piperidines and Buruli-Ulcer

piperidines has been researched along with Buruli-Ulcer* in 5 studies

Other Studies

5 other study(ies) available for piperidines and Buruli-Ulcer

ArticleYear
Impact of Dose, Duration, and Immune Status on Efficacy of Ultrashort Telacebec Regimens in Mouse Models of Buruli Ulcer.
    Antimicrobial agents and chemotherapy, 2021, 10-18, Volume: 65, Issue:11

    Telacebec (Q203) is a new antituberculosis drug in clinical development that has extremely potent activity against Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU). The potency of Q203 has prompted investigation of its potential role in ultrashort, even single-dose, treatment regimens for BU in mouse models. However, the relationships of Q203 dose, dose schedule, duration, and host immune status to treatment outcomes remain unclear, as does the risk of emergence of drug resistance with Q203 monotherapy. Here, we used mouse footpad infection models in immunocompetent BALB/c and immunocompromised SCID-beige mice to compare different Q203 doses, different dosing schedules, and treatment durations ranging from 1 day to 2 weeks, on long-term outcomes. We also tested whether combining Q203 with a second drug can increase efficacy. Overall, efficacy depended on total dose more than on duration. Total doses of 5 to 20 mg/kg rendered nearly all BALB/c mice culture negative by 13 to 14 weeks posttreatment, without selection of Q203-resistant bacteria. Addition of a second drug did not significantly increase efficacy. Although less potent in SCID-beige mice, Q203 still rendered the majority of footpads culture negative at total doses of 10 to 20 mg/kg. Q203 resistance was identified in relapse isolates from some SCID-beige mice receiving monotherapy but not in isolates from those receiving Q203 combined with bedaquiline or clofazimine. Overall, these results support the potential of Q203 monotherapy for single-dose or other ultrashort therapy for BU, although highly immunocompromised hosts may require higher doses or durations and/or combination therapy.

    Topics: Animals; Buruli Ulcer; Imidazoles; Mice; Mice, Inbred BALB C; Mice, SCID; Mycobacterium ulcerans; Piperidines; Pyridines

2021
Telacebec for Ultrashort Treatment of Buruli Ulcer in a Mouse Model.
    Antimicrobial agents and chemotherapy, 2020, 05-21, Volume: 64, Issue:6

    Topics: Animals; Anti-Bacterial Agents; Buruli Ulcer; Drug Therapy, Combination; Imidazoles; Mice; Mice, Inbred BALB C; Mycobacterium ulcerans; Piperidines; Pyridines

2020
Telacebec (Q203)-containing intermittent oral regimens sterilized mice infected with Mycobacterium ulcerans after only 16 doses.
    PLoS neglected tropical diseases, 2020, Volume: 14, Issue:8

    Buruli ulcer (BU), caused by Mycobacterium ulcerans, is currently treated with a daily combination of rifampin and either injectable streptomycin or oral clarithromycin. An intermittent oral regimen would facilitate treatment supervision. We first evaluated the bactericidal activity of newer antimicrobials against M. ulcerans using a BU animal model. The imidazopyridine amine telacebec (Q203) exhibited high bactericidal activity whereas tedizolid (an oxazolidinone closely related to linezolid), selamectin and ivermectin (two avermectine compounds) and the benzothiazinone PBTZ169 were not active. Consequently, telacebec was evaluated for its bactericidal and sterilizing activities in combined intermittent regimens. Telacebec given twice a week in combination with a long-half-life compound, either rifapentine or bedaquiline, sterilized mouse footpads in 8 weeks, i.e. after a total of only 16 doses, and prevented relapse during a period of 20 weeks after the end of treatment. These results are very promising for future intermittent oral regimens which would greatly simplify BU treatment in the field.

    Topics: Animals; Antitubercular Agents; Buruli Ulcer; Diarylquinolines; Disease Models, Animal; Drug Therapy, Combination; Female; Imidazoles; Mice; Mice, Inbred BALB C; Mycobacterium ulcerans; Oxazolidinones; Piperidines; Pyridines; Rifampin; Tetrazoles

2020
Shortening Buruli Ulcer Treatment with Combination Therapy Targeting the Respiratory Chain and Exploiting Mycobacterium ulcerans Gene Decay.
    Antimicrobial agents and chemotherapy, 2019, Volume: 63, Issue:7

    Topics: Animals; Anti-Bacterial Agents; Bacterial Load; Buruli Ulcer; Clarithromycin; Clofazimine; Disease Models, Animal; Drug Resistance, Bacterial; Drug Therapy, Combination; Electron Transport; Humans; Imidazoles; Mice, Inbred BALB C; Microbial Sensitivity Tests; Mycobacterium ulcerans; Piperidines; Pyridines; Rifampin; Streptomycin

2019
Targeting the Mycobacterium ulcerans cytochrome bc
    Nature communications, 2018, 12-18, Volume: 9, Issue:1

    Mycobacterium ulcerans is the causative agent of Buruli ulcer, a neglected tropical skin disease that is most commonly found in children from West and Central Africa. Despite the severity of the infection, therapeutic options are limited to antibiotics with severe side effects. Here, we show that M. ulcerans is susceptible to the anti-tubercular drug Q203 and related compounds targeting the respiratory cytochrome bc

    Topics: Africa; Animals; Antibiotics, Antitubercular; Australia; Buruli Ulcer; Disease Models, Animal; Electron Transport Complex III; Electron Transport Complex IV; Female; Humans; Imidazoles; Inhibitory Concentration 50; Mice; Mice, Inbred BALB C; Mycobacterium ulcerans; Neglected Diseases; Piperidines; Pyridines; Rifampin; Treatment Outcome

2018