowel resection. Topics: Aged; Colonic Neoplasms; Digestive System Surgical Procedures; Diverticulosis, Colonic; Female; Humans; Ileus; Intestines; Length of Stay; Male; Middle Aged; Piperidines; Postoperative Complications; Receptors, Opioid, mu; Recovery of Function; Rectal Neoplasms; Treatment Outcome | 2010 |
70 other study(ies) available for piperidines and Colonic-Neoplasms
Article | Year |
---|---|
Structural Optimization and Improving Antitumor Potential of Moreollic Acid from
Moreollic acid, a caged-tetraprenylated xanthone from Topics: Antineoplastic Agents; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Survival; Colonic Neoplasms; Garcinia; Humans; Piperidines; Structure-Activity Relationship; Xanthones | 2022 |
Differential effects of remifentanil and sufentanil anesthesia on post-operative pain and cognitive functions.
This study aimed to investigate the differential effects of remifentanil and sufentanil anesthesia on post-operative pain and recovery of cognitive functions following surgical resection of human colon cancer orthotopically transplanted in rats. Human colon cancer cells HT-29 were used to establish a rat model of orthotopically transplanted colon cancer on to the cecal wall of rats. The transplanted tumors were then surgically removed after 5 weeks, using different doses of remifentanil and sufentanil anesthesia. At 24 h after the surgery, von Frey test, hot plate test and voluntary wheel running test were used to evaluated post-operative pain in the rats. Morris water maze test and fear conditioning test were employed to assess cognitive functions. Serum and colon tissues of the rats were also subjected to ELISA to measure levels of stress response factors, while colon tissues were analyzed by RT-PCR and Western blot to measure expression of inflammation response factors and NF-κB pathway-related factors. Sufentanil showed better effect in reducing post-operative pain, while remifentanil showed better recovery of cognitive functions after surgery. In addition, remifentanil resulted in less stress and inflammation response, caused milder activation of NF-κB pathway-related factors after surgery. Remifentanil and sufentanil exhibited differential effects on post-operative pain and recovery of cognitive function. Specifically, remifentanil caused lower stress and inflammation response, associated with dampened activation of the NF-κB pathway. Our results could provide theoretical basis for adopting appropriate analgesic strategy and agents according to the characteristics of individual patients. Topics: Analgesics, Opioid; Anesthesia; Animals; Cognition; Colonic Neoplasms; Humans; Inflammation; Motor Activity; NF-kappa B; Pain, Postoperative; Piperidines; Rats; Remifentanil; Sufentanil | 2022 |
Anticancer effect of AZD2461 PARP inhibitor against colon cancer cells carrying wt or dysfunctional p53.
Colon cancer is one of the most common cancers, currently treated with traditional chemotherapies or alternative therapies. However, these treatments are still not enough effective and induce several side effects, so that the search of new therapeutic strategies is needed. The use of Poly-(ADP-ribose)-polymerase (PARP) inhibitors, although originally approved against BRCA-1 or BRCA-2 mutated cancers, has been extended, particularly in combination with other treatments, to cure cancers that do not display defects in DNA repair signaling pathways. The role of p53 oncosuppressor in the regulating the outcome of PARP inhibitor treatment remains an open issue. In this study, we addressed this topic by using a well-tolerated PARP 1/2/3 inhibitor, namely AZD2461, against colon cancer cell lines with different p53 status. We found that AZD2461 reduced cell proliferation in wtp53 and p53-/- cancer cells by increasing ROS and DNA damage, while R273H mutant (mut) p53 counteracted these effects. Moreover, AZD2461 improved the reduction of cell proliferation by low dose radiation (IR) in wtp53 cancer cells, in which a down-regulation of BRCA-1 occurred. AZD2461 did not affect cell proliferation of mutp53 colon cancer cells also in combination with low dose radiation, suggesting that only wt p53 or p53 null colon cancer cells could benefit AZD2461 treatment. Topics: Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; DNA Damage; Gene Expression Regulation, Neoplastic; Humans; Phthalazines; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Tumor Suppressor Protein p53 | 2021 |
Piperine and Celecoxib synergistically inhibit colon cancer cell proliferation via modulating Wnt/β-catenin signaling pathway.
Celecoxib (CXB), a selective COX-2 inhibitor NSAID, has exhibited prominent anti-proliferative potential against numerous cancers. However, its low bioavailability and long term exposure related cardiovascular side effects, limit its clinical application. In order to overcome these limitations, natural bioactive compounds with lower toxicity profile are used in combination with therapeutic drugs. Therfore, in this study Piperine (PIP), a natural chemo-preventive agent possessing drug bioavailability enhancing properties, was considered to be used in combination with low doses of CXB.. We hypothesized that the combination of PIP with CXB will have a synergistic anti-proliferative effect on colon cancer cells.. The potency of PIP and CXB alone and in combination was evaluated in HT-29 human colon adenocarcinoma cells and mechanism of growth inhibition was investigated by analyzing the players in apoptotic and Wnt/β-catenin signaling pathways.. The effect of PIP on the oral bioavailability of CXB in mice was investigated using HPLC analysis. The study investigated the synergistic anti-proliferative effect of CXB and PIP on HT-29 cells and IEC-6 non-tumorigenic rat intestinal epithelial cells by SRB cell viability assay. Further, the cellular and molecular mechanism(s) involved in the anti-proliferative combinatorial effect was extensively explored in HT-29 cells by flow cytometry and western blotting. The in vivo efficacy of this combination was studied in CT26.WT tumor syngeneic Balb/c mice model.. PIP as a bioenhancer increased the oral bioavailability of CXB (129%). The IC50 of CXB and PIP were evaluated to select doses for combination treatment of HT-29 cells. The drug combinations having combination index (CI) less than 1 were screened using CompuSyn software. These combinations were significantly cytotoxic to HT-29 cells but IEC-6 were least effected. Further, the mechanism behind CXB and PIP mediated cell death was explored. The co-treatment led to reactive oxygen species generation, mitochondrial dysfunction, caspase activation and enhanced apoptosis in HT-29 cells. Additionally, the combination treatment synergistically modulated Wnt/β-catenin pathway, downregulated the stemness markers and boosted therapeutic response in CT26 syngeneic Balb/c mice.. The outcomes of the study suggests that combining CXB and PIP offers a novel approach for the treatment of colon cancer. Topics: Alkaloids; Animals; Antineoplastic Agents; Apoptosis; Benzodioxoles; beta Catenin; Celecoxib; Cell Line, Tumor; Cell Proliferation; Cell Survival; Colonic Neoplasms; Cyclooxygenase 2 Inhibitors; Drug Synergism; Humans; Mice; Piperidines; Polyunsaturated Alkamides; Rats; Wnt Signaling Pathway | 2021 |
Cardiovascular adverse events associated with BRAF versus BRAF/MEK inhibitor: Cross-sectional and longitudinal analysis using two large national registries.
Cardiovascular adverse events (CVAEs) associated with BRAF inhibitors alone versus combination BRAF/MEK inhibitors are not fully understood.. This study included all adult patients who received BRAF inhibitors (vemurafenib, dabrafenib, encorafenib) or combinations BRAF/MEK inhibitors (vemurafenib/cobimetinib; dabrafenib/trametinib; encorafenib/binimetinib). We utilized the cross-sectional FDA's Adverse Events Reporting System (FAERS) and longitudinal Truven Health Analytics/IBM MarketScan database from 2011 to 2018. Various CVAEs, including arterial hypertension, heart failure (HF), and venous thromboembolism (VTE), were studied using adjusted regression techniques.. In FAERS, 7752 AEs were reported (40% BRAF and 60% BRAF/MEK). Median age was 60 (IQR 49-69) years with 45% females and 97% with melanoma. Among these, 567 (7.4%) were cardiovascular adverse events (mortality rate 19%). Compared with monotherapy, combination therapy was associated with increased risk for HF (reporting odds ratio [ROR] = 1.62 (CI = 1.14-2.30); p = 0.007), arterial hypertension (ROR = 1.75 (CI = 1.12-2.89); p = 0.02) and VTE (ROR = 1.80 (CI = 1.12-2.89); p = 0.02). Marketscan had 657 patients with median age of 53 years (IQR 46-60), 39.3% female, and 88.7% with melanoma. There were 26.2% CVAEs (CI: 14.8%-36%) within 6 months of medication start in those receiving combination therapy versus 16.7% CVAEs (CI: 13.1%-20.2%) among those receiving monotherapy. Combination therapy was associated with CVAEs compared to monotherapy (adjusted HR: 1.56 (CI: 1.01-2.42); p = 0.045).. In two independent real-world cohorts, combination BRAF/MEK inhibitors were associated with increased CVAEs compared to monotherapy, especially HF, and hypertension. Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Azetidines; Benzimidazoles; Carbamates; Carcinoma, Non-Small-Cell Lung; Cardiotoxicity; Cardiovascular Diseases; Colonic Neoplasms; Cross-Sectional Studies; Female; Heart Failure; Humans; Hypertension; Imidazoles; Lung Neoplasms; Male; Melanoma; Middle Aged; Mitogen-Activated Protein Kinase Kinases; Oximes; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Pyridones; Pyrimidinones; Registries; Regression Analysis; Skin Neoplasms; Sulfonamides; Vemurafenib; Venous Thromboembolism; Young Adult | 2021 |
Preparation of curcumin-poly (allyl amine) hydrochloride based nanocapsules: Piperine in nanocapsules accelerates encapsulation and release of curcumin and effectiveness against colon cancer cells.
Curcumin (CUR) is a natural polyphenol present in the rhizomes of Curcuma longa and possesses diverse pharmacological effects, especially anti-carcinogenic effects against several types of cancers. Unfortunately, this novel compound has poor aqueous solubility and bioavailability that limit its pharmaceutical effects. The use of polymeric nanocapsules has been applied in order to overcome such problems. Thus, our present study aimed at developing two novel polymeric nanoparticles (NPs) systems that encapsulate either curcumin alone (CURN) or with piperine (CURPN), which acts as a glucuronidation inhibitor and increases the bioavailability of CUR. The NPs were successfully designed by self-assembled nanoprecipitation method and their characteristics were identified by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and Zeta potential analysis. The drug release profiles of NPs were monitored under different pH, and their cytotoxic effects were assessed in vitro against Caco-2 cells and in vivo against dimethylhydrazine-induced colon cancer in mice. The FTIR and XRD analyses and SEM images showed amorphous and spherical shaped CURN and CURPN of 80-100 nm sized diameter. In vitro drug release study showed that pH triggered the maximum release of CUR in basic medium compared to acidic and neutral media, and following Higuchi model. CUR nanoencapsulation enhanced its physiochemical properties and drug loading and release. In vitro and in vivo studies showed that CUR NPs exerted selective and potential cytotoxic effects against colon cancer cells. The addition of piperine facilitated the encapsulation and drug loading of CUR. Thus, CUR nanoencapsulation enhanced the solubility and bioavailability of curcumin rendering it more effective against colon cancer. Topics: Alkaloids; Animals; Antineoplastic Agents; Benzodioxoles; Caco-2 Cells; Colonic Neoplasms; Curcumin; Female; Humans; Mice; Mice, Inbred BALB C; Nanocapsules; Piperidines; Polyamines; Polyunsaturated Alkamides | 2020 |
Neuroprotective effect of alogliptin on oxaliplatin-induced peripheral neuropathy in vivo and in vitro.
Oxaliplatin is a platinum-based antineoplastic drug commonly used for treating colorectal, gastric, and pancreatic cancer. However, it frequently causes peripheral neuropathy as dose-limiting toxicity and is lacking a strategy for prevention. Alogliptin, a dipeptidyl peptidase 4 (DPP-4) inhibitor, is an oral antidiabetic drug. Previous studies have shown that DPP-4 inhibitors have pleiotropic effects, including neuroprotection. In this study, we investigated the effects of alogliptin on oxaliplatin-induced peripheral neuropathy using in vitro and in vivo models. In PC12 cells, alogliptin attenuated neurite disorders induced by oxaliplatin and cisplatin. The repeated injection of oxaliplatin caused mechanical allodynia and axonal degeneration of the sciatic nerve in rats. These neuropathies were ameliorated by co-administration of alogliptin. Moreover, alogliptin did not attenuate tumor cytotoxicity of oxaliplatin in the cultured colon, gastric, or pancreatic cancer cell lines and tumor-bearing mice. These findings suggest that alogliptin may be beneficial for preventing oxaliplatin-induced peripheral neuropathy. Topics: Allografts; Animals; Antineoplastic Agents; Axons; Cell Differentiation; Cell Line, Tumor; Cisplatin; Colonic Neoplasms; Dose-Response Relationship, Drug; HCT116 Cells; Humans; Hyperalgesia; Male; Mice; Mice, Inbred BALB C; Neurites; Neuroprotective Agents; Oxaliplatin; PC12 Cells; Peripheral Nervous System Diseases; Piperidines; Rats; Rats, Sprague-Dawley; Sciatic Nerve; Tumor Burden; Uracil | 2020 |
Cytotoxic activity of bromodomain inhibitor NVS-CECR2-1 on human cancer cells.
Bromodomain (BRD), a protein module that recognizes acetylated lysine residues on histones and other proteins, has recently emerged as a promising therapeutic target for human diseases such as cancer. While most of the studies have been focused on inhibitors against BRDs of the bromo- and extra-terminal domain (BET) family proteins, non-BET family BRD inhibitors remain largely unexplored. Here, we investigated a potential anticancer activity of the recently developed non-BET family BRD inhibitor NVS-CECR2-1 that targets the cat eye syndrome chromosome region, candidate 2 (CECR2). We show that NVS-CECR2-1 inhibits chromatin binding of CECR2 BRD and displaces CECR2 from chromatin within cells. NVS-CECR2-1 exhibits cytotoxic activity against various human cancer cells, killing SW48 colon cancer cells in particular with a submicromolar half maximum inhibition value mainly by inducing apoptosis. The sensitivity of the cancer cells to NVS-CECR2-1 is reduced by CECR2 depletion, suggesting that NVS-CECR2-1 exerts its activity by targeting CECR2. Interestingly, our data show that NVS-CECR2-1 also kills cancer cells by CECR2-independent mechanism. This study reports for the first time the cancer cell cytotoxic activity for NVS-CECR2-1 and provides a possibility of this BRD inhibitor to be developed as an anticancer therapeutic agent. Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Chromatin; Colonic Neoplasms; Humans; Indoles; Inhibitory Concentration 50; Neoplasms; Piperidines; Proteins; Pyrimidines; Transcription Factors | 2020 |
MEK inhibition suppresses B regulatory cells and augments anti-tumor immunity.
Mitogen-activated protein kinase (MAPK) kinase (MEK) is an integral component of the RAS pathway and a therapeutic target in RAS-driven cancers. Although tumor responses to MEK inhibition are rarely durable, MEK inhibitors have shown substantial activity and durable tumor regressions when combined with systemic immunotherapies in preclinical models of RAS-driven tumors. MEK inhibitors have been shown to potentiate anti-tumor T cell immunity, but little is known about the effects of MEK inhibition on other immune subsets, including B cells. We show here that treatment with a MEK inhibitor reduces B regulatory cells (Bregs) in vitro, and reduces the number of Bregs in tumor draining lymph nodes in a colorectal cancer model in vivo. MEK inhibition does not impede anti-tumor humoral immunity, and B cells contribute meaningfully to anti-tumor immunity in the context of MEK inhibitor therapy. Treatment with a MEK inhibitor is associated with improved T cell infiltration and an enhanced response to anti-PD1 immunotherapy. Together these data indicate that MEK inhibition may reduce Bregs while sparing anti-tumor B cell function, resulting in enhanced anti-tumor immunity. Topics: Animals; Azetidines; B-Lymphocytes, Regulatory; Cell Line, Tumor; Colonic Neoplasms; Colorectal Neoplasms; Extracellular Signal-Regulated MAP Kinases; Genes, ras; Humans; Immunotherapy; Male; Mice; Mice, Inbred BALB C; Mitogen-Activated Protein Kinase Kinases; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Xenograft Model Antitumor Assays | 2019 |
SHP2 Drives Adaptive Resistance to ERK Signaling Inhibition in Molecularly Defined Subsets of ERK-Dependent Tumors.
Pharmacologic targeting of components of ERK signaling in ERK-dependent tumors is often limited by adaptive resistance, frequently mediated by feedback-activation of RTK signaling and rebound of ERK activity. Here, we show that combinatorial pharmacologic targeting of ERK signaling and the SHP2 phosphatase prevents adaptive resistance in defined subsets of ERK-dependent tumors. In each tumor that was sensitive to combined treatment, p(Y542)SHP2 induction was observed in response to ERK signaling inhibition. The strategy was broadly effective in TNBC models and tumors with RAS mutations at G12, whereas tumors with RAS(G13D) or RAS(Q61X) mutations were resistant. In addition, we identified a subset of BRAF(V600E) tumors that were resistant to the combined treatment, in which FGFR was found to drive feedback-induced RAS activation, independently of SHP2. Thus, we identify molecular determinants of response to combined ERK signaling and SHP2 inhibition in ERK-dependent tumors. Topics: Animals; Cell Line, Tumor; Colonic Neoplasms; Drug Resistance, Neoplasm; Extracellular Signal-Regulated MAP Kinases; Female; HEK293 Cells; HeLa Cells; HT29 Cells; Humans; MAP Kinase Signaling System; Mice; Mice, Nude; Neoplasms; Piperidines; Protein Kinase Inhibitors; Protein Tyrosine Phosphatase, Non-Receptor Type 11; Pyrimidines; Signal Transduction; Xenograft Model Antitumor Assays | 2019 |
Inhibition of cyclin-dependent kinases by AT7519 is effective to overcome chemoresistance in colon and cervical cancer.
Cyclin-dependent kinases (CDK), a family of heterodimeric kinases that play central roles in regulation of cell cycle progression and transcription, have garnered attention in recent years because their aberrant activity has been reported in a wide variety of human cancers. AT7519 is a multitargeted CDK inhibitor that is currently in clinical trials for the treatment of refractory blood cancers. In this work, we are the first to provide preclinical evidence that AT7519 is an attractive candidate to overcome chemoresistance in colon and cervical cancer. We show that AT7519 is effective in targeting a panel of colon and cervical cancer cell lines, with IC50 range from 0.1 to 1 μM. Importantly, AT7519 at similar IC50 range inhibits growth and induces apoptosis of paclitaxel-resistant cervical cancer cells and 5-FU-resistant colon cancer cells. AT7519 at sublethal concentration remarkably augments the inhibitory effects of 5-FU and paclitaxel in colon and cervical cancer cells. Mechanistically, we show that AT7519 suppresses phosphorylation of CDK1, CDK2 and RNA polymerase II in chemoresistant colon and cervical cancer cells. We further confirm the efficacy of AT7519 and its mechanisms of the action using two independent chemoresistant xenograft mouse models: 5-FU-resistant colony cancer xenograft and paclitaxel-resistant cervical cancer xenograft. Our findings support the clinical trials of AT7519 for cancer treatment. Our work also demonstrates the therapeutic value of inhibiting CDK in chemoresistant cancers. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Colonic Neoplasms; Cyclin-Dependent Kinases; Drug Resistance, Neoplasm; Female; Humans; Mice, Inbred BALB C; Mice, Nude; Phosphorylation; Piperidines; Protein Kinase Inhibitors; Pyrazoles; RNA Polymerase II; Uterine Cervical Neoplasms | 2019 |
NAD metabolism fuels human and mouse intestinal inflammation.
Nicotinamide phosphoribosyltransferase (NAMPT, also referred to as pre-B cell colony-enhancing factor or visfatin) is critically required for the maintenance of cellular nicotinamide adenine dinucleotide (NAD) supply catalysing the rate-limiting step of the NAD. We investigated the impact of NAMPT inhibition by the small-molecule inhibitor FK866 in the dextran sulfate sodium (DSS) model of colitis and the azoxymethane/DSS model of colitis-associated cancer. The impact of NAD depletion on differentiation of mouse and human primary monocytes/macrophages was studied in vitro. Finally, we tested the efficacy of FK866 compared with dexamethasone and infliximab in lamina propria mononuclear cells (LPMNC) isolated from patients with IBD.. Our data emphasise the importance of NAD immunometabolism for mucosal immunity and highlight FK866-mediated NAMPT blockade as a promising therapeutic approach in acute intestinal inflammation. Topics: Acrylamides; Animals; Cell Differentiation; Colitis, Ulcerative; Colonic Neoplasms; Dexamethasone; Energy Metabolism; Gastrointestinal Agents; Humans; Infliximab; Intestinal Mucosa; Macrophages; Mice; Monocytes; NAD; Nicotinamide Phosphoribosyltransferase; Piperidines | 2018 |
Discovery of Novel and Potent Stearoyl Coenzyme A Desaturase 1 (SCD1) Inhibitors as Anticancer Agents.
A lead compound A was identified previously as an stearoyl coenzyme A desaturase (SCD) inhibitor during research on potential treatments for obesity. This compound showed high SCD1 binding affinity, but a poor pharmacokinetic (PK) profile and limited chemical accessibility, making it suboptimal for use in anticancer research. To identify potent SCD1 inhibitors with more promising PK profiles, we newly designed a series of 'non-spiro' 4, 4-disubstituted piperidine derivatives based on molecular modeling studies. As a result, we discovered compound 1a, which retained moderate SCD1 binding affinity. Optimization around 1a was accelerated by analyzing Hansch-Fujita and Hammett constants to obtain 4-phenyl-4-(trifluoromethyl)piperidine derivative 1n. Fine-tuning of the azole moiety of 1n led to compound 1o (T-3764518), which retained nanomolar affinity and exhibited an excellent PK profile. Reflecting the good potency and PK profile, orally administrated compound 1o showed significant pharmacodynamic (PD) marker reduction (at 0.3mg/kg, bid) in HCT116 mouse xenograft model and tumor growth suppression (at 1mg/kg, bid) in 786-O mouse xenograft model. In conclusion, we identified a new series of SCD1 inhibitors, represented by compound 1o, which represents a promising new chemical tool suitable for the study of SCD1 biology as well as the potential development of novel anticancer therapies. Topics: Animals; Antineoplastic Agents; Colonic Neoplasms; Drug Evaluation, Preclinical; Enzyme Inhibitors; HCT116 Cells; Humans; Inhibitory Concentration 50; Mice; Mice, Inbred BALB C; Mice, Nude; Microsomes, Liver; Oxadiazoles; Piperidines; Protein Binding; Pyridazines; Spiro Compounds; Stearoyl-CoA Desaturase; Structure-Activity Relationship; Transplantation, Heterologous | 2017 |
Clinical Pearls in Geriatrics.
Topics: Acetaminophen; Aged; Aged, 80 and over; Automobile Driving; Cognition Disorders; Cognitive Dysfunction; Colonic Neoplasms; Delirium; Dementia; Donepezil; Early Detection of Cancer; Estrogen Replacement Therapy; Female; Geriatrics; Humans; Indans; Male; Neuropsychological Tests; Nootropic Agents; Oxycodone; Piperidines; Urinary Incontinence; Watchful Waiting | 2017 |
Fatty acid amide hydrolase (FAAH) inhibitor PF-3845 reduces viability, migration and invasiveness of human colon adenocarcinoma Colo-205 cell line: an in vitro study.
Earlier reports suggest that the endocannabinoids may play a role of endogenous tumor growth modulators. In this study, we investigated whether inhibition of the enzymes involved in the synthesis and degradation of endocannabinoids may reduce colorectal cancer cell invasion and migration. The human colon adenocarcinoma Colo-205 cells were incubated with PF-3845, JZL-184 and RHC-80267 (fatty acid amide hydrolase (FAAH), mono- (MAGL) and diacylglycerol lipase (DAGL) inhibitors, respectively) for 48 h. The MTT colorimetric assay was performed to quantify cell viability. Next, Colo-205 cells were incubated with PF-3845 alone or with PF-3845 together with selected antagonists: AM 251, AM 630, SB 366791, RN 1734 and G-15 (CB Topics: Adenocarcinoma; Amidohydrolases; Antineoplastic Agents; Benzodioxoles; Cell Line, Tumor; Cell Movement; Cell Survival; Colonic Neoplasms; Cyclohexanones; Enzyme Inhibitors; Humans; Piperidines; Pyridines; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2017 |
ADAM17 is a Tumor Promoter and Therapeutic Target in Western Diet-associated Colon Cancer.
Epidermal growth factor receptors (EGFR) are required for tumor promotion by Western diet. The metalloprotease, ADAM17 activates EGFR by releasing pro-EGFR ligands. ADAM17 is regulated by G-protein-coupled receptors, including CXCR4. Here we investigated CXCR4-ADAM17 crosstalk and examined the role of ADAM17 in tumorigenesis.. We used CXCR4 inhibitor, AMD3100 and ADAM17 inhibitor, BMS566394 to assess CXCR4-ADAM17 crosstalk in colon cancer cells. We compared the expression of CXCR4 ligand, CXCL2, and ADAM17 in mice fed Western diet versus standard diet. Separately, mice were treated with marimastat, a broad-spectrum ADAM17 inhibitor, or AMD3100 to assess EGFR activation by ADAM17 and CXCR4. Using Apc-mutant Min mice, we investigated the effects of ADAM17/10 inhibitor INCB3619 on tumorigenesis. To assess the effects of colonocyte ADAM17, mice with ADAM17 conditional deletion were treated with azoxymethane (AOM). ADAM17 expression was also compared in colonocytes from primary human colon cancers and adjacent mucosa.. CXCL12 treatment activated colon cancer cell EGFR signals, and CXCR4 or ADAM17 blockade reduced this activation. In vivo, Western diet increased CXCL12 in stromal cells and TGFα in colonocytes. Marimastat or AMD3100 caused >50% reduction in EGFR signals (P < 0.05). In Min mice, INCB3619 reduced EGFR signals in adenomas and inhibited intestinal tumor multiplicity (P < 0.05). In the AOM model, colonocyte ADAM17 deletion reduced EGFR signals and colonic tumor development (P < 0.05). Finally, ADAM17 was upregulated >2.5-fold in human malignant colonocytes.. ADAM17 is a Western diet-inducible enzyme activated by CXCL12-CXCR4 signaling, suggesting the pathway: Western diet→CXCL12→CXCR4→ADAM17→TGFα→EGFR. ADAM17 might serve as a druggable target in chemoprevention strategies. Clin Cancer Res; 23(2); 549-61. ©2016 AACR. Topics: ADAM17 Protein; Animals; Carcinogenesis; Cell Line, Tumor; Chemokine CXCL2; Colonic Neoplasms; Diet, Western; ErbB Receptors; Humans; Ligands; Mice; Piperidines; Receptors, CXCR4; Signal Transduction; Spiro Compounds; Transforming Growth Factor alpha | 2017 |
MAP Kinase Inhibition Promotes T Cell and Anti-tumor Activity in Combination with PD-L1 Checkpoint Blockade.
Targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) can induce regression of tumors bearing activating mutations in the Ras pathway but rarely leads to tumor eradication. Although combining MEK inhibition with T-cell-directed immunotherapy might lead to more durable efficacy, T cell responses are themselves at least partially dependent on MEK activity. We show here that MEK inhibition did profoundly block naive CD8(+) T cell priming in tumor-bearing mice, but actually increased the number of effector-phenotype antigen-specific CD8(+) T cells within the tumor. MEK inhibition protected tumor-infiltrating CD8(+) T cells from death driven by chronic TCR stimulation while sparing cytotoxic activity. Combining MEK inhibition with anti-programmed death-ligand 1 (PD-L1) resulted in synergistic and durable tumor regression even where either agent alone was only modestly effective. Thus, despite the central importance of the MAP kinase pathway in some aspects of T cell function, MEK-targeted agents can be compatible with T-cell-dependent immunotherapy. Topics: Animals; Antibodies, Monoclonal; Apoptosis; Azetidines; B7-H1 Antigen; Carcinoma; CD8-Positive T-Lymphocytes; Cell Cycle Checkpoints; Cell Line, Tumor; Colonic Neoplasms; Drug Synergism; Drug Therapy; Drug Therapy, Combination; Extracellular Signal-Regulated MAP Kinases; Humans; Immunotherapy; Lymphocyte Activation; Mice; Mice, Inbred BALB C; Molecular Targeted Therapy; Neoplasm Transplantation; Piperidines | 2016 |
Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer.
Mutations in the adenomatous polyposis coli (APC) gene are common in colorectal cancer (CRC), and more than 90% of those mutations generate stable truncated gene products. We describe a chemical screen using normal human colonic epithelial cells (HCECs) and a series of oncogenically progressed HCECs containing a truncated APC protein. With this screen, we identified a small molecule, TASIN-1 (truncated APC selective inhibitor-1), that specifically kills cells with APC truncations but spares normal and cancer cells with wild-type APC. TASIN-1 exerts its cytotoxic effects through inhibition of cholesterol biosynthesis. In vivo administration of TASIN-1 inhibits tumor growth of CRC cells with truncated APC but not APC wild-type CRC cells in xenograft models and in a genetically engineered CRC mouse model with minimal toxicity. TASIN-1 represents a potential therapeutic strategy for prevention and intervention in CRC with mutant APC. Topics: Adenomatous Polyposis Coli Protein; Animals; Cell Proliferation; Cholesterol; Colonic Neoplasms; Colorectal Neoplasms; Female; Genes, Tumor Suppressor; HCT116 Cells; Humans; Male; Mice; Mice, Nude; Molecular Targeted Therapy; Mutation; Piperidines; Sterol Regulatory Element Binding Protein 2; Sulfonamides; Transgenes; Xenograft Model Antitumor Assays | 2016 |
Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress.
Piperine, a piperidine alkaloid present in black pepper, inhibits the growth of cancer cells, although the mechanism of action is not well understood. In this study, we show that piperine (75-150 µM) inhibited the growth of several colon cancer cell lines but had little effect on the growth of normal fibroblasts and epithelial cells. Piperine inhibited HT-29 colon carcinoma cell proliferation by causing G1 phase cell cycle arrest that was associated with decreased expression of cyclins D1 and D3 and their activating partner cyclin-dependent kinases 4 and 6, as well as reduced phosphorylation of the retinoblastoma protein and up-regulation of p21/WAF1 and p27/KIP1 expression. In addition, piperine caused hydroxyl radical production and apoptosis that was partially dependent on the production of reactive oxygen species. Piperine-treated HT-29 cells showed loss of mitochondrial membrane integrity and cleavage of poly (ADP-ribose) polymerase-1, as well as caspase activation and reduced apoptosis in the presence of the pan-caspase inhibitor zVAD-FMK. Increased expression of the endoplasmic reticulum stress-associated proteins inositol-requiring 1α protein, C/EBP homologous protein, and binding immunoglobulin protein, and activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, as well as decreased phosphorylation of Akt and reduced survivin expression were also observed in piperine-treated HT-29 cells. Furthermore, piperine inhibited colony formation by HT-29 cells, as well as the growth of HT-29 spheroids. Cell cycle arrest and endoplasmic reticulum stress-associated apoptosis following piperine treatment of HT-29 cells provides the first evidence that piperine may be useful in the treatment of colon cancer. Topics: Alkaloids; Apoptosis; Benzodioxoles; Cell Cycle Checkpoints; Cell Proliferation; Colonic Neoplasms; Cyclin-Dependent Kinases; Cyclins; Endoplasmic Reticulum Stress; Epithelial Cells; Fibroblasts; G1 Phase; HT29 Cells; Humans; Inhibitor of Apoptosis Proteins; Mitochondria; p38 Mitogen-Activated Protein Kinases; Piper nigrum; Piperidines; Polyunsaturated Alkamides; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-jun; Reactive Oxygen Species; Survivin; Up-Regulation | 2015 |
Targeting G-Quadruplex DNA Structures by EMICORON Has a Strong Antitumor Efficacy against Advanced Models of Human Colon Cancer.
We previously identified EMICORON as a novel G-quadruplex (G4) ligand showing high selectivity for G4 structures over the duplex DNA, causing telomere damage and inhibition of cell proliferation in transformed and tumor cells. Here, we evaluated the antitumoral effect of EMICORON on advanced models of human colon cancer that could adequately predict human clinical outcomes. Our results showed that EMICORON was well tolerated in mice, as no adverse effects were reported, and a low ratio of sensitivity across human and mouse bone marrow cells was observed, indicating a good potential for reaching similar blood levels in humans. Moreover, EMICORON showed a marked therapeutic efficacy, as it inhibited the growth of patient-derived xenografts (PDX) and orthotopic colon cancer and strongly reduced the dissemination of tumor cells to lymph nodes, intestine, stomach, and liver. Finally, activation of DNA damage and impairment of proliferation and angiogenesis are proved to be key determinants of EMICORON antitumoral activity. Altogether, our results, performed on advanced experimental models of human colon cancer that bridge the translational gap between preclinical and clinical studies, demonstrated that EMICORON had an unprecedented antitumor activity warranting further studies of EMICORON-based combination treatments. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Colonic Neoplasms; G-Quadruplexes; Humans; Imides; Male; Metabolomics; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred NOD; Mice, Nude; Mice, SCID; Microscopy, Fluorescence; Nucleic Acid Conformation; Piperidines; Treatment Outcome; Tumor Burden; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2015 |
Cytotoxicity of PEGylated liposomes co-loaded with novel pro-apoptotic drug NCL-240 and the MEK inhibitor cobimetinib against colon carcinoma in vitro.
The overactivation of signaling pathways, such as the PI3K and MAPK, which are crucial to cell growth and survival, is a common feature in many cancer types. Though a number of advances have been made in the development of molecular agents targeting these pathways, their application as monotherapies has not significantly improved clinical outcome. A novel liposomal preparation was developed, co-loaded with NCL-240, a small-molecule inhibitor of the PI3K/mTOR pathway, along with cobimetinib, a MEK/ERK pathway inhibitor. This combination drug-loaded nanocarrier, (N+C)-LP, was able to significantly enhance the cytotoxicity of these drugs against colon carcinoma cells in vitro demonstrating a clear synergistic effect (combination index of 0.79). The (N+C)-LP was also able to induce cell cycle arrest of the cells, specifically in the G1 phase thereby preventing their progression to the S-phase, typical of the action of MEK inhibitors. Analyzing the apoptotic events, it was found that this effect on cell cycle regulation is followed by the induction of apoptosis. The quantified distribution of apoptotic events showed that the (N+C)-LP induced apoptosis significantly by over 3-4 fold (P<0.001) compared to other treatment groups. The co-loaded liposomal preparation was also targeted to the transferrin receptor of cancer cells by modifying the surface of the liposome with transferrin. FACS analysis showed that transferrin-mediated targeting enhanced the association of liposomes to HCT 116 cells by almost 5-fold. This could potentially allow for cancer cell-specific effects in vivo thereby minimizing any non-specific interactions of the liposomes with non-cancerous cells. Taken together, this study clearly shows that the combined inhibition of the PI3K and MEK pathways correlates with a significant anti-proliferative effect, due to cell-cycle regulation leading to the induction of apoptosis. Topics: Apoptosis; Azetidines; Chlorophenols; Colonic Neoplasms; HCT116 Cells; Humans; Liposomes; Mitogen-Activated Protein Kinase Kinases; Phosphoinositide-3 Kinase Inhibitors; Piperidines; Polyethylene Glycols; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Triazoles | 2015 |
Label-free single cell kinetics of the invasion of spheroidal colon cancer cells through 3D Matrigel.
This article reports label-free, real-time, and single-cell quantification of the invasion of spheroidal colon cancer cells through three-dimensional (3D) Matrigel using a resonant waveguide grating (RWG) imager. This imager employs a time-resolved swept wavelength interrogation scheme to monitor cell invasion and adhesion with a temporal resolution up to 3 s and a spatial resolution of 12 μm. As the model system, spheroids of human colorectal adenocarcinoma HT-29 cells are generated by culturing the cells in 96-well round-bottom ultralow attachment plates. 3D Matrigel is formed by its gelation in 384-well RWG biosensor microplates. The invasion and adhesion of spheroidal HT29 cells is initiated by placing individual spheroids onto the Matrigel-coated biosensors. The time series RWG images are obtained and used to extract the optical signatures arising from the adhesion after the cells are dissociated from the spheroids and invade through the 3D Matrigel. Compound profiling shows that epidermal growth factor accelerates cancer cell invasion, while vandetanib, a multitarget kinase inhibitor, dose-dependently inhibits invasion. This study demonstrates that the label-free imager can monitor in real-time the invasion of spheroidal cancer cells through 3D matrices. Topics: Biosensing Techniques; Cell Culture Techniques; Cell Movement; Collagen; Colonic Neoplasms; Drug Combinations; Epidermal Growth Factor; HT29 Cells; Humans; Kinetics; Laminin; Microscopy; Piperidines; Protein Kinase Inhibitors; Proteoglycans; Quinazolines; Spheroids, Cellular | 2014 |
The cannabinoid WIN 55,212-2 decreases specificity protein transcription factors and the oncogenic cap protein eIF4E in colon cancer cells.
2,3-Dihydro-5-methyl-3-([morpholinyl]methyl)pyrollo(1,2,3-de)-1,4-benzoxazinyl]-[1-naphthaleny]methanone [WIN 55,212-2, (WIN)] is a synthetic cannabinoid that inhibits RKO, HT-29, and SW480 cell growth, induced apoptosis, and downregulated expression of survivin, cyclin D1, EGF receptor (EGFR), VEGF, and its receptor (VEGFR1). WIN also decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4, and this is consistent with the observed downregulation of the aforementioned Sp-regulated genes. In addition, we also observed by RNA interference (RNAi) that the oncogenic cap protein eIF4E was an Sp-regulated gene also downregulated by WIN in colon cancer cells. WIN-mediated repression of Sp proteins was not affected by cannabinoid receptor antagonists or by knockdown of the receptor but was attenuated by the phosphatase inhibitor sodium orthovanadate or by knockdown of protein phosphatase 2A (PP2A). WIN-mediated repression of Sp1, Sp3, and Sp4 was due to PP2A-dependent downregulation of microRNA-27a (miR-27a) and induction of miR-27a-regulated ZBTB10, which has previously been characterized as an "Sp repressor." The results show that the anticancer activity of WIN is due, in part, to PP2A-dependent disruption of miR-27a:ZBTB10 and ZBTB10-mediated repression of Sp transcription factors and Sp-regulated genes, including eIF4E. Topics: Benzoxazines; Cannabinoid Receptor Antagonists; Cell Line, Tumor; Cell Proliferation; Cell Survival; Colonic Neoplasms; Eukaryotic Initiation Factor-4E; Gene Expression Regulation, Neoplastic; HT29 Cells; Humans; MicroRNAs; Morpholines; Naphthalenes; Piperidines; Protein Phosphatase 2; Pyrazoles; Repressor Proteins; Sp Transcription Factors | 2013 |
Alkaloids from Microcos paniculata with cytotoxic and nicotinic receptor antagonistic activities.
Microcos paniculata is a large shrub or small tree that grows in several countries in South and Southeast Asia. In the present study, three new piperidine alkaloids, microgrewiapines A-C (1-3), as well as three known compounds, inclusive of microcosamine A (4), 7'-(3',4'-dihydroxyphenyl)-N-[4-methoxyphenyl)ethyl]propenamide (5), and liriodenine (6), were isolated from cytotoxic fractions of the separate chloroform-soluble extracts of the stem bark, branches, and leaves of M. paniculata. Compounds 1-6 and 1a (microgrewiapine A 3-acetate) showed a range of cytotoxicity values against the HT-29 human colon cancer cell line. When evaluated for their effects on human α3β4 or α4β2 nicotinic acetylcholine receptors (nAChRs), several of these compounds were shown to be active as nAChR antagonists. As a result of this study, microgrewiapine A (1) was found to be a selective cytotoxic agent for colon cancer cells over normal colon cells and to exhibit nicotinic receptor antagonistic activity for both the hα3β4 and hα4β2 receptor subtypes. Topics: Alkaloids; Bridged Bicyclo Compounds, Heterocyclic; Colonic Neoplasms; HT29 Cells; Humans; Malvaceae; Molecular Structure; Nicotinic Antagonists; Piperidines; Plant Leaves; Receptors, Nicotinic; Vietnam | 2013 |
Targeting of substance P induces cancer cell death and decreases the steady state of EGFR and Her2.
NK1 is a tachykinin receptor highly relevant to tumorigenesis and metastasis development in breast cancer and other carcinomas. Despite the substantial efforts done to develop potent NK1 receptor antagonists, none of these antagonists had shown good antitumor activity in clinical trials. Now, we have tested the effect of inhibition of the neuropeptide Substance P (SP), a NK1 ligand, as a potential therapeutic approach in cancer. We found that the inhibition of SP with antibodies strongly inhibit cell growth and induce apoptosis in breast, colon, and prostate cancer cell lines. These effects were accompained by a decrease in the mitogen-activated kinase singaling pathway. Interestingly, in some cell lines SP abrogation decreased the steady state of Her2 and EGFR, suggesting that SP-mediated signaling is important for the basal activity of these ErbB receptors. In consequence, we observed a blockade of the cell cycle progression and the inhibition of several cell cycle-related proteins including mTOR. SP inhibition also induced cell death in cell lines resistant to Lapatinib and Trastuzumab that have increased levels of active Her2, suggesting that this therapeutic approach could be also effective for those cancers resistant to current anti-ErbB therapies. Thus, we propose a new therapeutic strategy for those cancers that express NK1 receptor and/or other tachykinin receptors, based in the immuno-blockade of the neuropeptide SP. Topics: Antibodies; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Apoptosis; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Drug Resistance, Neoplasm; ErbB Receptors; Female; Humans; Lapatinib; Ligands; Male; Neoplasms; Neurokinin-1 Receptor Antagonists; Piperidines; Prostatic Neoplasms; Quinazolines; Receptor, ErbB-2; Receptors, Neurokinin-1; Signal Transduction; Substance P; Trastuzumab | 2012 |
Stevens-Johnson Syndrome induced by masitinib.
Topics: Adenocarcinoma; Benzamides; Colonic Neoplasms; Drug Eruptions; Humans; Male; Middle Aged; Piperidines; Protein Kinase Inhibitors; Pyridines; Stevens-Johnson Syndrome; Thiazoles | 2012 |
Resveratrol and piperine enhance radiosensitivity of tumor cells.
The use of ionizing radiation (IR) is essential for treating many human cancers. However, radioresistance markedly impairs the efficacy of tumor radiotherapy. IR enhances the production of reactive oxygen species (ROS) in a variety of cells which are determinant components in the induction of apoptosis. Much interest has developed to augment the effect of radiation in tumors by combining it with radiosensitizers to improve the therapeutic ratio. In the current study, the radiosensitizing effects of resveratrol and piperine on cancer cells were evaluated. Cancer cell lines treated with these natural products exhibited significantly augmented IR-induced apoptosis and loss of mitochondrial membrane potential, presumably through enhanced ROS generation. Applying natural products as sensitizers for IR-induced apoptotic cell death offers a promising therapeutic approach to treat cancer. Topics: Alkaloids; Anticarcinogenic Agents; Apoptosis; Benzodioxoles; Blotting, Western; Colonic Neoplasms; Humans; Melanoma, Experimental; Membrane Potential, Mitochondrial; Oxidation-Reduction; Piper nigrum; Piperidines; Polyunsaturated Alkamides; Radiation Tolerance; Radiation-Sensitizing Agents; Radiation, Ionizing; Reactive Oxygen Species; Resveratrol; Stilbenes; Tumor Cells, Cultured | 2012 |
Virosecurinine induces apoptosis by affecting Bcl-2 and Bax expression in human colon cancer SW480 cells.
Virosecurinine, the major alkaloid isolated from Securinega suffruticosa Pall Rehd was found to exhibit growth inhibition and cytotoxicity against huaman colon cancer SW480 cells via the microculture tetrazolium (MTT) assay. Due to its greater cytotoxic potency and selectivity towards SW480 cells, flow cytometry was used to analyze the cell cycle distribution of control and treated SW480 cells whereas Annexin V-FITC/PI flow cytometry analysis was carried out to confirm apoptosis induced by virosecurinine in SW480 cells. Apoptotic regulatory genes were determined by RT-PCR analysis. Virosecurinine was found to induce G1/S cell cycle arrest which led to predominantly apoptotic mode of cell death. Mechanistically, virosecurinine was found to up-regulated the Bax gene expression and down-regulated the Bcl-2 expression in SW480, The ratio of Bcl-2 to Bax was significantly decreased. Hence, we suggest that virosecurinine induced apoptosis in SW480 cells by affecting the expression of bcl-2 and bax. Topics: Actins; Alkaloids; Antineoplastic Agents, Phytogenic; Apoptosis; Azepines; bcl-2-Associated X Protein; Cell Cycle; Cell Line, Tumor; Cell Survival; Colonic Neoplasms; Coloring Agents; Euphorbiaceae; Gene Expression; Humans; Lactones; Piperidines; Proto-Oncogene Proteins c-bcl-2; Real-Time Polymerase Chain Reaction; Tetrazolium Salts; Thiazoles | 2012 |
Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs.
Curcumin inhibits growth of several cancer cell lines, and studies in this laboratory in bladder and pancreatic cancer cells show that curcumin downregulates specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and pro-oncogenic Sp-regulated genes. In this study, we investigated the anticancer activity of curcumin and several synthetic cyclohexanone and piperidine analogs in colon cancer cells.. The effects of curcumin and synthetic analogs on colon cancer cell proliferation and apoptosis were determined using standardized assays. The changes in Sp proteins and Sp-regulated gene products were analysed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a), miR-20a, miR-17-5p and ZBTB10 and ZBTB4 mRNA expression.. The IC50 (half-maximal) values for growth inhibition (24 hr) of colon cancer cells by curcumin and synthetic cyclohexanone and piperidine analogs of curcumin varied from 10 μM for curcumin to 0.7 μM for the most active synthetic piperidine analog RL197, which was used along with curcumin as model agents in this study. Curcumin and RL197 inhibited RKO and SW480 colon cancer cell growth and induced apoptosis, and this was accompanied by downregulation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and Sp-regulated genes including the epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (c-MET), survivin, bcl-2, cyclin D1 and NFκB (p65 and p50). Curcumin and RL197 also induced reactive oxygen species (ROS), and cotreatment with the antioxidant glutathione significantly attenuated curcumin- and RL197-induced growth inhibition and downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes. The mechanism of curcumin-/RL197-induced repression of Sp transcription factors was ROS-dependent and due to induction of the Sp repressors ZBTB10 and ZBTB4 and downregulation of microRNAs (miR)-27a, miR-20a and miR-17-5p that regulate these repressors.. These results identify a new and highly potent curcumin derivative and demonstrate that in cells where curcumin and RL197 induce ROS, an important underlying mechanism of action involves perturbation of miR-ZBTB10/ZBTB4, resulting in the induction of these repressors which downregulate Sp transcription factors and Sp-regulated genes. Topics: Apoptosis; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Curcumin; Cyclin D1; Cyclohexanones; Down-Regulation; ErbB Receptors; Gene Expression Regulation, Neoplastic; Humans; MicroRNAs; NF-kappa B; Piperidines; Proto-Oncogene Proteins c-bcl-2; Proto-Oncogene Proteins c-met; Reactive Oxygen Species; Repressor Proteins; Sp Transcription Factors | 2012 |
L-securinine induced the human colon cancer SW480 cell autophagy and its molecular mechanism.
To investigate the anti-tumor effects of L-securinine inducing colon cancer SW480 cell autophagy and explore its potential molecular mechanism.. MTT method was used to detect the antitumor effect of SW480 cells cultured with L-securinine in vitro. Light and electron microscopy were used to observe SW480 cells treated with L-securinine morphological changes. Flow cytometry was used to observe the apoptoticratio and cell cycle inducing with the L-securinine in SW480 cells, and the autophagic apoptosis ratio was determined by FITC-conjugated annexin V by flow cytometry (FCM). FCM was applied to analysis cell cycle; the expression of autophagy gene Beclin-1 was examined by reverse transcriptase polymerase chain reaction (RT-PCR).. The generation depression effects of SW480 cells cultured in vitro were detected byMTT method (Pb0.05), and there were dosage-time dependent relationships. Numerous autophagic vacuoles and empty vacuoles were observed in SW480 cells treated with 2.5 μM L-securinine for 48 h by electron microscopy, and the process of cell division that got less was observed.Through flow cytometry, a number of observed autophagic cells were obviously increased, and G1/S phase was retarded. L-Securinine tended to arrest cells at the G1 phase of the cell cycle. The percentage of the apoptotic cells increased as treatment duration and concentrations increased. Beclin-1 expression enhanced with L-securinine concentration increased.. L-Securinine has an anti-tumor effect against colon cancer SW480 cell. The L-securinine can induce striking autophagy in SW480 cell in vitro. The autophagy induced by L-securinine is related with upregulating the expression of autophagy gene Beclin-1. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Azepines; Beclin-1; Cell Cycle; Cell Line, Tumor; Colonic Neoplasms; Euphorbiaceae; Flow Cytometry; Gene Expression; Heterocyclic Compounds, 4 or More Rings; Heterocyclic Compounds, Bridged-Ring; Humans; Lactones; Membrane Proteins; Phytotherapy; Piperidines; Plant Extracts; Up-Regulation; Vacuoles | 2011 |
4-N-Hydroxy-4-[1-(sulfonyl)piperidin-4-yl]-butyramides as HDAC inhibitors.
A series of N-substituted 4-alkylpiperidine hydroxamic acids, corresponding to the basic structure of histone deacetylase (HDAC) inhibitors (zinc binding moiety-linker-capping group) has been previously reported by our group. Linker length and aromatic capping group connection were systematically varied to find the optimal geometric parameters. A new series of submicromolar inhibitors was thus identified, which showed antiproliferative activity on HCT-116 colon carcinoma cells. We report here the second part of the strategy used in our research group to find a new class of HDAC inhibitors, namely the SAR study for the compounds bearing a sulfonyl group on the piperidine nitrogen. In the present work, we have considered both sulfonamides and sulfonyl ureas. Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Piperidines; Sulfones | 2011 |
Synergistic inhibition of human colon cancer cell growth by the cannabinoid CB1 receptor antagonist rimonabant and oxaliplatin.
Rimonabant (SR141716), a highly selective cannabinoid receptor antagonist, exerts along with its anti-obesity action, pleiotropic functions affecting a broad range of diseases, from obesity-related co-morbidities to drug dependence and cancer. Several studies suggested an anti-tumour activity of rimonabant in several in vitro and in vivo models. In this study, we compared the anti-proliferative effect of SR141716 in the human colon cancer cell line DLD-1 with oxaliplatin, one of the cytotoxic drugs currently used in the treatment of colorectal cancer. We show that SR141716 inhibits DLD-1 cell proliferation similarly to oxaliplatin and if administered in combination SR141716 potentiated the inhibitory effect caused by oxaliplatin. Assessment of drug interaction was performed calculating combination index that showed a strong synergistic effect between the two drugs added to cells in combination. Our findings suggest that the combined synergic effect of SR141716 and oxaliplatin improves the blocking of colon cancer cell proliferation. Therefore, this combination merits further explorations in preclinical and clinical settings. Topics: Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Drug Synergism; Humans; Organoplatinum Compounds; Oxaliplatin; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; Time Factors | 2010 |
Securinine induces p73-dependent apoptosis preferentially in p53-deficient colon cancer cells.
The identification of agents that preferentially kill cancer cells while protecting normal cells offers the potential to overcome toxicities found in many existing chemotherapeutic agents. Because p53 is frequently inactivated in cancer, agents that preferentially kill p53-null cells and protect wild-type p53-expressing cells are highly desirable chemotherapeutic agents. By using pairs of isogenic colon cancer cell lines that differ only in p53 expression (RKO and HCT116), securinine was found to exhibit these properties. Securinine (30 microM) induces apoptosis in 73% of p53-null HCT116 cells (LD(50) 17.5 microM) as opposed to 17.6% of HCT116 parental cells (LD(50) 50 microM) at 72 h after treatment. The mechanism of securinine-mediated death in p53-deficient cells involves the induction of the p53 family member, p73. Interestingly, the proapoptotic protein p73 is down-regulated in colon cancer cells expressing p53. This differential regulation of p73 in a p53-dependent fashion reveals a novel pathway for preferentially targeting cancer cells. In contrast to p53-deficient cells, cells expressing p53 are protected from cell death through the p53-mediated up-regulation of p21. These studies reveal a novel approach to specifically target colon cancer cells lacking p53 as well as identify a novel clinically relevant pathway to selectively induce p73 in p53-null cells. Topics: Apoptosis; Azepines; Blotting, Western; Caspase Inhibitors; Caspases; Cell Adhesion; Cell Cycle; Cell Proliferation; Colonic Neoplasms; DNA Damage; DNA-Binding Proteins; Heterocyclic Compounds, 4 or More Rings; Heterocyclic Compounds, Bridged-Ring; Humans; Lactones; Nuclear Proteins; Piperidines; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tumor Cells, Cultured; Tumor Protein p73; Tumor Suppressor Protein p53; Tumor Suppressor Proteins | 2010 |
Study of 5HT3 and HT4 receptor expression in HT29 cell line and human colon adenocarcinoma tissues.
Serotonin (5HT) has been shown to be a mitogenic factor in several carcinomas. Its mitogenic effect is elicited through a wide range of 5HT receptor subtypes. In this study, the effects of 5HT, 5HT3 (1-phenylbiguanide hydrochloride) and 5HT4 (cisapride) agonists in promoting the growth of the HT29 cell line and the growth-inhibition effect of the 5HT3 receptor antagonist (Y-25130 hydrochloride) and 5HT4 receptor antagonist (RS 23597-190) were investigated. The expressions of 5HT3 and 5HT4 receptors in human colon cancer tissues and the HT29 cell line were studied.. The growth-promoting and growth-inhibition effects of 5-HT, 5HT3 and 5HT4 agonists and antagonists on the HT29 cell line were studied using MTT assay. Receptor expression has been demonstrated by western blotting.. The results showed that 5HT, 5HT3, and 5HT4 agonists caused significant proliferation of HT29 cells. 5HT3 and 5HT4 receptor antagonists had an inhibitory effect on the growth of these cells. Western blot analysis gave bands from colon tissue extracts and the HT29 cell line.. The results indicate which 5HT3 and 5HT4 receptors are significantly expressed in both colon cancer tissue and the HT29 cell line. Expression for the 5HT3 receptor is more potent. Furthermore, 5HT plays a mitogenic role in colon cancer cells and antagonists of 5HT3, and 5HT4 receptors can inhibit cancer cell growth. Topics: Adenocarcinoma; Aminobenzoates; Biguanides; Blotting, Western; Bridged Bicyclo Compounds, Heterocyclic; Cell Proliferation; Cisapride; Colonic Neoplasms; HT29 Cells; Humans; Oxazines; para-Aminobenzoates; Piperidines; Receptors, Serotonin, 5-HT3; Receptors, Serotonin, 5-HT4; Serotonin 5-HT3 Receptor Agonists; Serotonin 5-HT3 Receptor Antagonists; Serotonin 5-HT4 Receptor Agonists; Serotonin 5-HT4 Receptor Antagonists | 2010 |
A combination of the metabolic enzyme inhibitor APO866 and the immune adjuvant L-1-methyl tryptophan induces additive antitumor activity.
Many types of malignant cells have a higher nicotinamide adenine dinucleotide (NAD) turnover rate than normal cells, as well as the ability to escape immune responses. Indoleamine 2,3-dioxygenase (IDO) is reported to be a negative immune regulator. Overexpression of IDO in dendritic cells is observed in tumor-draining lymph nodes. IDO-expressing dendritic cells suppress T-cell activation and promote immune tolerance. The nicotinamide phosphoribosyl transferase (NAMPT) inhibitor APO866 (also called FK866 or WK175) selectively inhibits tumor growth through intracellular NAD depletion. The IDO-specific inhibitor L-1-methyl-tryptophan (L-1MT) activates immune responses and reduces tumor volume in murine tumor models. We combined L-1MT and APO866 treatments and tested their antitumor effects in the murine gastric and bladder tumor models. In immune-competent mice, a combination of APO866 and L-1MT had a better therapeutic effect than did either L-1MT or APO866 alone. The intracellular level of NAD was suppressed by APO866 but not L-1MT. However, an additive inhibitory effect on tumor growth was not observed in tumor-bearing immune-deficient mice. The new strategy of combining a metabolic inhibitor and an immune adjuvant induced a potent therapeutic effect. Topics: Acrylamides; Animals; Antineoplastic Agents; Cell Line, Tumor; Colonic Neoplasms; Drug Synergism; Drug Therapy, Combination; Female; Indoleamine-Pyrrole 2,3,-Dioxygenase; Liver Neoplasms, Experimental; Mice; Mice, Inbred C3H; Mice, Inbred ICR; Mice, Inbred NOD; Neoplasms, Experimental; Nicotinamide Phosphoribosyltransferase; Piperidines; Tryptophan; Urinary Bladder Neoplasms | 2010 |
Effects of vandetanib on adenoma formation in a dextran sodium sulphate enhanced Apc(MIN/+) mouse model.
The Apc(MIN/+) mouse is a well-characterised model of intestinal tumourigenesis in which animals develop macroscopically detectable adenomas. However, most of the adenomas are formed in the small intestine and resolution of events in the colon, the most relevant site for human disease, is limited. Inducing colitis with dextran sodium sulphate (DSS) can selectively enhance the development of lesions in the colon. We demonstrated that a DSS pre-treatment is well tolerated and effective at inducing colon adenomas in an Apc(MIN/+) mouse model. We then investigated the effect of inhibiting vascular endothelial growth factor (VEGFR)- and epidermal growth factor receptor (EGFR)-dependent signalling pathways on the development of adenomas induced in DSS-pretreated (DSS/Apc(MIN/+)) or non-DSS-pretreated (Apc(MIN/+)) mice using vandetanib (ZD6474), a potent and selective inhibitor of VEGFR and EGFR tyrosine kinase activity. Eight-week old Apc(MIN/+) mice were given either drinking water or 1.8% DSS and then vandetanib (ZD6474) (50 mg/kg/day) or vehicle by oral gavage for 28 days and sacrificed 24 h after the last dose and assessed for adenoma formation in the intestines. DSS pre-treatment was well tolerated and significantly enhanced formation of adenomas in the colon of control Apc(MIN/+) mice. Vandetanib treatment significantly reduced adenoma formation in the small intestine by 68% (P=0.001) and the colon by 77% (from 13.8 to 3.1, P=0.01) of DSS-pretreated Apc(MIN/+) mice. In the Apc(MIN/+) group, vandetanib also reduced the mean number of adenomas in the small intestine by 76% (P<0.001) and in the colon by 60% (from 3.9 to 1.5, P=0.1). DSS-pre-treatment increased the resolution of the model, allowing us to confirm statistically significant effects of vandetanib on the development and growth of colon adenomas in the Apc(MIN/+) mouse. Moreover these preclinical data provide a rationale for studying the effects of vandetanib in early stages of intestinal cancer in the clinic. Topics: Adenoma; Animals; Antineoplastic Agents; beta Catenin; Colitis; Colonic Neoplasms; Dextran Sulfate; Disease Models, Animal; ErbB Receptors; Genes, APC; Intestine, Small; Mice; Mice, Inbred C57BL; Piperidines; Protein Kinase Inhibitors; Quinazolines; Vascular Endothelial Growth Factor Receptor-2 | 2010 |
Assessment of acute antivascular effects of vandetanib with high-resolution dynamic contrast-enhanced computed tomographic imaging in a human colon tumor xenograft model in the nude rat.
Tumor size is not a reliable marker for the assessment of early antivascular effects of antiangiogenics. In the present study, we used 200-microm in-plane high-resolution dynamic contrast-enhanced computed tomography (DCE-CT) to noninvasively assess the immediate antivascular effects of vandetanib in a subcutaneous human colon cancer (LoVo) xenograft model in nude rats and to investigate correlation between changes in CT perfusion parameters and tumor volume or immunohistochemical end points. At 3 to 4 weeks after LoVo cell implantation, the animal was gavaged with either vandetanib (50 mg/kg) or vehicle twice (22 hours apart) and scanned with a preclinical DCE-CT scanner before (0 hour) and after treatment (24 hours). Quantitative maps of blood flow (BF) and volume (BV) of the tumor were calculated from the acquired DCE-CT images. The rats were divided into nonhypovascular, hypovascular, and combined (regardless of vascularity) groups. In the nonhypovascular group, significant decreases in both tumor BF and BV were observed in the vandetanib-treated rats compared with increases in the vehicle-treated rats. A significant decrease in BV was detected in the vandetanib-treated rats in the combined group as well. No differences in tumor growth, vascular endothelial growth factor expression, microvessel density, or apoptosis were observed between vandetanib- and vehicle-treated rats in all three groups. These results demonstrate that BF and BV imaging biomarkers from DCE-CT imaging can be used for rapid monitoring of immediate (24 hours after) antimicrovascular effects of vandetanib on tumors, even in the absence of significant changes of tumor volume or clinically relevant immunohistochemical end points. Topics: Adenocarcinoma; Angiogenesis Inhibitors; Animals; Cell Line, Tumor; Colonic Neoplasms; Contrast Media; Humans; Image Enhancement; Kinetics; Male; Neovascularization, Pathologic; Piperidines; Quinazolines; Rats; Rats, Nude; Time Factors; Tomography, X-Ray Computed; Xenograft Model Antitumor Assays | 2010 |
Effect of a neurokinin-1 receptor antagonist in a rat model of colitis-associated colon cancer.
The role of substance P and the neurokinin-1 receptor (NK-1R) in the transition from inflammation to dysplasia in inflammatory bowel disease is not clear.. Colitis-associated dysplasia was induced in Sprague-Dawley rats by intracolonic, then systemic, administration of trinitrobenzene sulfonic acid. One group of animals received the NK-1R antagonist SR140333; the rest received vehicle. Colons were removed and analyzed for damage and expression of NK-1R downstream components.. The NK-1R antagonist-treated animals had significantly reduced macroscopic and microscopic damage and decreased incidence of inflammatory bowel disease. Twice as many of these animals had a normal diagnosis in any region of the colon. A decrease in proliferation index, Cox-2 expression, and active Erk1/2 was found compared with the vehicle-treated group. In Caco-2 cells, Erk1/2 was activated by substance P and prostaglandin E2.. A selective NK-1R antagonist may delay the development of further colonic damage, offering a potential treatment for patients with long-standing colitis. Topics: Animals; Antineoplastic Agents; Blotting, Western; Cell Transformation, Neoplastic; Colitis; Colonic Neoplasms; Disease Models, Animal; Disease Progression; Immunohistochemistry; Male; Neurokinin-1 Receptor Antagonists; Piperidines; Quinuclidines; Rats; Rats, Sprague-Dawley; Trinitrobenzenesulfonic Acid | 2010 |
Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil.
Cannabinoids (CBs) have been found to exert antiproliferative effects upon a variety of cancer cells, including colorectal carcinoma cells. However, little is known about the signalling mechanisms behind the antitumoural effect in these cells, whether the effects are shared by endogenous lipids related to endocannabinoids, or whether such effects are synergistic with treatment paradigms currently used in the clinic. The aim of this preclinical study was to investigate the effect of synthetic and endogenous CBs and their related fatty acids on the viability of human colorectal carcinoma Caco-2 cells, and to determine whether CB effects are synergistic with those seen with the pyrimidine antagonist 5-fluorouracil (5-FU). The synthetic CB HU 210, the endogenous CB anandamide, the endogenous structural analogue of anandamide, N-arachidonoyl glycine (NAGly), as well as the related polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid showed antiproliferative and cytotoxic effects in the Caco-2 cells, as measured by using [(3)H]-thymidine incorporation assay, the CyQUANT proliferation assay and calcein-AM fluorescence. HU 210 was the most potent compound examined, followed by anandamide, whereas NAGly showed equal potency and efficacy as the polyunsaturated fatty acids. Furthermore, HU 210 and 5-FU produced synergistic effects in the Caco-2 cells, but not in the human colorectal carcinoma cell lines HCT116 or HT29. The compounds examined produced cytotoxic, rather than antiproliferative effects, by a mechanism not involving CB receptors, since the CB receptor antagonists AM251 and AM630 did not attenuate the effects, nor did pertussis toxin. However, alpha-tocopherol and the nitric oxide synthase inhibitor L-NAME attenuated the CB toxicity, suggesting involvement of oxidative stress. It is concluded that the CB system may provide new targets for the development of drugs to treat colorectal cancer. Topics: Adenocarcinoma; Antimetabolites, Antineoplastic; Antioxidants; Cannabinoid Receptor Antagonists; Cannabinoids; Cell Proliferation; Cell Survival; Colonic Neoplasms; Cyclic AMP; Dronabinol; Drug Synergism; Drug Therapy, Combination; Enzyme Inhibitors; Fatty Acids, Unsaturated; Fluorouracil; Humans; Neuroprotective Agents; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Oxidative Stress; Piperidines; Pyrazoles; Receptors, Cannabinoid; Thymidine; Tumor Cells, Cultured | 2009 |
Impact of tumor cell VEGF expression on the in vivo efficacy of vandetanib (ZACTIMA; ZD6474).
VEGF is the key player in tumor angiogenesis. In the current study, the impact of VEGF expression on the response of tumors to the VEGFR2 associated tyrosine kinase inhibitor vandetanib was evaluated.. Human colon carcinoma (HT29) and murine squamous carcinoma (SCCVII) clonal cell lines expressing varying levels of VEGF were established and their response to vandetanib was assessed in tissue culture and as solid tumors.. Vandetanib treatment had no effect on tumor cell clonogenic cell survival in vitro but doses >or=10 nM significantly reduced endothelial cell migration. In vivo, tumors derived from cell clones expressing high levels of VEGF displayed significantly enhanced angiogenesis and more aggressive growth. An intradermal angiogenesis assay was used to demonstrate that a 4-day treatment with vandetanib (50 mg/kg/day) was able to significantly inhibit blood vessel growth induced by both parental and high VEGF-expressing tumor cell clones. In the HT29 tumor model, treatment response to vandetanib (50 mg/kg/day, Monday-Friday for 2 weeks) was greatest in xenografts derived from the highest VEGF-expressing cell clones. A similar trend was noted in the SCCVII tumor model. The present findings indicate that vandetanib therapy effectively counteracted the aggressive feature of tumor growth resulting from VEGF over-expressing tumor cells and suggest that such tumors may be particularly well suited for anti-VEGF interventions. Topics: Animals; Carcinoma, Squamous Cell; Cell Movement; Colonic Neoplasms; Endothelium, Vascular; Female; Humans; Mice; Mice, Inbred C3H; Mice, Nude; Neovascularization, Pathologic; Piperidines; Quinazolines; Tumor Cells, Cultured; Tumor Stem Cell Assay; Vascular Endothelial Growth Factor A; Xenograft Model Antitumor Assays | 2009 |
Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation.
Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor antagonists, acetylcholinesterase inhibitors, and choline transport inhibitors on cell proliferation. A nonselective muscarinic receptor antagonist (atropine), a selective M3R antagonist (p-fluorohexahydro-sila-difenidol hydrochloride), and a choline transport inhibitor (hemicholinum-3) all inhibited unstimulated H508 colon cancer cell proliferation by approximately 40% (P<0.005). In contrast, two acetylcholinesterase inhibitors (eserine-hemisulfate and bis-9-amino-1,2,3,4-tetrahydroacridine) increased proliferation by 2.5- and 2-fold, respectively (P<0.005). By using quantitative real-time PCR, expression of choline acetyltransferase (ChAT), a critical enzyme for ACh synthesis, was identified in H508, WiDr, and Caco-2 colon cancer cells. By using high-performance liquid chromatography-electrochemical detection, released ACh was detected in H508 and Caco-2 cell culture media. Immunohistochemistry in surgical specimens revealed weak or no cytoplasmic staining for ChAT in normal colon enterocytes (n=25) whereas half of colon cancer specimens (n=24) exhibited moderate to strong staining (P<0.005). We conclude that ACh is an autocrine growth factor in colon cancer. Mechanisms that regulate colon epithelial cell production and release of ACh warrant further investigation. Topics: Acetylcholine; Acetylcholinesterase; Atropine; Autocrine Communication; Caco-2 Cells; Cell Proliferation; Choline; Choline O-Acetyltransferase; Cholinergic Agents; Cholinesterase Inhibitors; Chromatography, High Pressure Liquid; Colonic Neoplasms; Dose-Response Relationship, Drug; Electrochemistry; Hemicholinium 3; HT29 Cells; Humans; Immunohistochemistry; Membrane Transport Proteins; Muscarinic Antagonists; Physostigmine; Piperidines; Polymerase Chain Reaction; Receptor, Muscarinic M3; RNA, Messenger; Tacrine | 2008 |
Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design.
The application of fragment-based screening techniques to cyclin dependent kinase 2 (CDK2) identified multiple (>30) efficient, synthetically tractable small molecule hits for further optimization. Structure-based design approaches led to the identification of multiple lead series, which retained the key interactions of the initial binding fragments and additionally explored other areas of the ATP binding site. The majority of this paper details the structure-guided optimization of indazole (6) using information gained from multiple ligand-CDK2 cocrystal structures. Identification of key binding features for this class of compounds resulted in a series of molecules with low nM affinity for CDK2. Optimisation of cellular activity and characterization of pharmacokinetic properties led to the identification of 33 (AT7519), which is currently being evaluated in clinical trials for the treatment of human cancers. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Colonic Neoplasms; Crystallography, X-Ray; Cyclin-Dependent Kinase 2; Drug Design; Enzyme Inhibitors; Humans; Mice; Piperidines; Pyrazoles; Structure-Activity Relationship | 2008 |
The NK-1 receptor is expressed in human primary gastric and colon adenocarcinomas and is involved in the antitumor action of L-733,060 and the mitogenic action of substance P on human gastrointestinal cancer cell lines.
It has been demonstrated that substance P (SP) and neurokinin-1 (NK-1) receptor antagonist L-733,060 induces cell proliferation and inhibition, respectively, in several human cancer cell lines. At present, it is unknown whether such actions are exerted on human gastric and colon adenocarcinomas. We carried out an in vitro study of the growth-inhibitory capacity of L-733,060 against human gastric and colon adenocarcinomas.. A coulter counter was used to determine viable cell numbers followed by application of the tetrazolium compound MTS. Immunoblot analysis was used to determine the NK-1 receptors and the DAPI method was applied to demonstrate apoptosis. Immunohistochemistry was used to demonstrate NK-1 receptors in primary human gastric and colon adenocarcinomas.. We observed the presence of several NK-1 receptor isoforms in human gastric and colon adenocarcinomas. Nanomolar concentrations of SP increased the growth of both cell lines and micromolar concentrations of L-733,060 inhibited the growth of such cell lines, with and without previous administration of SP. L-733,060 inhibited the growth of the 23132/87 and SW-403 cell lines in a dose-dependent manner. After administration of L-733,060, apoptosis was observed in both cell lines. In both human primary gastric and colon adenocarcinomas, a high density of NK-1 receptors was observed. Immunoreactivity, showing a diffuse cytoplasmic staining, was observed in the epithelial cells of normal and tumor glands and in numerous stromal elements.. We demonstrated that NK-1 receptors were expressed in 23132/37 and SW-403 cell lines and in human primary gastric and colon adenocarcinomas, that SP is a mitogen and that the antitumor action of L-733,060 on both human cell lines occurs through the NK-1 receptor. Data also indicate that the cell death observed is produced by apoptosis. These data suggest that the NK-1 receptor is a new and promising target in the treatment of human gastrointestinal adenocarcinomas. Topics: Adenocarcinoma; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Colonic Neoplasms; Dose-Response Relationship, Drug; Humans; Immunohistochemistry; Mitogens; Neurokinin-1 Receptor Antagonists; Piperidines; Receptors, Neurokinin-1; Stomach Neoplasms; Substance P | 2008 |
Effects of AZD2171 and vandetanib (ZD6474, Zactima) on haemodynamic variables in an SW620 human colon tumour model: an investigation using dynamic contrast-enhanced MRI and the rapid clearance blood pool contrast agent, P792 (gadomelitol).
The effect of two novel therapeutic agents on tumour haemodynamics was investigated using a fast dynamic contrast-enhanced (DCE)-MRI protocol (0.5 s/image) sensitive to signal changes in both the vascular input function and tumour during the administration of the macromolecular rapid clearance blood pool agent (MM-RCBPA), gadomelitol (P792, Vistarem). This enabled simultaneous measurement of the tumour blood flow per unit volume of tissue (F/V(T), mL/s/mL), the fractional plasma volume (V(p), %), and the permeability surface area product per unit volume of tissue (PSrho, s(-1)) in subcutaneous SW620 human colorectal tumour xenografts grown in nude rats before and after (at 0 and 22 h; imaging at 24 h) acute treatment with AZD2171 (3 mg/kg) and vandetanib (ZD6474, Zactima; 50 mg/kg), which have inhibitory activity against vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase. MRI was performed at 4.7 T using a single-slice, modified, T(1)-weighted, spoiled gradient-echo technique. Both compounds reduced gadomelitol uptake into the tumour. AZD2171 and vandetanib, respectively, (a) greatly reduced PSrho to 19.7 +/- 9.5% and 28.9 +/- 14.1% of baseline (P = 0.007 and P = 0.02), (b) markedly reduced V(p) to 31.2 +/- 19.1% and 54.8 +/- 21.2% of baseline (P = 0.015 and P = 0.09), and (c) had no significant effect on F/V(T). There was no significant difference between groups treated with AZD2171 and vandetanib when each variable was compared. The reductions in PSrho and V(p) are consistent with inhibition of VEGF signalling. AZD2171 (3 mg/kg) and vandetanib (50 mg/kg) were also found to produce a comparable chronic inhibition of SW620 tumour growth (89% for both). This study shows that DCE-MRI using an MM-RCPBA can be used to distinguish tumour vascular flow, volume, and permeability surface area product in a tumour model, and enables the acute effects of VEGF signalling inhibition to be examined in detail. Topics: Animals; Calibration; Cell Proliferation; Colonic Neoplasms; Contrast Media; Disease Models, Animal; Heart Ventricles; Hemodynamics; Heterocyclic Compounds; Humans; Magnetic Resonance Imaging; Male; Neoplasm Transplantation; Organometallic Compounds; Piperidines; Quinazolines; Rats; Rats, Nude | 2008 |
The cyclin-dependent kinase inhibitor flavopiridol potentiates the effects of topoisomerase I poisons by suppressing Rad51 expression in a p53-dependent manner.
The results of a phase I clinical trial of the topoisomerase I (Topo I) poison CPT-11 followed by the cyclin-dependent kinase inhibitor flavopiridol in patients with advanced solid tumors indicate that patients whose tumors were wild-type, but not mutant, for p53 obtained the most clinical benefit from this combination therapy. We elected to elucidate the mechanistic basis for this effect in isogenic-paired HCT116 colon cancer cells that were either wild-type (+/+) or null (-/-) for p53. With the combination therapy of SN-38 (the active metabolite of CPT-11) followed by flavopiridol, the induction of apoptosis was 5-fold greater in the p53+/+ cells compared with the p53-/- cells. This sequential treatment induced phosphorylation of p53 at Ser(15), which interacted with Rad51, a DNA repair protein involved in homologous recombination. Rad51 bound to p53-Ser(15) within the first 5 hours of combination therapy, and then was transcriptionally suppressed at 24 hours by flavopiridol only in p53+/+ cells. Microarray analysis also revealed suppression of Rad51 in a p53-dependent manner. Depletion of Rad51 by small interfering RNA (siRNA) sensitized both p53+/+ and p53-/- cells to SN-38-induced apoptosis with increase of gamma H2AX, a marker of DNA damage. Conversely, overexpression of Rad51 rescued p53+/+ cells from SN-->F-induced apoptosis. Because flavopiridol inhibits Cdk9, we found that inhibition of Cdk9 by DRB or by siRNA could recapitulate the flavopiridol effects, with suppression of Rad51 and induction of apoptosis only in p53+/+ cells. In conclusion, after DNA damage by Topo I poisons, flavopiridol targets homologous recombination through a p53-dependent down-regulation of Rad51, resulting in enhancement of apoptosis. Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Camptothecin; Colonic Neoplasms; Cyclin-Dependent Kinase 9; Down-Regulation; Drug Synergism; Flavonoids; HCT116 Cells; Humans; Irinotecan; Phosphorylation; Piperidines; Protein Kinase Inhibitors; Rad51 Recombinase; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Topoisomerase I Inhibitors; Tumor Suppressor Protein p53 | 2008 |
Investigation of two dosing schedules of vandetanib (ZD6474), an inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling, in combination with irinotecan in a human colon cancer xenograft model.
This in vivo study was designed to determine the optimal doses and schedules of vandetanib, a dual epidermal growth factor receptor (EGFR)-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in combination with irinotecan in a murine xenograft model of human colon cancer.. HT-29 tumor-bearing nude mice were treated with two doses of vandetanib (12.5 and 25 mg/kg/d) with or without irinotecan (100 mg/kg) using either sequential or concurrent schedules for 30 days. Tumor size was measured using standard variables, whereas the antiangiogenic response was evaluated using dynamic contrast-enhanced magnetic resonance imaging. Additionally, effects on EGFR-dependent signal transduction pathways and proliferation were assessed using immunohistochemistry. These pharmacodynamic end points were then evaluated for associations with antitumor efficacy and/or to plasma/tumor concentrations of vandetanib.. The greatest antitumor efficacy was observed in the groups receiving the highest dose of vandetanib given continuously (concurrent schedule), alone or in combination with irinotecan. These dosing schedules resulted in significant effects on tumor vasculature, with decreased volume transfer constants, area under the curve, and permeability surface factor as well as increased gadolinium clearance after 30 days of treatment. In addition, these groups showed the greatest inhibition of EGFR signaling. Interestingly, tumor concentrations of vandetanib were increased by irinotecan in the concurrent schedule, possibly due to decreased tumor perfusion in this group.. These data suggest that higher, sustained concentrations of vandetanib (versus intermittent), alone and in combination with irinotecan, result in optimal antitumor efficacy in this model and may have implications for the design of future clinical studies with this drug. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Camptothecin; Cell Line, Tumor; Colonic Neoplasms; Drug Administration Schedule; ErbB Receptors; Female; Humans; Irinotecan; Magnetic Resonance Imaging; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Transplantation; Piperidines; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Treatment Outcome | 2007 |
Anticancer activities of novel chalcone and bis-chalcone derivatives.
A series of novel chalcones and bis-chalcones containing boronic acid moieties has been synthesized and evaluated for antitumor activity against the human breast cancer MDA-MB-231 (estrogen receptor-negative) and MCF7 (estrogen receptor-positive) cell lines and against two normal breast epithelial cell lines, MCF-10A and MCF-12A. These molecules inhibited the growth of the human breast cancer cell lines at low micromolar to nanomolar concentrations, with five of them (1-4, 9) showing preferential inhibition of the human breast cancer cell lines. Furthermore, bis-chalcone 8 exhibited a more potent inhibition of colon cancer cells expressing wild-type p53 than of an isogenic cell line that was p53-null. Topics: Antineoplastic Agents; Boronic Acids; Breast Neoplasms; Cell Line, Tumor; Chalones; Colonic Neoplasms; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Female; Humans; Lethal Dose 50; Molecular Structure; Piperidines | 2006 |
A boronic-chalcone derivative exhibits potent anticancer activity through inhibition of the proteasome.
Chalcones and their derivatives have been shown to have potent anticancer activity. However, the exact mechanisms of cytotoxic activity remain to be established. In this study, we have evaluated a series of boronic chalcones for their anticancer activity and mechanisms of action. Among the eight chalcone derivatives tested, 3,5-bis-(4-boronic acid-benzylidene)-1-methyl-piperidin-4-one (AM114) exhibited most potent growth inhibitory activity with IC50 values of 1.5 and 0.6 microM in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and colony formation assay, respectively. The cytotoxic activity of AM114 was shown to be associated with the accumulation of p53 and p21 proteins and induction of apoptosis. Mechanistic studies showed that AM114 treatment inhibited the chymotrypsin-like activity of the 20S proteasome in vitro, leading to a significant accumulation of ubiquitinated p53 and other cellular proteins in whole cells. In vitro studies showed that AM114 did not significantly disrupt the interaction of p53 and murine double minute 2 protein. It is noteworthy that AM114 as a single agent was preferentially toxic to cells with wild-type p53 expression, whereas combination of this compound with ionizing radiation (IR) significantly enhanced the cell-killing activity of IR in both wild-type p53 and p53-null cells. Together, these results indicate that the boronic chalcone derivative AM114 induces significant cytotoxic effect in cancer cells through the inhibition of the cellular proteasome and provide a rationale for the further development of this class of compounds as novel cancer chemotherapeutic agents. Topics: Antineoplastic Agents; Boron Compounds; Boronic Acids; Cell Survival; Chalcones; Colonic Neoplasms; Flow Cytometry; HCT116 Cells; Humans; Immunoblotting; Molecular Structure; Mutation; Piperidines; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Proto-Oncogene Proteins c-mdm2; Radiation-Sensitizing Agents; Tumor Suppressor Protein p53; Ubiquitin | 2006 |
Cationic nonsymmetric transplatinum complexes with piperidinopiperidine ligands. Preparation, characterization, in vitro cytotoxicity, in vivo toxicity, and anticancer efficacy studies.
A series of complexes of the general formula trans-[PtCl2(Am)(pip-pip)] x HCl where pip-pip is 4-piperidinopiperidine and Am is NH3, methylamine (MA), dimethylamine (DMA), n-propylamine (NPA), isopropylamine (IPA), n-butylamine (NBA), or cyclohexylamine (CHA) were prepared and characterized, and their cytotoxic properties against ovarian and colon cancer cells were evaluated. The trans-[PtCl2(NH3)(pip-pip)] x HCl was significantly more potent than cisplatin in all the cisplatin-resistant ovarian cancer cell lines and was nearly as cytotoxic as cisplatin against colon cancer cells. In vivo studies in mice showed that the pip-pip complexes are significantly less toxic than cisplatin. Cisplatin was more efficacious than both trans-[PtCl2(NH3)(pip-pip)] x HCl and trans-[PtCl2(NBA)(pip-pip)] x HCl in the A2780 and A2780cisR tumor xenograft models, consistent with its lower IC50 values in A2780 cells but contrary to the higher IC50 values in A2780cisR cells. In the colon cancer cell studies, trans-[PtCl2(NH3)(pip-pip)] x HCl was slightly less potent than cisplatin in the in vitro studies but had efficacy comparable to that of cisplatin in the in vivo xenograft model. Topics: Amines; Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Nucleus; Colonic Neoplasms; DNA; Drug Screening Assays, Antitumor; Female; Glucose; Humans; Ligands; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Nude; Organoplatinum Compounds; Ovarian Neoplasms; Piperidines; Sodium Chloride; Solubility; Solvents; Structure-Activity Relationship; Transplantation, Heterologous | 2006 |
Sequence-dependent inhibition of human colon cancer cell growth and of prosurvival pathways by oxaliplatin in combination with ZD6474 (Zactima), an inhibitor of VEGFR and EGFR tyrosine kinases.
To date, clinical studies combining the new generation of targeted therapies and chemotherapy have had mixed results. Preclinical studies can be used to identify potential antagonism/synergy between certain agents, with the potential to predict the most efficacious combinations for further investigation in the clinical setting. In this study, we investigated the sequence-dependent interactions of ZD6474 with oxaliplatin in two human colon cell lines in vitro. We evaluated the in vitro antitumor activity of ZD6474, an inhibitor of vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR) and RET tyrosine kinase activity, and oxaliplatin using three combination schedules: ZD6474 before oxaliplatin, oxaliplatin before ZD6474, and concurrent exposure. Cell proliferation studies showed that treatment with oxaliplatin followed by ZD6474 was highly synergistic, whereas the reverse sequence was clearly antagonistic as was concurrent exposure. Oxaliplatin induced a G(2)-M arrest, which was antagonized if the cells were previously or concurrently treated with ZD6474. ZD6474 enhanced oxaliplatin-induced apoptosis but only when added after oxaliplatin. The sequence-dependent antitumor effects appeared, in part, to be based on modulation of compensatory prosurvival pathways. Thus, expression of total and active phosphorylated EGFR, as well as AKT and extracellular signal-regulated kinase, was markedly increased by oxaliplatin. This increase was blocked by subsequent treatment with ZD6474. Furthermore, the synergistic sequence resulted in reduced expression of insulin-like growth factor-I receptor and a marked reduction in secretion of vascular endothelial growth factor protein. ZD6474 in combination with oxaliplatin has synergistic antiproliferative properties in human colorectal cancer cell lines in vitro when oxaliplatin is administered before ZD6474. Topics: Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Colonic Neoplasms; Drug Synergism; ErbB Receptors; G2 Phase; Humans; Organoplatinum Compounds; Oxaliplatin; Piperidines; Quinazolines; Receptors, Vascular Endothelial Growth Factor | 2006 |
Inhibition of vascular endothelial growth factor (VEGF)-165 and semaphorin 3A-mediated cellular invasion and tumor growth by the VEGF signaling inhibitor ZD4190 in human colon cancer cells and xenografts.
We recently showed by DNA microarray analysis that vascular endothelial growth factor (VEGF) receptor (VEGFR) is expressed in HCT8/S11 human colon cancer cells, suggesting that several angiogenic factors may target colon cancer cells themselves. In this study, transcripts encoding the VEGF-165 and semaphorin 3A (Sema3A) receptors and coreceptors Flt-1, KDR/Flk-1, plexin A1, and neuropilins NP-1 and NP-2 were identified by reverse transcription-PCR in the human colon cancer cell lines HCT8/S11, HT29, HCT116, and PCmsrc. Collagen invasion induced by VEGF-165 and Sema3A in HCT8/S11 cells (EC(50), 0.4-1 nmol/L) required p42/44 mitogen-activated protein kinase and signaling through RhoA/Rho-kinase-dependent and -independent pathways, respectively. As expected, the VEGFR signaling inhibitor ZD4190 selectively abrogated the proinvasive activity of VEGF in collagen gels (IC(50), 10 nmol/L) and chick heart fragments. We identify a novel function for VEGF-165 and Sema3A as proinvasive factors for human colorectal cancer cells. Interestingly, oral administration of the single drug ZD4190 to athymic mice (50 mg/kg/d, once daily) inhibited by 70% the growth of HCT8/S11 tumor cell xenografts. Combinations between the src tyrosine kinase inhibitor M475271 and ZD4190 or cisplatin resulted in additive therapeutic activity against LNM35 human lung tumor xenografts. Our data have significant implications for new therapeutic approaches and individualized treatment targeting VEGFR and src signaling pathways in combination with established clinical drugs at primary tumors and distant metastases in colon and lung cancer patients. Topics: Animals; Cisplatin; Colonic Neoplasms; Enzyme Inhibitors; Female; Humans; Lung Neoplasms; Mice; Mice, Nude; Mitogen-Activated Protein Kinases; Neoplasm Invasiveness; Piperidines; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Semaphorin-3A; Signal Transduction; Triazoles; Vascular Endothelial Growth Factor A; Xenograft Model Antitumor Assays | 2006 |
Prolonged exposure of colon cancer cells to the epidermal growth factor receptor inhibitor gefitinib (Iressa(TM)) and to the antiangiogenic agent ZD6474: Cytotoxic and biomolecular effects.
To analyze the biological effects of prolonged in vitro exposure of HT-29 and LoVo colon cancer cell lines to gefitinib (Iressa), an inhibitor of epidermal growth factor receptor (EGFR) activity, and ZD6474, an inhibitor of both KDR and EGFR activities.. Cells were treated with each drug for up to 2 wk using either a continuous or an intermittent (4 d of drug exposure followed by 3 d of washout each week) schedule.. In both cell types, prolonged exposure (up to 14 d) to gefitinib or ZD6474 produced a similar inhibition of cell growth that was persistent and independent of the treatment schedule. The effects on cell growth were associated with a pronounced inhibition of p-EGFR and/or p-KDR expression. Treatment with gefitinib or ZD6474 also inhibited the expression of EGFR downstream signal molecules, p-Erk1/2 and p-Akt, although the magnitude of these effects varied between treatments and cell lines. Furthermore, expression of the drug resistance-related protein ABCG2 was shown to significantly increase after 14 d of continuous exposure to the two drugs.. We conclude that long-term exposure of colon cancer cells to gefitinib and ZD6474 does not modify their cytotoxic effects but it might have an effect on sensitivity to classical cytotoxic drugs. Topics: Antineoplastic Combined Chemotherapy Protocols; Cell Line, Tumor; Chromatography, High Pressure Liquid; Colonic Neoplasms; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; ErbB Receptors; Gefitinib; Humans; Inhibitory Concentration 50; Piperidines; Quinazolines; Signal Transduction; Time Factors | 2006 |
Efficacy of sequential treatment of HCT116 colon cancer monolayers and xenografts with docetaxel, flavopiridol, and 5-fluorouracil.
Clinical treatment of solid tumors with docetaxel, flavopiridol, or 5-fluorouracil (5-FU) often encounters undesirable side effects and drug resistance. This study aims to evaluate the potential role of combination therapy with docetaxel, flavopiridol, or 5-FU in modulating chemosensitivity and better understand how they might be used clinically.. HCT116 colon cancer cells were treated with docetaxel, flavopiridol, and 5-FU in several different administrative schedules in vitro, either sequentially or simultaneously. Cell survival was measured by MTT assay. The activity of caspase-3 was determined by caspase-3 assays and the soft agar colony assay was used to test the colony formation of HCT116 cells in soft agar. We also established xenograft models to extend in vitro observations to an in vivo system.. The maximum cytotoxicity was found when human colon cancer HCT116 cells were treated with docetaxel for 1 h followed by flavopiridol for 24 h and 5-FU for another 24 h. This sequential combination therapy not only inhibits tumor cell growth more strongly compared to other combination therapies but also significantly reduces colony formation in soft agar and augments apoptosis of HCT116 cells. Sequencing of docetaxel followed 1 h later by flavopiridol, followed 24 h later by 5-FU in xenograft models, also resulted in delayed tumor growth and higher survival rate.. These results highlight the importance of an administrative schedule when combining docetaxel with flavopiridol and 5-FU, providing a rationale explanation for its development in clinical trials. Topics: Adenocarcinoma; Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Proliferation; Colonic Neoplasms; Docetaxel; Female; Flavonoids; Fluorouracil; HCT116 Cells; Humans; Mice; Mice, Nude; Neoplasm Transplantation; Piperidines; Taxoids | 2006 |
Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy.
The epidermal growth factor receptor (EGFR) autocrine signaling pathway is involved in cancer development and progression. EGFR inhibitors such as C225 (cetuximab), a chimeric human-mouse anti-EGFR monoclonal antibody, and ZD1839 (gefitinib), a small molecule EGFR-selective tyrosine kinase inhibitor, are in advanced clinical development. The potential emergence of cancer cell resistance in EGFR-expressing cancers treated with EGFR inhibitors could determine lack of activity of these drugs in some cancer patients. Vascular endothelial growth factor (VEGF) is secreted by cancer cells and plays a key role in the regulation of tumor-induced endothelial cell proliferation and permeability. ZD6474 is a small molecule VEGF flk-1/KDR (VEGFR-2) tyrosine kinase inhibitor that also demonstrates inhibitory activity against EGFR tyrosine kinase.. The antitumor activity of ZD1839, C225, and ZD6474 was tested in athymic mice bearing human GEO colon cancer xenografts. GEO cell lines resistant to EGFR inhibitors were established from GEO xenografts growing in mice treated chronically with ZD1839 or C225. Expression of EGFR was evaluated by flow cytometry. Expression of various proteins involved in intracellular cell signaling was assessed by Western blotting. Tumor growth data were evaluated for statistical significance using the Student's t test. All Ps were two-sided.. Although chronic administration of optimal doses of C225 or ZD1839 efficiently blocked GEO tumor growth in the majority of mice, tumors slowly started to grow within 80-90 days, despite continuous treatment. In contrast, continuous treatment of mice bearing established GEO xenografts with ZD6474 resulted in efficient tumor growth inhibition for the entire duration of dosing (up to 150 days). ZD6474 activity was also determined in mice pretreated with ZD1839 or C225. When GEO growth was apparent after 4 weeks of treatment with EGFR inhibitors, mice were either re-treated with EGFR inhibitors or treated with ZD6474. GEO tumor growth was blocked only in mice treated with ZD6474, whereas tumor progression was observed in mice re-treated with C225 or ZD1839. GEO tumors growing during treatment with C225 or with ZD1839 were established as cell lines (GEO-C225-RES and GEO-ZD1839-RES, respectively). Cell membrane-associated EGFR expression was only slightly reduced in these cell lines compared with parental GEO cells. Western blotting revealed no major change in the expression of the EGFR ligand transforming growth factor alpha of bcl-2, bcl-xL, p53, p27, MDM-2, akt, activated phospho-akt, or mitogen-activated protein kinase. However, both GEO-C225-RES and GEO-ZD1839-RES cells exhibited a 5-10-fold increase in activated phospho-mitogen-activated protein kinase and in the expression of cyclooxygenase-2 and of VEGF compared with GEO cells. GEO-C225-RES and GEO-ZD1839-RES growth as xenografts in nude mice was not significantly affected by treatment with either C225 or ZD1839 but was efficiently inhibited by ZD6474.. Long-term treatment of GEO xenografts with selective EGFR inhibitors results in the development of EGFR inhibitor-resistant cancer cells. Growth of EGFR inhibitor-resistant tumors can be inhibited by ZD6474. These data indicate that inhibition of VEGF signaling has potential as an anticancer strategy, even in tumors that are resistant to EGF inhibitors. Topics: Adenocarcinoma; Agar; Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Blotting, Western; Cell Division; Cell Line, Tumor; Cell Membrane; Cetuximab; Colonic Neoplasms; Drug Resistance, Neoplasm; ErbB Receptors; Female; Flow Cytometry; Humans; Mice; Mice, Inbred BALB C; Neoplasm Transplantation; Piperidines; Precipitin Tests; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Time Factors | 2004 |
Colonic smooth muscle responses in patients with diverticular disease of the colon: effect of the NK2 receptor antagonist SR48968.
Little is known about the pathophysiology of diverticular disease.. To compare passive and active stress and the response to carbachol of colonic smooth muscle specimens from patients with diverticular disease and patients with colon cancer. The effect of the NK2 receptor antagonist, SR48968, on electrically evoked contractions of circular muscle was also investigated.. Sigmoid colon segments were obtained from 16 patients (51-83 years) undergoing elective sigmoid resection for diverticular disease and 39 patients (50-88 years) undergoing left hemicolectomy for non-obstructive sigmoid colon cancer.. Isometric tension was measured on circular or longitudinal taenial muscle. Strips were stretched gradually to Lo (length allowing the development of optimal active tension with carbachol) and were also exposed to increasing carbachol concentrations. The effects of atropine, tetrodotoxin and SR48968 on electrically evoked (supramaximal strength, 0.3 ms, 0.1-10 Hz) contractions of circular strips from 8 patients with diverticular disease and 19 patients with colon cancer were also studied.. Both passive and active stress in circular muscle strips obtained from patients with diverticular disease was higher than in patients with colon cancer (P < 0.05). Electrically evoked contractions were significantly reduced by atropine in all preparations and were virtually suppressed by combined SR48968 and atropine. Tetrodotoxin suppressed electrically evoked contractions only in patients with colon cancer, whereas a tetrodotoxin-resistant component was identified in patients with diverticular disease.. The changes in both passive and active stress in specimens from patients with diverticular disease may reflect circular smooth muscle dysfunction. Acetylcholine and tachykinins are the main excitatory neurotransmitters mediating electrically evoked contractions in human sigmoid colon circular muscle. Topics: Aged; Aged, 80 and over; Anesthetics, Local; Atropine; Benzamides; Carbachol; Case-Control Studies; Cholinergic Agonists; Colon, Sigmoid; Colonic Neoplasms; Diverticulitis, Colonic; Electric Stimulation; Female; Humans; In Vitro Techniques; Isometric Contraction; Male; Middle Aged; Muscle, Smooth; Parasympatholytics; Piperidines; Receptors, Neurokinin-2; Stress, Mechanical; Tetrodotoxin | 2004 |
Rapid induction of apoptosis by combination of flavopiridol and tumor necrosis factor (TNF)-alpha or TNF-related apoptosis-inducing ligand in human cancer cell lines.
Flavopiridol is one of the first cyclin-dependent kinase inhibitors undergoing clinical tests. We found that the combination treatment of flavopiridol (100-500 nM) with tumor necrosis factor (TNF)-alpha (10 ng/ml) induced a rapid and eminent apoptosis, 20 +/- 5% in 6-h treatment, in a human non-small cell lung carcinoma cell line, A549, as determined by the increase of sub-G(1) fraction in flow cytometry. A similar observation was also made in human colon cancer cell lines, HCT-116 and HCT-15, but not in Rat2, a rat fibroblast cell line. In A549 cells, the cytotoxic synergy by the combination treatment involved the activation of caspase-1, caspase-3, and caspase-8 and generated huge chromosomal degradation. The treatment schedules were so important that only the treatments of flavopiridol concomitantly with or followed by TNF-alpha showed the pronounced apoptosis in A549 cells. Prior treatment of TNF-alpha inhibited the apoptosis by the following combination treatment, leading to little cell death. Yet, such inhibition was reversed when 100 microM of 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole, a transcription inhibitor, was present during the TNF-alpha pretreatment, suggesting that the inhibitory pretreatment of TNF-alpha might involve antiapoptotic gene expression at the transcriptional level. TNF-alpha treatment resulted in nuclear factor (NF)-kappa B activation, revealed by NF-kappa B activity reporter assay. In contrast, flavopiridol was found to inhibit the NF-kappa B-dependent gene transcription, which might give an explanation for the synergistic effect of flavopiridol with TNF-alpha. TNF-related apoptosis-inducing ligand (TRAIL; 100 ng/ml) also caused a rapid and strong cytotoxic synergy with flavopiridol. In contrast to TNF-alpha, however, all of the treatment sequences supported the synergy by TRAIL and flavopiridol. The combination of flavopiridol with TNF-alpha or TRAIL may be of use for the development in cancer therapy. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Apoptosis Regulatory Proteins; Carcinoma, Small Cell; Caspase Inhibitors; Caspases; Colonic Neoplasms; Drug Screening Assays, Antitumor; Drug Synergism; Enzyme Activation; Fibroblasts; Flavonoids; Humans; Lung Neoplasms; Membrane Glycoproteins; NF-kappa B; Piperidines; Rats; Recombinant Proteins; TNF-Related Apoptosis-Inducing Ligand; Transcriptional Activation; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha | 2003 |
Acquired cellular resistance to flavopiridol in a human colon carcinoma cell line involves up-regulation of the telomerase catalytic subunit and telomere elongation. Sensitivity of resistant cells to combination treatment with a telomerase inhibitor.
Flavopiridol is a broad-spectrum inhibitor of cyclin-dependent kinases and of global transcription via the inhibition of positive transcription elongation factor b (P-TEFb). Although flavopiridol is currently undergoing phase II clinical trials, acquired cellular resistance to the compound during treatment is a potential problem, as it is with almost all current anticancer agents. A HCT116 human colon carcinoma cell line with an acquired 8-fold resistance to flavopiridol has been established. We report here that there are changes in these resistant cells in terms of telomere length and telomerase activity, whereas no change in the expression of the P-TEFb subunits CDK9, cyclin T1, cyclin T2a, or cyclin T2b was observed. The level of mRNA expression for the telomerase catalytic subunit hTERT was increased over 2-fold in the resistant cells, and mean telomere length was found to be 2 kb longer than the parental length, although telomerase activity was unchanged. The level of mRNA expression for the telomeric binding protein Pot1 was also increased. We also report that treatment of HCT116 cells with a combination of the G-quadruplex interacting telomerase inhibitor BRACO-19 and flavopiridol results in a 3-fold decrease in population doubling and prevents recovery from treatment with either compound alone. Treatment of flavopiridol-resistant cells with BRACO-19 alone also led to rapid inhibition of cell growth, which is not observed in the parental line. The finding that only the resistant line, with up-regulated telomerase, responds to this G-quadruplex inhibitor is consistent with the hypothesis that the mechanism of BRACO-19 down-regulation of cell growth directly involves the targeting of telomeres and telomerase. Topics: Acridines; Antineoplastic Agents; Catalytic Domain; Colonic Neoplasms; Cyclin D1; Cyclin T; Cyclin-Dependent Kinase 9; Cyclin-Dependent Kinase Inhibitor p21; Cyclins; DNA-Binding Proteins; Drug Combinations; Drug Resistance, Neoplasm; Enzyme Inhibitors; Flavonoids; Humans; Piperidines; Telomerase; Telomere; Tumor Cells, Cultured; Tumor Suppressor Protein p53; Up-Regulation | 2003 |
Roxatidine- and cimetidine-induced angiogenesis inhibition suppresses growth of colon cancer implants in syngeneic mice.
Cimetidine is known to suppress the growth of several tumors, including gastrointestinal cancer, in humans and animals. Nonetheless, whether other histamine H(2)-receptor antagonists exert such tumor suppressive effects remains unclear. The effect of roxatidine acetate hydrochloride (roxatidine), an H(2)-receptor antagonist, on the growth of colon cancer implanted in mice was examined and compared with that of cimetidine. Drugs were orally delivered for 26 - 29 days beginning before or after implantation of syngeneic colon cancer (Colon 38) in C57BL/6 mice. Tumor volume was determined throughout and histochemical analysis was also performed. Tumor tissue and serum vascular endothelial growth factor (VEGF) levels were measured. In vitro cell growth was assessed by the MTT assay. Both roxatidine and cimetidine significantly suppressed the growth of Colon 38 tumor implants. Histologic analysis revealed that such antagonists markedly increased necrotic areas and decreased the density of microvessels in tumor tissue. Both H(2)-receptor antagonists suppressed VEGF levels in tumor tissue and significantly decreased serum VEGF levels in Colon 38-bearing mice. Such drugs, however, failed to suppress in vitro growth of the cell line. In conclusion, both roxatidine and cimetidine were found to exert suppressive effects on the growth of colon cancer implants in mice by inhibiting angiogenesis via reducing VEGF expression. Topics: Angiogenesis Inhibitors; Animals; Cell Line, Tumor; Cimetidine; Colonic Neoplasms; Male; Mice; Mice, Inbred C57BL; Neovascularization, Pathologic; Piperidines; Xenograft Model Antitumor Assays | 2003 |
The cyclin-dependent kinase inhibitor flavopiridol potentiates gamma-irradiation-induced apoptosis in colon and gastric cancer cells.
Flavopiridol is a cyclin-dependent kinase inhibitor currently under development by the National Cancer Institute both as a single agent and in combination with chemotherapy. There have been numerous reports that flavopiridol potently enhances the induction of apoptosis by chemotherapy. However, the effect of flavopiridol on radiotherapy (RT)-induced apoptosis has been largely untested. RT has become the cornerstone of adjuvant treatment of colorectal and gastric cancer. In view of this, we elected to evaluate the effect of flavopiridol on potentiating RT-induced apoptosis in the human colon cancer cell line HCT-116 and the gastric cancer cell line MKN-74.. The efficacy of combination of gamma-irradiation and flavopiridol was tested in vitro in MKN-74 and HCT-116 cells and correlated to changes in p21 expression. HCT-116 cells were also established as tumors in nude mice and treated with gamma-irradiation and flavopiridol either as single agents or in sequential combinations such that flavopiridol was either given 7 h before, concomitantly, or 3 and 7 h after gamma-irradiation.. Flavopiridol significantly enhanced the induction of apoptosis by gamma-irradiation in both cell lines as measured by quantitative fluorescent microscopy, caspase-3 activation, poly(ADP-ribose) polymerase cleavage, and cytochrome c release. To achieve the best effect, it was important to expose the tumor cells to gamma-irradiation before the flavopiridol. This sequence dependence was confirmed in vivo. When gamma-irradiation was administered 7 h before flavopiridol, 42% of the tumor-bearing animals were rendered disease free, compared with no animals treated with either gamma-irradiation or flavopiridol alone. Examination of the p21 status of HCT-116 and MKN-74 cells, after treatment with sequential gamma-irradiation and flavopiridol, indicated a loss of p21 protein expression. Loss of p21 was mainly due to cleavage by caspases. HCT-116 cells that lack p21 (p21(-/-)) also exhibited sensitization to gamma-irradiation and showed an even greater enhancement of gamma-irradiation-induced apoptosis by flavopiridol when compared with the parental HCT-116 cells.. These studies indicate that gamma-irradiation followed by flavopiridol enhances apoptosis and yields significantly increased tumor regressions and cures that are not achievable with radiation alone. These results indicate that flavopiridol can potently enhance the effect of gamma-radiation both in vitro and in vivo and may provide a new means to treat patients with locally advanced gastrointestinal cancers. Topics: Animals; Antineoplastic Agents; Apoptosis; Caspase 3; Caspases; Cell Division; Colonic Neoplasms; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinases; Cyclins; Cytochromes c; Enzyme Activation; Enzyme Inhibitors; Flavonoids; Gamma Rays; Male; Mice; Mice, Nude; Microscopy, Fluorescence; Piperidines; Poly(ADP-ribose) Polymerases; Stomach Neoplasms; Transplantation, Heterologous; Tumor Cells, Cultured | 2003 |
Drg1, a novel target for modulating sensitivity to CPT-11 in colon cancer cells.
Treatment of the human colon cancer cells Hct116 with SN-38 (an active metabolite of CPT-11) resulted in G2 cell cycle arrest without induction of apoptosis. However, subsequent treatment of SN-38-treated Hct116 cells with flavopiridol induced apoptosis. One of the genes markedly up-regulated during cell cycle arrest by SN-38 and suppressed during apoptosis by SN-38 followed by flavopiridol in Hct116 cells is Drg1. We found that Drg1 had profound effects on SN-38 sensitivity. Inhibition of endogenous Drg1 expression in Hct116 cells by stable expression of an antisense (AS) Drg1 cDNA increased the sensitivity of cells to undergo apoptosis by SN-38. Clonogenic and apoptosis assays with AS Drg1-expressing cells showed a 2-fold decrease in the IC50 and a 4-5-fold increase in induction of apoptosis with SN-38. Conversely, the forced expression of Drg1 in SW620 cells increased the resistance of these cells to SN-38-induced apoptosis by 2-5-fold. Moreover, when xenografted in mice, AS Drg1-expressing Hct116 cells were 3-fold more sensitive to CPT-11 as compared with vector transfected Hct116 cells. Similarly, tumors established from Drg1 overexpressing SW620 cells were more resistant to CPT-11 as compared with tumors established from vector-transfected SW620 cells in mice. Taken together, our data suggest that Drg1 is a novel gene that plays a direct role in resistance to CPT-11. Inhibition of Drg1 may provide a new means to increase the sensitivity of colon cancer cells to CPT-11. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Camptothecin; Colonic Neoplasms; DNA, Antisense; DNA, Complementary; Drug Synergism; Flavonoids; GTP-Binding Proteins; Humans; Irinotecan; Male; Mice; Mice, Nude; Piperidines; Prodrugs; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2002 |
Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4.
Dietary constituents (e.g., in grapefruit juice; NaCl) and phytochemicals (e.g., St. John's wort) are important agents modifying drug metabolism and transport and thereby contribute to interindividual variability in drug disposition. Most of these drug-food interactions are due to induction or inhibition of P-glycoprotein and/or CYP3A4. Preliminary data indicate that piperine, a major component of black pepper, inhibits drug-metabolizing enzymes in rodents and increases plasma concentrations of several drugs, including P-glycoprotein substrates (phenytoin and rifampin) in humans. However, there are no direct data whether piperine is an inhibitor of human P-glycoprotein and/or CYP3A4. We therefore investigated the influence of piperine on P-glycoprotein-mediated, polarized transport of digoxin and cyclosporine in monolayers of Caco-2 cells. Moreover, by using human liver microsomes we determined the effect of piperine on CYP3A4-mediated formation of the verapamil metabolites D-617 and norverapamil. Piperine inhibited digoxin and cyclosporine A transport in Caco-2 cells with IC(50) values of 15.5 and 74.1 microM, respectively. CYP3A4-catalyzed formation of D-617 and norverapamil was inhibited in a mixed fashion, with K(i) values of 36 +/- 8 (liver 1)/49 +/- 6 (liver 2) and 44 +/- 10 (liver 1)/77 +/- 10 microM (liver 2), respectively. In summary, we showed that piperine inhibits both the drug transporter P-glycoprotein and the major drug-metabolizing enzyme CYP3A4. Because both proteins are expressed in enterocytes and hepatocytes and contribute to a major extent to first-pass elimination of many drugs, our data indicate that dietary piperine could affect plasma concentrations of P-glycoprotein and CYP3A4 substrates in humans, in particular if these drugs are administered orally. Topics: Alkaloids; ATP Binding Cassette Transporter, Subfamily B, Member 1; Benzodioxoles; Biological Transport; Colonic Neoplasms; Cyclosporine; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Digoxin; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; Kinetics; Mixed Function Oxygenases; Piperidines; Polyunsaturated Alkamides; Tumor Cells, Cultured | 2002 |
Three vasoactive peptides, endothelin-1, adrenomedullin and urotensin-II, in human tumour cell lines of different origin: expression and effects on proliferation.
Evidence has accumulated showing that vasoactive peptides, such as endothelin-1, adrenomedullin and urotensin-II, are expressed in various kinds of tumour cells. In the present study, the expression of endothelin-1 and endothelin receptors was studied in eight human tumour cell lines: T98G (glioblastoma), IMR-32 and NB69 (neuroblastoma), BeWo (choriocarcinoma), SW-13 (adrenocortical carcinoma), DLD-1 (colonic carcinoma), HeLa (cervical carcinoma) and VMRC-RCW (renal carcinoma). Reverse transcriptase-PCR showed expression of endothelin-1 mRNA in seven out of the eight cell lines, the exception being BeWo cells. ET(A) receptor mRNA was expressed in T98G, IMR-32 and NB69 cells, but weakly in the other cells. ET(B) receptor mRNA was expressed in IMR-32, NB69 and BeWo cells, but only weakly in T98G and HeLa cells. Immunoreactive endothelin was detected in the culture media of six out of the eight cell lines, but not in that of IMR-32 or BeWo cells. Treatment of T98G cells with an anti-endothelin-1 antibody or an anti-adrenomedullin antibody for 24 h decreased cell numbers to approx. 84% and 90% of control respectively. Treatment with the ET(A) receptor antagonist BQ-610 (1 microM) significantly decreased cell number to about 90% of control, whereas the ET(B) receptor antagonist BQ-788 had no significant effect. On the other hand, exogenously added endothelin-1, adrenomedullin or urotensin-II (0.1 microM) had no significant effects on cell number. These results suggest that endothelin-1 acts as a paracrine or autocrine growth stimulator in tumours. The effect of endothelin-1 on tumour growth appears to be mediated by the ET(A) receptor. Topics: Adrenal Cortex Neoplasms; Adrenomedullin; Antibodies, Monoclonal; Cell Division; Choriocarcinoma; Colonic Neoplasms; Endothelin Receptor Antagonists; Endothelin-1; Glioblastoma; Growth Substances; HeLa Cells; Humans; Kidney Neoplasms; Neuroblastoma; Oligopeptides; Peptides; Piperidines; Receptor, Endothelin A; Receptor, Endothelin B; RNA, Messenger; Tumor Cells, Cultured; Urotensins; Vasodilator Agents | 2002 |
Involvement of the neurotensin receptor subtype NTR3 in the growth effect of neurotensin on cancer cell lines.
The expression of the 3 currently known neurotensin receptors was studied in human cancer cells of prostatic, colonic or pancreatic origin by means of RT-PCR analysis and binding experiments. All the cells selected for this work have been shown to exhibit a growth response to neurotensin. We found that the 7 transmembrane domain, levocabastine insensitive receptor (NTR1) is expressed in most but not all of the cells studied whereas the 7 transmembrane domain, levocabastine sensitive receptor (NTR2) is present in none of these cells. The 100 kDa-type I neurotensin receptor (NTR3) is expressed in all the cells assayed. Moreover, we demonstrated that neurotensin can stimulate the growth of CHO cells stably transfected with the NTR3. Taken together, our results strongly suggest that the NTR3 subtype could be involved in the growth response of human cancer cells to neurotensin. Topics: Animals; Cell Membrane; CHO Cells; Cholic Acids; Colonic Neoplasms; Cricetinae; Drug Resistance, Neoplasm; Electrophoresis, Polyacrylamide Gel; Humans; Kinetics; Male; Neurotensin; Pancreatic Neoplasms; Piperidines; Prostatic Neoplasms; Protein Binding; Protein Structure, Tertiary; Receptors, Neurotensin; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors; Transfection; Tumor Cells, Cultured | 2001 |
Tetramethylpiperidine-substituted phenazines inhibit the proliferation of intrinsically multidrug resistant carcinoma cell lines.
The effects of nine new tetramethylpiperidine (TMP)-substituted phenazines on the growth of a human esophageal cancer cell line (WHCO3), two human hepatocellular carcinoma cell lines (PLC and HepG2) and three human colon cancer cell lines (CaCo2, COLO 320DM and HT29) were compared to those of clofazimine, B669 and five standard chemotherapeutic agents. The three most active TMP-substituted phenazines against these cell lines were B3962, B4126 and B4125 with mean IC50 values for all the cancer cell lines tested of 0.36, 0.47 and 0.48 microg/ml respectively. B3962 and B4126, but not B4125 were also the most active against a semi-continuous human fibroblast culture (MRC5). The compound with the highest tumor specificity relative to the fibroblast culture, was B4125. Importantly, there was minimal variation in sensitivity of the different cell lines, including a multidrug resistant cell line (COLO 320DM) expressing high levels of P-glycoprotein, to the TMP-substituted phenazines. This was not the case with the standard chemotherapeutic agents. The efficacy of compounds such as B4125 against a broad spectrum of multidrug resistant cancer cell lines, together with their relatively high tumor specificity, suggests that these agents may be useful in the treatment of intrinsically resistant cancers such as colon and liver cancer. Topics: ATP Binding Cassette Transporter, Subfamily B, Member 1; Carcinoma, Hepatocellular; Cell Division; Cells, Cultured; Colonic Neoplasms; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Esophageal Neoplasms; Fibroblasts; Humans; Phenazines; Piperidines; Tumor Cells, Cultured | 2001 |
Augmentation of apoptosis and tumor regression by flavopiridol in the presence of CPT-11 in Hct116 colon cancer monolayers and xenografts.
CPT-11, a DNA topoisomerase I inhibitor, has demonstrated clinical activity in colorectal cancer. Flavopiridol, a cyclin-dependent kinase inhibitor, is rapidly emerging as a chemotherapy modulator. To enhance the therapeutic index of CPT-11 in colon cancer, we studied the combination of these two drugs in relatively resistant human colon cancer cells, Hct116. Exposure of parental Hct116 cells to clinically achievable concentrations of SN-38 (the active metabolite of CPT-11) induces p21 and a G(2) arrest. However, these conditions fail to induce apoptosis. In contrast, Hct116 cells that are p21 deficient (p21-/- Hct116) readily undergo apoptosis after treatment with SN-38. In this study we show that the parental Hct116 cells can be sensitized to undergo apoptosis by the addition of flavopiridol after SN-38 treatment. The induction of apoptosis was greatest with sequential therapy consisting of SN-38 followed by flavopiridol. Clonogenic assays also showed greatest inhibition with this sequence. Sequential treatment with SN-38 followed by flavopiridol was associated with higher activation of caspase-3 and greater cleavage of both p21 and XIAP, an inhibitor of apoptosis, compared with other treatment schedules. CPT-11 induced some tumor regressions but no complete responses in the p21-intact Hct116 xenografts. CPT-11 with flavopiridol more than doubled tumor regression, compared with CPT-11 alone, and produced a 30% complete response rate. Our studies indicate that CPT-11 induces cell cycle arrest rather than cell death and that flavopiridol, by activating the caspase cascade, cleaves the inhibitors of apoptosis and sensitizes the cells to undergo cell death. Thus, flavopiridol combined with CPT-11 may provide a completely new therapeutic approach in the treatment of colon cancer. Topics: Animals; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Camptothecin; Colonic Neoplasms; Flavonoids; Humans; Irinotecan; Male; Mice; Mice, Nude; Piperidines; Transplantation, Heterologous; Tumor Cells, Cultured | 2001 |
Exisulind induction of apoptosis involves guanosine 3',5'-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated beta-catenin.
Sulindac sulfone (exisulind), although a nonsteroidal anti-inflammatory drug derivative, induces apoptosis in tumor cells by a mechanism that does not involve cyclooxygenase inhibition. SW480 colon tumor cells contain guanosine 3',5'-monophosphate (cGMP) phosphodiesterase (PDE) isoforms of the PDE5 and PDE2 gene families that are inhibited by exisulind and new synthetic analogues. The analogues maintain rank order of potency for PDE inhibition, apoptosis induction, and growth inhibition. A novel mechanism for exisulind to induce apoptosis is studied involving sustained increases in cGMP levels and cGMP-dependent protein kinase (PKG) induction not found with selective PDE5 or most other PDE inhibitors. Accumulated beta-catenin, shown to be a substrate for PKG, is decreased by exisulind, suggesting a mechanism to explain apoptosis induction in neoplastic cells harboring adenomatous polyposis coli gene mutations. Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Antineoplastic Agents; Apoptosis; beta Catenin; Cadherins; Colonic Neoplasms; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Cytoskeletal Proteins; Enzyme Activation; Humans; Isoenzymes; Kinetics; Phosphodiesterase Inhibitors; Piperidines; Protein Kinases; Quinazolines; Sulindac; Trans-Activators; Tumor Cells, Cultured | 2000 |
4-(beta-Arylvinyl)-3-(beta-arylvinylketo)-1-ethyl-4-piperidinols and related compounds: a novel class of cytotoxic and anticancer agents.
The syntheses of a series of 1-aryl-5-diethylamino-1-penten-3-one hydrochlorides 1 and 1-aryl-3-diethylamino-1-propanone hydrochlorides 4 were accomplished. Attempts to prepare the corresponding bis(5-aryl-3-oxo-4-pentenyl)ethylamine hydrochlorides 2 and bis(3-aryl-3-oxopropyl)ethylamine hydrochlorides 5 led to the formation of a series of 4-(beta-arylvinyl)-3-(beta-arylvinylketo)-1-ethyl-4-piperidi nol hydrochlorides 9 and 4-aryl-3-arylketo-1-ethyl-4-piperidinol hydrochlorides 11, most of which were converted subsequently into the corresponding quaternary ammonium salts 10 and 12, respectively. The structures of these compounds were determined by 1H NMR spectroscopy and confirmed by X-ray crystallography of representative molecules. Most compounds displayed significant cytotoxicity toward murine P388 and L1210 cells as well as human tumors. In general, Mannich bases containing olefinic bonds were more cytotoxic than the analogues without this functional group, while the piperidines 9 and 11 were more potent than the acyclic analogues 1 and 4, respectively. Correlations were noted between various physicochemical constants in the aryl rings and cytotoxicity. Compound 9d displayed promising in vivo activity against colon cancers. This study has revealed that the piperidines 9 and 11 constitute new classses of cytotoxic agents. Topics: Animals; Antineoplastic Agents; Colonic Neoplasms; Crystallography, X-Ray; Drug Screening Assays, Antitumor; Humans; Inhibitory Concentration 50; Leukemia L1210; Leukemia P388; Mannich Bases; Mice; Molecular Conformation; Piperidines; Structure-Activity Relationship; Transplantation, Heterologous; Tumor Cells, Cultured | 1998 |
Characterization of muscarinic receptors mediating contractions of circular and longitudinal muscle of human isolated colon.
1. The effects of seven muscarinic receptor antagonists were used to characterize the receptors which mediate carbachol-evoked contractions of intertaenial circular and taenial longitudinal muscle in human isolated colon. The effects of these antagonists were studied upon colon contractions induced by cumulatively added carbachol which had mean EC50 values of 11.7 +/- 2.3 microM (n = 8) and 12.6 +/- 2.3 microM (n = 8) respectively upon circular and longitudinal smooth muscle. 2. All antagonists displaced concentration-response curves to carbachol to the right in a parallel manner. The maximum concentration of each antagonist added (30 nM-10 microM) did not significantly suppress the maximum response. 3. In circular muscle, the M3 muscarinic receptor antagonists, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), hexahydrosiladiphenidol (HHSiD) and para-fluoro-hexahydrosiladiphenidol (p-F-HHSiD) inhibited responses with pA2 values of 9.41 +/- 0.23, 7.17 +/- 0.07, 6.94 +/- 0.18 respectively. The M2 muscarinic receptor antagonist, AF-DX 116, the M2/M4 muscarinic receptor antagonist, himbacine, and the M1 muscarinic receptor antagonist, pirenzepine, yielded pA2 values of 7.36 +/- 0.43, 7.47 +/- 0.14 and 7.23 +/- 0.48 respectively. The non-selective antagonist, atropine, had a pA2 of 8.72 +/- 0.28. 4. In longitudinal muscle 4-DAMP, HHSiD, p-F-HHSiD, AF-DX 116, himbacine and pirenzepine gave pA2 values of 9.09 +/- 0.16, 7.45 +/- 0.43, 7.44 +/- 0.21, 6.44 +/- 0.1, 7.54 +/- 0.40, 6.87 +/- 0.38 respectively. Atropine yielded a pA2 value of 8.60 +/- 0.08. 5. The pharmacological profile of antagonist affinities at the muscarinic receptor population responding to muscarinic agonist-evoked contraction is similar to that widely accepted as characterizing the activation of an M3 muscarinic receptor subtype, although pA2 values of some antagonists are lower than that seen in other investigations. Topics: Alkaloids; Atropine; Carbachol; Carcinoma; Colon; Colonic Neoplasms; Dose-Response Relationship, Drug; Furans; Humans; In Vitro Techniques; Muscarinic Antagonists; Muscle Contraction; Muscle, Smooth; Naphthalenes; Piperidines; Pirenzepine | 1995 |
Effects of a new triazinoaminopiperidine derivative on adriamycin accumulation and retention in cells displaying P-glycoprotein-mediated multidrug resistance.
A new triazinoaminopiperidine derivative, Servier 9788 (S9788), was investigated for its ability to increase Adriamycin (ADR) accumulation and retention in two rodent (P388/ADR and DC-3F/AD) and three human (KB-A1, K562/R and COLO 320DM) cell lines displaying the P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) phenotype. Depending on the cell line S9788 was shown to be two to five times more active and five to 15 times more potent than Verapamil (VRP) in increasing ADR accumulation in resistant cells. ADR retention in KB-A1 cells maintained in a concentration of 10 microM S9788 was twice that in VRP-treated cells, and similar to that measured in the untreated sensitive KB-3-1 cells. Although 5 microM S9788 and 50 microM VRP gave the same values of ADR uptake in KB-A1 cells, S9788 was shown to induce a greater ADR retention following cell wash and post-incubation in resistance modifier- and ADR-free medium. Taking into account that S9788 had no effects on ADR accumulation and retention in sensitive KB-3-1 cells, it can be suggested that S9788 inhibits specifically the P-gp dependent ADR efflux, and in a manner less reversible than that observed with VRP. Moreover, [3H]azidopine photolabeling of P-gp, in P388/ADR plasma membranes, was completely inhibited by 100 microM S9788. Although S9788, as VRP, had no effect on the cell cycle of P388 cells, 5 microM S9788 increased 700-fold the efficacy of ADR to block P388/ADR cells in the G2+M phase of the cell cycle. Together, these results show that the sensitization, by S9788, of cell lines resistant to ADR is mainly due to an increase in ADR accumulation and retention, leading to an increase in the number of resistant cells blocked in the G2+M phase. Topics: Adenocarcinoma; Animals; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Azides; Carcinoma, Squamous Cell; Cell Cycle; Cell Membrane; Cells, Cultured; Colonic Neoplasms; Cricetinae; Cricetulus; Dihydropyridines; Doxorubicin; Drug Resistance; Flow Cytometry; Fluorescence; Humans; Kinetics; Leukemia P388; Leukemia, Myeloid, Acute; Lung; Membrane Glycoproteins; Mice; Piperidines; Sensitivity and Specificity; Triazines; Tritium; Tumor Cells, Cultured; Verapamil | 1992 |
Overexpression of sigma receptors in nonneural human tumors.
Previous data indicated that opioid receptors occur in both neural and nonneural human tumors. However, it has recently been shown that some of the putative opioid binding may be attributable to sigma sites. In this study the occurrence of sigma and opioid receptors in nonneural human tumors was assessed. The neoplasms included renal and colon carcinomas and a sarcoma. [3H]1,3-di-o-tolylguanidine was used to assay sigma receptors by homologous competition binding assays, which when analyzed provided dissociation constant and receptor density values. Opioid binding was measured with [3H]-(-)-ethylketocyclazocine, a ligand which interacts with mu, delta, and kappa subtypes. Fresh surgical specimens were obtained from 9 human neoplasms, selected for their large size, and compared with nonmalignant tissues. All 9 tumors contained sigma sites, and dissociation constant values were within the range of 27-83 nM. Occasionally, two-site fit the data better than one-site binding, suggesting the presence of multiple sigma sites. Opioid binding was not detected. Intratumoral variability was evaluated by sampling several locations on the periphery of the mass and one in the center. Each of the samples was bisected, with a portion reserved for histological examination to correlate morphological features with receptor data. Changes in sigma binding were not associated with the extent of fibrosis, viability, or necrosis. Receptor density values displayed moderate intra- and intertumoral variation (coefficients of variation, 8-39 and 27-49%, respectively). More important, sigma binding in tumors was found to be greater than or equal to 2-fold higher than that of control nonmalignant tissue. Topics: Binding, Competitive; Carcinoma; Colonic Neoplasms; Guanidines; Humans; In Vitro Techniques; Kidney Neoplasms; Neoplasms; Piperidines; Receptors, Opioid; Receptors, sigma; Sarcoma | 1991 |