piperacillin has been researched along with Disease Models, Animal in 47 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 4 (8.51) | 18.7374 |
1990's | 5 (10.64) | 18.2507 |
2000's | 17 (36.17) | 29.6817 |
2010's | 20 (42.55) | 24.3611 |
2020's | 1 (2.13) | 2.80 |
Authors | Studies |
---|---|
Bradford, PA; Jones, CH; Petersen, PJ; Venkatesan, AM | 1 |
Bonomo, RA; Endimiani, A; Hujer, AM; Hujer, KM; Pulse, ME; Weiss, WJ | 1 |
Chen, WM; Hou, W; Huang, MY; Lin, J; Meng, Y; Xu, XF; Yu, JH | 1 |
Cassisa, V; Coron, N; Eveillard, M; Godefroy, A; Joly-Guillou, ML; Kempf, M; Marion, E; Marsollier, L; Pailhoriès, H; Pavlickova, S | 1 |
Barkan, D; Bifani, P; Meir, M | 1 |
Dings, RP; Dunn, DL; Haseman, JR; Leslie, DB; Luong, M; Mayo, KH | 1 |
Giamarellos-Bourboulis, EJ; Karagianni, V; Liakou, P; Menenakos, E; Sabracos, L; Spyridaki, A; Tsaganos, T; Tsovolou, EC; Tzepi, IM; Zografos, G | 1 |
Harada, Y; Hasegawa, H; Izumikawa, K; Kaku, N; Kohno, S; Morinaga, Y; Nakamura, S; Uno, N; Yanagihara, K | 1 |
Boutoille, D; Bretonnière, C; Caillon, J; Desessard, C; Guitton, C; Jacqueline, C; Potel, G | 1 |
Agudelo, M; Gonzalez, JM; Rodriguez, CA; Vesga, O; Zuluaga, AF | 1 |
Agudelo, M; Rodriguez, CA; Vesga, O; Zuluaga, AF | 1 |
Bruna-Romero, O; da Glória de Souza, D; de Andrade, JP; de Carvalho, MA; de Macêdo Farias, L; dos Santos, KV; Ferreira, JF | 1 |
Monogue, ML; Nicolau, DP | 1 |
Cetinkaya, RA; Coşkun, O; Eyigün, CP; Görenek, L; Ide, T; Kiliç, S; Senses, Z | 1 |
Enkhbaatar, P; Maybauer, DM; Maybauer, MO; Nakano, Y; Traber, DL | 1 |
Calcinari, A; Casteletti, S; Cirioni, O; Ghiselli, R; Giacometti, A; Guerrieri, M; Kamysz, E; Kamysz, W; Orlando, F; Rimini, M; Silvestri, C; Tocchini, M | 1 |
Cho, YB; Choi, CH; Jang, CH; Jang, SJ; Kim, GH; Kim, JS; Park, H; Yang, HC | 1 |
Buffé, C; Dalla Costa, T; de Araujo, BV; Diniz, A; Palma, EC | 1 |
Bulik, CC; Keel, RA; Nicolau, DP; Sutherland, CA; Tessier, PR | 1 |
Kaygusuz, A | 1 |
Cirioni, O; D'Amato, G; Del Prete, MS; Ghiselli, R; Giacometti, A; Mocchegiani, F; Orlando, F; Riva, A; Saba, V; Scalise, G; Silvestri, C | 1 |
Cirioni, O; D'Amato, G; Del Prete, MS; Ghiselli, R; Giacometti, A; Kamysz, W; Mocchegiani, F; Orlando, F; Saba, V; Scalise, G; Viticchi, C; łLukasiak, J | 1 |
Helfand, MS; Hutton-Thomas, R; Lakticová, V; Rice, LB | 1 |
Akgün, H; Erkiliç, K; Esel, D; Evereklioglu, C; Göktas, S; Ozkiris, A | 1 |
Jacobus, NV; Kuck, NA; Petersen, PJ; Tally, FP; Testa, RT; Weiss, WJ | 1 |
Börzsei, L; Helyes, Z; Kereskai, L; Kocsis, B; Koós, Z; Mintál, T; Nyárády, J | 1 |
Bergnach, C; Cirioni, O; Ghiselli, R; Giacometti, A; Licci, A; Mocchegiani, F; Orlando, F; Rocchi, M; Saba, V; Scalise, G; Silvestri, C; Skerlavaj, B; Zanetti, M | 1 |
Barra, D; Bozzi, A; Cirioni, O; Di Giulio, A; Ghiselli, R; Giacometti, A; Luzi, C; Mangoni, ML; Mocchegiani, F; Orlando, F; Rinaldi, AC; Saba, V; Scalise, G; Silvestri, C | 1 |
Appavu, SK | 1 |
Cirioni, O; Ghiselli, R; Giacometti, A; Giovanni, M; Kamysz, E; Kamysz, W; Minardi, D; Orlando, F; Parri, G; Saba, V; Scalise, G; Silvestri, C | 1 |
Cirioni, O; Di Matteo, F; Ghiselli, R; Giacometti, A; Kamysz, E; Kamysz, W; Mocchegiani, F; Orlando, F; Riva, A; Rocchi, M; Saba, V; Scalise, G; Silvestri, C | 1 |
Abbruzzetti, A; Cirioni, O; Di Matteo, F; Ghiselli, R; Giacometti, A; Mocchegiani, F; Orlando, F; Saba, V; Scalise, G; Silvestri, C | 1 |
Kager, L; Nord, CE | 1 |
Decazes, JM; Gutmann, L; Kitzis, MD; Leleu, G; Vallois, JM | 1 |
Goto, S; Hasegawa, M; Kobayashi, I; Miyazaki, S; Nishida, M | 1 |
Fernández-Roblas, R; Gadea, I; García-Corbeira, P; Ponte, C; Soriano, F | 1 |
Elhelali, N; Jacolot, A; Laurent, F; Léotard, S; Mimoz, O; Nordmann, P; Petitjean, O; Samii, K | 1 |
Cirioni, O; Del Prete, MS; Fineo, A; Ghiselli, R; Giacometti, A; Mocchegiani, F; Orlando, F; Rocchi, M; Saba, V; Scalise, G | 1 |
Hashimoto, I; Maezawa, I; Matsushita, T; Nakamura, T; Ohshima, S; Okuno, S; Sawada, Y; Yamaguchi, T | 1 |
Breddin, HK; Weichert, W | 1 |
Dyhr, H; Grunnet, M; Munro, G | 1 |
Baker, S; Brown, J; Chandran, P; Chin, CL; Decker, MW; Fox, GB; Gauvin, D; Gomez, E; Gopalakrishnan, M; Honore, P; Jacobson, PB; Komater, V; Lee, CH; Lewis, LG; Mikusa, J; Pai, M; Rustay, NR; Salyers, A; Simler, G; Tovcimak, A; Zhong, C; Zhu, CZ | 1 |
Campbell, T; Gopalakrishnan, M; Honore, P; Lee, CH; Malysz, J; Polakowski, J; Shaughnessy, T; Zhu, C | 1 |
Decker, MW; Honore, P; Lynch, JJ; Mikusa, JP; Wade, CL | 1 |
Honore, P; Joshi, SK; Mikusa, JP; Weaver, B | 1 |
Arneric, SP; Bannon, AW; Campbell, JE; Decker, MW; Kim, DJ | 1 |
47 other study(ies) available for piperacillin and Disease Models, Animal
Article | Year |
---|---|
Efficacy of piperacillin combined with the Penem beta-lactamase inhibitor BLI-489 in murine models of systemic infection.
Topics: Animals; Anti-Bacterial Agents; Bacterial Infections; beta-Lactamase Inhibitors; Disease Models, Animal; Drug Therapy, Combination; Female; Lactams; Mice; Piperacillin | 2009 |
Evaluation of ceftazidime and NXL104 in two murine models of infection due to KPC-producing Klebsiella pneumoniae.
Topics: Animals; Anti-Bacterial Agents; Azabicyclo Compounds; Ceftazidime; Disease Models, Animal; Female; Klebsiella Infections; Klebsiella pneumoniae; Mice; Microbial Sensitivity Tests; Sepsis | 2011 |
Synthetic cajaninstilbene acid derivatives eradicate methicillin-resistant Staphylococcus aureus persisters and biofilms.
Topics: Animals; Anti-Bacterial Agents; Biofilms; Cell Survival; Cell Wall; Disease Models, Animal; Methicillin-Resistant Staphylococcus aureus; Mice; Microbial Sensitivity Tests; RAW 264.7 Cells; Salicylates; Skin Diseases; Staphylococcal Infections; Staphylococcus aureus; Stilbenes; Structure-Activity Relationship | 2021 |
Mouse model of colonization of the digestive tract with Acinetobacter baumannii and subsequent pneumonia.
Topics: Acinetobacter; Acinetobacter Infections; Animals; Anti-Bacterial Agents; Bacterial Translocation; Disease Models, Animal; Drug Resistance, Multiple, Bacterial; Gastrointestinal Tract; Immunosuppression Therapy; Lung; Mice; Neutropenia; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Pneumonia, Bacterial | 2017 |
The addition of avibactam renders piperacillin an effective treatment for
Topics: Animals; Azabicyclo Compounds; beta-Lactamase Inhibitors; beta-Lactamases; Disease Models, Animal; Drug Combinations; Drug Synergism; Meropenem; Microbial Sensitivity Tests; Moths; Mycobacterium abscessus; Mycobacterium Infections, Nontuberculous; Piperacillin | 2018 |
Bacterial membrane disrupting dodecapeptide SC4 improves survival of mice challenged with Pseudomonas aeruginosa.
Topics: Animals; Anti-Bacterial Agents; Bacteremia; Cytokines; Disease Models, Animal; Inflammation Mediators; Male; Mice; Penicillanic Acid; Peptide Fragments; Piperacillin; Piperacillin, Tazobactam Drug Combination; Pseudomonas aeruginosa; Pseudomonas Infections; Time Factors | 2013 |
Effect of clarithromycin in experimental empyema by multidrug-resistant Pseudomonas aeruginosa.
Topics: Adjuvants, Immunologic; Animals; Anti-Bacterial Agents; Apoptosis; Clarithromycin; Disease Models, Animal; Drug Resistance, Multiple, Bacterial; Drug Therapy, Combination; Empyema, Pleural; Humans; Interleukin-6; Male; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Pleural Effusion; Pseudomonas aeruginosa; Pseudomonas Infections; Rabbits; Tumor Necrosis Factor-alpha; U937 Cells | 2014 |
In the literature. Piperacillin-tazobactam and extended-spectrum β-lactamase--producing Escherichia coli.
Topics: Animals; Anti-Bacterial Agents; beta-Lactamases; Disease Models, Animal; Drug Resistance, Bacterial; Escherichia coli; Escherichia coli Infections; Humans; Mice; Microbial Sensitivity Tests; Nociceptive Pain; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Staphylococcal Infections | 2013 |
In vitro and in vivo activities of piperacillin-tazobactam and meropenem at different inoculum sizes of ESBL-producing Klebsiella pneumoniae.
Topics: Animals; Anti-Bacterial Agents; Bacterial Load; Disease Models, Animal; Klebsiella Infections; Klebsiella pneumoniae; Lung; Male; Meropenem; Mice, Inbred BALB C; Microbial Sensitivity Tests; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Pneumonia, Bacterial; Survival Analysis; Thienamycins | 2014 |
In vivo efficacy of ceftolozane against Pseudomonas aeruginosa in a rabbit experimental model of pneumonia: comparison with ceftazidime, piperacillin/tazobactam and imipenem.
Topics: Animal Structures; Animals; Anti-Bacterial Agents; Bacterial Load; Ceftazidime; Cephalosporins; Colony Count, Microbial; Disease Models, Animal; Female; Humans; Imipenem; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Pneumonia, Bacterial; Pseudomonas aeruginosa; Pseudomonas Infections; Rabbits; Treatment Outcome | 2014 |
An optimized mouse thigh infection model for enterococci and its impact on antimicrobial pharmacodynamics.
Topics: Ampicillin; Anaerobiosis; Animals; Anti-Bacterial Agents; Disease Models, Animal; Enterococcus faecalis; Female; Gram-Positive Bacterial Infections; Mice, Inbred ICR; Microbial Sensitivity Tests; Mucins; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Sulbactam; Vancomycin | 2015 |
Relevance of various animal models of human infections to establish therapeutic equivalence of a generic product of piperacillin/tazobactam.
Topics: Animals; Anti-Bacterial Agents; Bacterial Infections; Disease Models, Animal; Enterobacter cloacae; Humans; Mesothelin; Mice; Microbial Sensitivity Tests; Penicillanic Acid; Piperacillin; Pseudomonas aeruginosa; Staphylococcus aureus; Tazobactam | 2015 |
Sub-Inhibitory Concentration of Piperacillin-Tazobactam May be Related to Virulence Properties of Filamentous Escherichia coli.
Topics: Animals; Anti-Bacterial Agents; Biofilms; Disease Models, Animal; Escherichia coli; Escherichia coli Infections; Intraabdominal Infections; Locomotion; Metabolism; Mice; Microbial Sensitivity Tests; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Virulence | 2016 |
In Vitro-In Vivo Discordance with Humanized Piperacillin-Tazobactam Exposures against Piperacillin-Tazobactam-Resistant/Pan-β-Lactam-Susceptible Escherichia coli.
Topics: Animals; Anti-Bacterial Agents; Cephalosporins; Colistin; Culture Media; Disease Models, Animal; Drug Administration Schedule; Drug Resistance, Bacterial; Escherichia coli; Escherichia coli Infections; Female; Humans; Mice; Mice, Inbred ICR; Microbial Sensitivity Tests; Neutropenia; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Tobramycin; Treatment Outcome | 2016 |
The effect of methylprednisolone on treatment in rats with induced sepsis.
Topics: Animals; Disease Models, Animal; Methylprednisolone; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Rats; Rats, Sprague-Dawley; Sepsis | 2009 |
A novel antibiotic based long-term model of ovine smoke inhalation injury and septic shock.
Topics: Animals; Anti-Bacterial Agents; Bacteremia; Ciprofloxacin; Disease Models, Animal; Female; Nitric Oxide; Piperacillin; Pseudomonas aeruginosa; Pseudomonas Infections; Pulmonary Gas Exchange; Respiratory Distress Syndrome; Sheep, Domestic; Shock, Septic; Smoke Inhalation Injury; Time Factors | 2010 |
Protective effect of citropin 1.1 and tazobactam-piperacillin against oxidative damage and lethality in mice models of gram-negative sepsis.
Topics: Amphibian Proteins; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Antimicrobial Cationic Peptides; Disease Models, Animal; Drug Therapy, Combination; Enzyme Inhibitors; Escherichia coli; Escherichia coli Infections; Lipopolysaccharides; Male; Mice; Mice, Inbred BALB C; Oxidative Stress; Penicillanic Acid; Piperacillin; Tazobactam | 2011 |
Effect of piperacillin-tazobactam coated β-tricalcium phosphate for mastoid obliteration in otitis media.
Topics: Animals; Calcium Phosphates; Coated Materials, Biocompatible; Disease Models, Animal; Guinea Pigs; Male; Mastoid; Otitis Media; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Plastic Surgery Procedures; Random Allocation; Reference Values; Tissue Scaffolds; Treatment Outcome; Tympanoplasty | 2011 |
PK-PD modeling of β-lactam antibiotics: in vitro or in vivo models?
Topics: Animals; Anti-Bacterial Agents; beta-Lactams; Disease Models, Animal; Escherichia coli; Escherichia coli Infections; Immunocompromised Host; Male; Models, Biological; Piperacillin; Rats; Rats, Wistar | 2011 |
In vivo comparison of CXA-101 (FR264205) with and without tazobactam versus piperacillin-tazobactam using human simulated exposures against phenotypically diverse gram-negative organisms.
Topics: Animals; Anti-Bacterial Agents; beta-Lactamases; Cephalosporins; Colony Count, Microbial; Disease Models, Animal; Drug Combinations; Drug Resistance, Bacterial; Escherichia coli; Escherichia coli Infections; Female; Humans; Klebsiella Infections; Klebsiella pneumoniae; Mice; Mice, Inbred ICR; Microbial Sensitivity Tests; Penicillanic Acid; Phenotype; Piperacillin; Piperacillin, Tazobactam Drug Combination; Pseudomonas aeruginosa; Pseudomonas Infections; Tazobactam; Thigh | 2012 |
Infecting one animal with two different strains of the same bacteria may cause misleading results.
Topics: Abscess; Animals; Disease Models, Animal; Enzyme Inhibitors; Hindlimb; Penicillanic Acid; Penicillins; Piperacillin; Pseudomonas aeruginosa; Pseudomonas Infections; Rats; Reproducibility of Results; Tazobactam | 2002 |
Antiendotoxin activity of antimicrobial peptides and glycopeptides.
Topics: Animals; Anti-Bacterial Agents; Colistin; Disease Models, Animal; Drug Therapy, Combination; Escherichia coli; Escherichia coli Infections; Injections, Intraperitoneal; Male; Penicillins; Piperacillin; Proteins; Random Allocation; Rats; Rats, Wistar; Shock, Septic; Teicoplanin; Vancomycin | 2003 |
Antiendotoxin activity of protegrin analog IB-367 alone or in combination with piperacillin in different animal models of septic shock.
Topics: Animals; Antimicrobial Cationic Peptides; Cecum; Disease Models, Animal; Drug Therapy, Combination; Escherichia coli Infections; Ligation; Lipopolysaccharides; Male; Microbial Sensitivity Tests; Peptides; Peritonitis; Piperacillin; Proteins; Punctures; Rats; Rats, Wistar; Shock, Septic | 2003 |
In vitro antienterococcal activity explains associations between exposures to antimicrobial agents and risk of colonization by multiresistant enterococci.
Topics: Animals; Anti-Bacterial Agents; Carrier State; Ceftriaxone; Colony Count, Microbial; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Resistance, Multiple, Bacterial; Enterococcus faecium; Feces; Female; Gastrointestinal Tract; Gram-Positive Bacterial Infections; Mice; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination | 2004 |
The efficacy of piperacillin/tazobactam in experimental Pseudomonas aeruginosa endophthalmitis: a histopathological and microbiological evaluation.
Topics: Animals; Anti-Bacterial Agents; beta-Lactamase Inhibitors; Colony Count, Microbial; Disease Models, Animal; Drug Therapy, Combination; Endophthalmitis; Eye Infections, Bacterial; Female; Male; Penicillanic Acid; Piperacillin; Pseudomonas aeruginosa; Pseudomonas Infections; Rabbits; Tazobactam; Treatment Outcome; Vitreous Body | 2005 |
Synergistic activity of piperacillin: YTR-830H combinations in vitro and in vivo.
Topics: Animals; Anti-Bacterial Agents; Bacteria; Bacterial Infections; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Gastric Juice; Hydrogen-Ion Concentration; Mice; Microbial Sensitivity Tests; Mucins; Penicillanic Acid; Piperacillin; Swine; Tazobactam | 1989 |
Examination of a novel, specified local antibiotic therapy through polymethylmethacrylate capsules in a rabbit osteomyelitis model.
Topics: Animals; Anti-Bacterial Agents; Capsules; Chronic Disease; Delayed-Action Preparations; Disease Models, Animal; Drug Implants; Male; Osteomyelitis; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Polymethyl Methacrylate; Rabbits; Staphylococcal Infections; Staphylococcus aureus; Tibia | 2006 |
LL-37 protects rats against lethal sepsis caused by gram-negative bacteria.
Topics: Animals; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Cathelicidins; Cecum; Disease Models, Animal; Endotoxins; Escherichia coli; Escherichia coli Infections; Gram-Negative Bacteria; Imipenem; Injections, Intraperitoneal; Male; Nitrites; Piperacillin; Polymyxin B; Random Allocation; Rats; Rats, Wistar; Serotyping; Shock, Septic; Tumor Necrosis Factor-alpha | 2006 |
Interaction of antimicrobial peptide temporin L with lipopolysaccharide in vitro and in experimental rat models of septic shock caused by gram-negative bacteria.
Topics: Animals; Anti-Infective Agents; Antimicrobial Cationic Peptides; beta-Lactams; Disease Models, Animal; Drug Therapy, Combination; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Humans; Imipenem; Lipopolysaccharides; Male; Microbial Sensitivity Tests; Peritonitis; Piperacillin; Proteins; Rats; Rats, Wistar; Shock, Septic | 2006 |
Can the ravages of uncontrolled systemic inflammatory response be regulated by amphibian antimicrobial peptides?
Topics: Amphibian Proteins; Animals; Anti-Infective Agents; Antimicrobial Cationic Peptides; Bacterial Translocation; Bile Ducts; Disease Models, Animal; Endotoxins; Jaundice, Obstructive; Magainins; Penicillanic Acid; Peptides; Piperacillin; Rats; Tazobactam; Xenopus Proteins | 2006 |
The antimicrobial peptide tachyplesin III coated alone and in combination with intraperitoneal piperacillin-tazobactam prevents ureteral stent Pseudomonas infection in a rat subcutaneous pouch model.
Topics: Animals; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Bacterial Adhesion; Biofilms; Colony Count, Microbial; Disease Models, Animal; DNA-Binding Proteins; Drug-Eluting Stents; In Vitro Techniques; Male; Penicillanic Acid; Peptides, Cyclic; Piperacillin; Piperacillin, Tazobactam Drug Combination; Pseudomonas aeruginosa; Pseudomonas Infections; Rats; Rats, Wistar; Ureteral Diseases | 2007 |
Tachyplesin III and granulocyte-colony stimulating factor enhance the efficacy of tazobactam/piperacillin in a neutropenic mouse model of polymicrobial peritonitis.
Topics: Animals; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Disease Models, Animal; DNA-Binding Proteins; Drug Synergism; Enterococcus faecalis; Escherichia coli; Granulocyte Colony-Stimulating Factor; Male; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Neutropenia; Penicillanic Acid; Peptides, Cyclic; Peritonitis; Piperacillin; Survival Rate; Tazobactam; Time Factors | 2008 |
Efficacy of the bovine antimicrobial peptide indolicidin combined with piperacillin/tazobactam in experimental rat models of polymicrobial peritonitis.
Topics: Animals; Anti-Infective Agents; Antimicrobial Cationic Peptides; Disease Models, Animal; Drug Therapy, Combination; Enterococcus faecalis; Escherichia coli; Escherichia coli Infections; Gram-Positive Bacterial Infections; Male; Microbial Sensitivity Tests; Penicillanic Acid; Peritonitis; Piperacillin; Rats; Rats, Wistar; Shock, Septic; Tazobactam; Treatment Outcome | 2008 |
Intra-abdominal infection: microbiological and clinical aspects, with special reference to piperacillin prophylaxis and therapy.
Topics: Abscess; Animals; Bacterial Infections; Bacteriological Techniques; Biliary Tract Surgical Procedures; Digestive System; Digestive System Surgical Procedures; Disease Models, Animal; Drainage; Humans; Peritonitis; Piperacillin; Premedication; Rats; Surgical Wound Infection | 1984 |
Different ratios of the piperacillin-tazobactam combination for treatment of experimental meningitis due to Klebsiella pneumoniae producing the TEM-3 extended-spectrum beta-lactamase.
Topics: Animals; beta-Lactamase Inhibitors; beta-Lactamases; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Klebsiella Infections; Klebsiella pneumoniae; Meningitis, Bacterial; Penicillanic Acid; Piperacillin; Rabbits; Tazobactam | 1994 |
[In vivo effect of growth-inhibitor produced by Pseudomonas aeruginosa isolates and anti-pseudomonal drugs on model infection due to Pseudomonas aeruginosa].
Topics: Animals; Anti-Bacterial Agents; Ceftazidime; Disease Models, Animal; Drug Resistance, Microbial; Growth Inhibitors; Male; Mice; Mice, Inbred ICR; Piperacillin; Pseudomonas aeruginosa; Pseudomonas Infections; Sisomicin | 1993 |
Correlation of pharmacodynamic parameters of five beta-lactam antibiotics with therapeutic efficacies in an animal model.
Topics: Ampicillin; Animals; Anti-Bacterial Agents; Aztreonam; Cefazolin; Cefotaxime; Disease Models, Animal; Escherichia coli Infections; Male; Mice; Peritoneal Diseases; Piperacillin | 1996 |
Treatment of experimental pneumonia in rats caused by a PER-1 extended-spectrum beta-lactamase-producing strain of Pseudomonas aeruginosa.
Topics: Amikacin; Animals; Anti-Bacterial Agents; beta-Lactamases; Cefepime; Cephalosporins; Colony Count, Microbial; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Imipenem; Lung; Male; Microbial Sensitivity Tests; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Pneumonia, Bacterial; Pseudomonas aeruginosa; Pseudomonas Infections; Rats; Rats, Wistar | 1999 |
Single-dose intraperitoneal magainins improve survival in a gram-negative-pathogen septic shock rat model.
Topics: Animals; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Disease Models, Animal; Drug Therapy, Combination; Gram-Negative Bacteria; Gram-Negative Bacterial Infections; Infusions, Parenteral; Magainins; Male; Microbial Sensitivity Tests; Piperacillin; Rats; Rats, Wistar; Shock, Septic; Treatment Outcome; Xenopus Proteins | 2002 |
A new model of bacterial peritonitis in mice for evaluation of antibiotics. Effects of aspoxicillin and piperacillin.
Topics: Amoxicillin; Ampicillin Resistance; Animals; Ascitic Fluid; Disease Models, Animal; Escherichia coli; Escherichia coli Infections; Male; Mice; Peritonitis; Piperacillin | 1989 |
Effect of antibiotics on laser-induced thrombus formation in rat mesenteric arterioles.
Topics: Animals; Anti-Bacterial Agents; Arterioles; Azlocillin; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Infant, Newborn; Lasers; Mesenteric Arteries; Mezlocillin; Penicillins; Piperacillin; Rats; Rats, Inbred Strains; Thrombosis | 1989 |
Selective potentiation of gabapentin-mediated antinociception in the rat formalin test by the nicotinic acetylcholine receptor agonist ABT-594.
Topics: Amines; Analgesics; Animals; Azetidines; Cyclohexanecarboxylic Acids; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Duloxetine Hydrochloride; Exploratory Behavior; Gabapentin; gamma-Aminobutyric Acid; Male; Mecamylamine; Morphine; Nicotinic Agonists; Nicotinic Antagonists; Pain; Pain Measurement; Pyridines; Rats; Rats, Sprague-Dawley; Thiophenes | 2010 |
Potentiation of analgesic efficacy but not side effects: co-administration of an α4β2 neuronal nicotinic acetylcholine receptor agonist and its positive allosteric modulator in experimental models of pain in rats.
Topics: Allosteric Regulation; Analgesics; Animals; Azetidines; Behavior, Animal; Body Temperature; Brain; Disease Models, Animal; Drug Therapy, Combination; Magnetic Resonance Imaging; Male; Nicotinic Agonists; Osteoarthritis; Oxadiazoles; Pain; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, Nicotinic | 2011 |
α4β2 neuronal nicotinic receptor positive allosteric modulation: an approach for improving the therapeutic index of α4β2 nAChR agonists in pain.
Topics: Allosteric Regulation; Allosteric Site; Analgesics; Animals; Azetidines; Calcium; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Ferrets; HEK293 Cells; Hemodynamics; Humans; Low Back Pain; Male; Molecular Structure; Nicotinic Agonists; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, Nicotinic; Transfection; Vomiting | 2011 |
ABT-594 (a nicotinic acetylcholine agonist): anti-allodynia in a rat chemotherapy-induced pain model.
Topics: Acetylcholine; Analgesia; Animals; Azetidines; Chlorisondamine; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Administration Schedule; Drug Evaluation, Preclinical; Drug Therapy, Combination; Humans; Mecamylamine; Naloxone; Nicotinic Agonists; Pain; Pyridines; Rats; Rats, Sprague-Dawley; Time Factors; Vincristine | 2005 |
Morphine and ABT-594 (a nicotinic acetylcholine agonist) exert centrally mediated antinociception in the rat cyclophosphamide cystitis model of visceral pain.
Topics: Analgesics; Animals; Azetidines; Behavior, Animal; Brain; Chlorisondamine; Cyclophosphamide; Cystitis; Disease Models, Animal; Male; Mecamylamine; Morphine; Naloxone; Narcotic Antagonists; Nicotinic Antagonists; Pain; Pyridines; Quaternary Ammonium Compounds; Rats; Rats, Sprague-Dawley; Receptors, Nicotinic; Viscera | 2008 |
ABT-594, a novel cholinergic channel modulator, is efficacious in nerve ligation and diabetic neuropathy models of neuropathic pain.
Topics: Administration, Oral; Analgesics, Non-Narcotic; Animals; Azetidines; Cholinergic Antagonists; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Disease Models, Animal; Dose-Response Relationship, Drug; Hyperalgesia; Injections, Intraperitoneal; Ligation; Lumbosacral Region; Male; Morphine; Pain; Pyridines; Rats; Rats, Sprague-Dawley; Spinal Nerves; Time Factors | 1998 |