pi103 has been researched along with Squamous-Cell-Carcinoma-of-Head-and-Neck* in 2 studies
2 other study(ies) available for pi103 and Squamous-Cell-Carcinoma-of-Head-and-Neck
Article | Year |
---|---|
Targeted disruption of PI3K/Akt/mTOR signaling pathway, via PI3K inhibitors, promotes growth inhibitory effects in oral cancer cells.
The phosphoinositide-3-kinase (PI3K) pathway is the frequently altered in human cancer. This has led to the development and study of novel PI3K inhibitors for targeted therapy and also to overcome resistance to radiotherapy.. The anti-tumour effects of PI3K inhibitors (PI-828, PI-103 and PX-866) in terms of cell proliferation, colony formation, induction of apoptosis, cell cycle arrest, invasion, autophagy, and pNF-κB/p65 translocation in SCC-4, SCC-9 and SCC-25 cells were studied by performing MTT, clonogenic, DAPI staining, propidium iodide staining, annexin-V binding, matrigel invasion, acridine orange staining and immuno-fluorescence assay. Western blot assay was performed to assess the alteration in the expression of various proteins.. PI-828 and PI-103 treatment exhibited dose-dependent inhibition of growth and proliferation of OSCC cells with a concomitant induction of apoptosis, altered cell cycle regulation and decreased invasiveness (p < 0.01). PX-866 induced apoptosis, cell cycle arrest, autophagy and a significant decrease in the invasiveness of oral cancer cells as compared to untreated cells (p < 0.01). These compounds significantly reduced expression of COX-2, cyclin-D1 and VEGF in the treated cells besides cytoplasmic accumulation of pNF-κB/p65 protein. In addition to PI3Kα, inactivation of downstream components, i.e. Akt and mTOR was seen.. PI3K inhibitors such as PI-103, PI-828 and PX-866 may be developed as potential therapeutic agents for effective treatment of oral squamous cell carcinoma (OSCC) patients, associated with activated PI3K/Akt pathway. Topics: Apoptosis; Cell Line, Tumor; Cell Proliferation; Drug Screening Assays, Antitumor; Furans; Gonanes; Humans; Mouth Neoplasms; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyridines; Pyrimidines; Signal Transduction; Squamous Cell Carcinoma of Head and Neck; TOR Serine-Threonine Kinases | 2019 |
[A dual PI3K/mTOR inhibitor, PI-103, cooperates with TRAIL in laryngeal squamous carcinoma cells in vitro].
To investigate the effects of a dual phosphoinosmde-3-kinase (PI3K)/ mammalian target of rapamycin (mTOR) inhibitor, PI-103, cooperating with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the laryngeal squamous carcinoma Hep-2 cells.. Hep-2 cells were divided into 7 groups: LY294002 group, Rapamycin group, PI-103 group, LY294002+ TRAIL group, Rapamycin+ TRAIL group, PI-103+ TRAIL group and control group.The cell cycle and apoptosis of Hep-2 cells were assessed by flow cytometry.For PI-103 group, PI-103+ TRAIL group and control group, migration and invasion ability were measured by transwell migration and invasion assay respectively.The expression of relative proteins in apoptosis and PI3K/AKT/mTOR signal pathway was examined by Western blotting.. Combination of PI-103 and TRAIL could make cell cycle arrest at S phase (G1: 1.80%±0.30%; G2: 0.00), inhibit cell proliferation, and enhance apoptosis (66.78%±2.93%) (P<0.05). Combination of PI-103 and TRAIL could statistically decrease the migration and invasion number of Hep-2 cells (17.0±3.4, 18.4±5.4) than that of PI-103 group (41.2±3.8, 41.6±4.7). PI-103 could inhibit PI3K/AKT/mTOR signal pathway by decreasing the protein expression of p-AKT and p-4E-BP1.Comparing with the control group, the expression of cysteinyl aspartate specific proteinase (Caspase) 9, 8, 3 were increased while the expression of Cyclin D1, Cyclin E1, p-AKT, p-4E-BP1 were decreased in PI-103 and PI-103+ TRAIL group (P<0.05).. Enhanced anti-tumor effects was observed by combination of PI-103 and TRAIL on laryngeal cancer cells in vitro and this combined administration might be a promising strategy for clinical treatment of laryngeal cancer. Topics: Animals; Apoptosis; Carcinoma, Squamous Cell; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Chromones; Cyclin D1; Cyclin E; Furans; Head and Neck Neoplasms; Humans; Laryngeal Neoplasms; Morpholines; Oncogene Proteins; Phosphatidylinositol 3-Kinases; Pyridines; Pyrimidines; Signal Transduction; Squamous Cell Carcinoma of Head and Neck; TNF-Related Apoptosis-Inducing Ligand; TOR Serine-Threonine Kinases | 2016 |