pi103 has been researched along with Neuroblastoma* in 5 studies
5 other study(ies) available for pi103 and Neuroblastoma
Article | Year |
---|---|
PI3K Inhibitor Combined With Chemotherapy Can Enhance the Apoptosis of Neuroblastoma Cells In Vitro and In Vivo.
Activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is a novel poor prognostic indicator of neuroblastoma (NB), and the positive effects of chemotherapy on NB have been confirmed. In this study, we investigated the effect of small molecule PI3K inhibitor PI103 on chemosensitivity. The PI3K inhibitor cooperates with doxorubicin to synergistically induce apoptosis and to reduce tumor growth of NB in in vitro and in vivo models. Human NB cells, SH-SY5Y and SK-N-BE(2), were treated with PI103 combined doxorubicin-enhanced Bid cleavage, activated Bax, and caspase 3. Activation of caspase 3 was also observed in xenografts of NB in nude mice upon combination of doxorubicin with the specific PI3K inhibitor PI103. Cell viability was assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Both PI103 and doxorubicin inhibited growth of NB in vitro and PI103 induced a G1 arrest of NB cells. PI103 combined doxorubicin significantly inhibits the growth of established NB tumors, induced apoptosis of tumor cells, and improved the survival of mice in vivo Taken together, our findings suggest that PI3K inhibition seems to be a promising option to sensitize tumor cells for chemotherapy in NB, which may be effective in the treatment of NBs. Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Cycle; Cell Line, Tumor; Cell Survival; Disease Models, Animal; Doxorubicin; Furans; Humans; Mice; N-Myc Proto-Oncogene Protein; Neuroblastoma; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Signal Transduction; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays | 2016 |
FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma.
Neuroblastoma is a pediatric tumor of the peripheral sympathetic nervous system with a highly variable prognosis. Activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway in neuroblastoma is correlated with poor patient prognosis, but the precise downstream effectors mediating this effect have not been determined. Here we identify the forkhead transcription factor FOXO3a as a key target of the PI3K/AKT pathway in neuroblastoma. FOXO3a expression was elevated in low-stage neuroblastoma tumors and normal embryonal neuroblasts, but reduced in late-stage neuroblastoma. Inactivation of FOXO3a by AKT was essential for neuroblastoma cell survival. Treatment of neuroblastoma cells with the dual PI3K/mTOR inhibitor PI-103 activated FOXO3a and triggered apoptosis. This effect was rescued by FOXO3a silencing. Conversely, apoptosis induced by PI-103 or the AKT inhibitor MK-2206 was potentiated by FOXO3a overexpression. Furthermore, levels of total or phosphorylated FOXO3a correlated closely with apoptotic sensitivity to MK-2206. In clinical specimens, there was an inverse relationship between gene expression signatures regulated by PI3K signaling and FOXO3a transcriptional activity. Moreover, high PI3K activity and low FOXO3a activity were each associated with an extremely poor prognosis. Our work indicates that expression of FOXO3a and its targets offer useful prognostic markers as well as biomarkers for PI3K/AKT inhibitor efficacy in neuroblastoma. Topics: Apoptosis; Cell Line, Tumor; Forkhead Box Protein O3; Forkhead Transcription Factors; Furans; Heterocyclic Compounds, 3-Ring; Humans; Neuroblastoma; Neurons; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Prognosis; Proto-Oncogene Proteins c-akt; Pyridines; Pyrimidines; Signal Transduction; Survival Rate | 2013 |
PI3K inhibitors prime neuroblastoma cells for chemotherapy by shifting the balance towards pro-apoptotic Bcl-2 proteins and enhanced mitochondrial apoptosis.
We recently identified activation of phosphatidylinositol 3'-kinase (PI3K)/Akt as a novel predictor of poor outcome in neuroblastoma. Here, we investigated the effect of small-molecule PI3K inhibitors on chemosensitivity. We provide first evidence that PI3K inhibitors, for example PI103, synergize with various chemotherapeutics (Doxorubicin, Etoposide, Topotecan, Cisplatin, Vincristine and Taxol) to trigger apoptosis in neuroblastoma cells (combination index: high synergy). Mechanistic studies reveal that PI103 cooperates with Doxorubicin to reduce Mcl-1 expression and Bim(EL) phosphorylation and to upregulate Noxa and Bim(EL) levels. This shifted ratio of pro- and antiapoptotic Bcl-2 proteins results in increased Bax/Bak conformational change, loss of mitochondrial membrane potential, cytochrome c release, caspase activation and caspase-dependent apoptosis. Although Mcl-1 knockdown enhances Doxorubicin- and PI103-induced apoptosis, silencing of Noxa, Bax/Bak or p53 reduces apoptosis, underscoring the functional relevance of the Doxorubicin- and PI103-mediated modulation of these proteins for chemosensitization. Bcl-2 overexpression inhibits Bax activation, mitochondrial perturbations, cleavage of caspases and Bid, and apoptosis, confirming the central role of the mitochondrial pathway for chemosensitization. Interestingly, the broad-range caspase inhibitor zVAD.fmk does not interfere with Bax activation or mitochondrial outer membrane permeabilization, whereas it blocks caspase activation and apoptosis, thus placing mitochondrial events upstream of caspase activation. Importantly, PI103 and Doxorubicin cooperate to induce apoptosis and to suppress tumor growth in patients' derived primary neuroblastoma cells and in an in vivo neuroblastoma model, underlining the clinical relevance of the results. Thus, targeting PI3K presents a novel and promising strategy to sensitize neuroblastoma cells for chemotherapy-induced apoptosis, which has important implications for the development of targeted therapies for neuroblastoma. Topics: Antineoplastic Agents; Apoptosis; Blotting, Western; Brain Neoplasms; Cell Line, Tumor; Cell Separation; Doxorubicin; Drug Synergism; Enzyme Inhibitors; Flow Cytometry; Furans; Humans; Immunoprecipitation; Mitochondria; Neuroblastoma; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyridines; Pyrimidines; RNA, Small Interfering; Signal Transduction; Transfection | 2011 |
Targeting aberrant PI3K/Akt activation by PI103 restores sensitivity to TRAIL-induced apoptosis in neuroblastoma.
Because we recently identified Akt activation as a novel poor prognostic indicator in neuroblastoma, we investigated whether phosphoinositide 3'-kinase (PI3K) inhibition sensitizes neuroblastoma cells for TRAIL-induced apoptosis.. The effect of pharmacological or genetic inhibition of PI3K or mTOR was analyzed on apoptosis induction, clonogenic survival, and activation of apoptosis signaling pathways in vitro and in a neuroblastoma in vivo model. The functional relevance of individual Bcl-2 family proteins was examined by knockdown or overexpression experiments.. The PI3K inhibitor PI103 cooperates with TRAIL to synergistically induce apoptosis (combination index < 0.1), to suppress clonogenic survival, and to reduce tumor growth in a neuroblastoma in vivo model. Similarly, genetic silencing of PI3K significantly increases TRAIL-mediated apoptosis, whereas genetic or pharmacological blockage of mTOR fails to potentiate TRAIL-induced apoptosis. Combined treatment with PI103 and TRAIL enhances cleavage of Bid and the insertion of tBid into mitochondrial membranes, and reduces phosphorylation of Bim(EL). Additionally, PI103 decreases expression of Mcl-1, XIAP, and cFLIP, thereby promoting Bax/Bak activation, mitochondrial perturbations, and caspase-dependent apoptosis. Knockdown of Bid or Noxa or overexpression of Bcl-2 rescues cells from PI103- and TRAIL-induced apoptosis, whereas Mcl-1 silencing potentiates apoptosis. Bcl-2 overexpression also inhibits cleavage of caspase-3, caspase-8, and Bid pointing to a mitochondria-driven feedback amplification loop.. PI103 primes neuroblastoma cells for TRAIL-induced apoptosis by shifting the balance toward proapoptotic Bcl-2 family members and increased mitochondrial apoptosis. Thus, PI3K inhibitors represent a novel promising approach to enhance the efficacy of TRAIL-based treatment protocols in neuroblastoma. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Brain Neoplasms; Chick Embryo; Drug Resistance, Neoplasm; Drug Synergism; Enzyme Activation; Furans; Humans; Mice; Molecular Targeted Therapy; Mutation; Neuroblastoma; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyridines; Pyrimidines; TNF-Related Apoptosis-Inducing Ligand; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2011 |
Effects of small molecule inhibitors of PI3K/Akt/mTOR signaling on neuroblastoma growth in vitro and in vivo.
Activation of the PI3K/Akt signaling pathway is correlated with poor prognosis in neuroblastoma, the most common and deadly extracranial tumor of childhood. In this study, we show that the small-molecule inhibitors of phosphoinositide-dependent protein kinase-1 (PDK1) OSU03012 and the dual class I PI3K/mTOR inhibitor PI103 have profound effects on neuroblastoma survival in vitro and in vivo. Both OSU03012 and PI103 inhibited neuroblastoma growth in vitro. In treated cells, OSU03012 induced apoptosis and an S phase cell cycle arrest, whereas only minor apoptosis was detected in PI103 treated cells together with a G1 arrest. Both OSU03012 and PI103 downregulated phosphorylation of Akt and inhibited the downstream targets glycogen synthase kinase-3β (GSK3β) and p70 S6 kinase-1 (S6K1), as well as downregulated the expression of cyclin D1 and Mycn protein. Neuroblastoma cells expressing high levels of Mycn were more sensitive to OSU03012 or PI103 compared with cells expressing low Mycn levels. Both compounds significantly inhibited the growth of established, subcutaneous MYCN-amplified neuroblastoma xenografts in nude NMRI nu/nu mice. These results suggest that inhibition of the PI3K/Akt signaling pathway represent a clinical relevant target for the treatment of patients with high-risk MYCN-amplified neuroblastoma. Topics: Animals; Cell Line, Tumor; Cyclin D1; Furans; Humans; Mice; Mice, Nude; N-Myc Proto-Oncogene Protein; Neuroblastoma; Nuclear Proteins; Oncogene Proteins; Phosphatidylinositol 3-Kinases; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins c-akt; Pyrazoles; Pyridines; Pyrimidines; Pyruvate Dehydrogenase Acetyl-Transferring Kinase; Signal Transduction; Sulfonamides; TOR Serine-Threonine Kinases | 2011 |