phytosterols has been researched along with Insulin-Resistance* in 12 studies
2 review(s) available for phytosterols and Insulin-Resistance
Article | Year |
---|---|
A Comprehensive Review on Therapeutic Perspectives of Phytosterols in Insulin Resistance: A Mechanistic Approach.
Natural products in the form of functional foods have become increasingly popular due to their protective effects against life-threatening diseases, low risk of adverse effects, affordability, and accessibility. Plant components such as phytosterol, in particular, have drawn a lot of press recently due to a link between their consumption and a modest incidence of global problems, such as Type 2 Diabetes mellitus (T2DM), cancer, and cardiovascular disease. In the management of diet-related metabolic diseases, such as T2DM and cardiovascular disorders, these plant-based functional foods and nutritional supplements have unquestionably led the market in terms of cost-effectiveness, therapeutic efficacy, and safety. Diabetes mellitus is a metabolic disorder categoriszed by high blood sugar and insulin resistance, which influence major metabolic organs, such as the liver, adipose tissue, and skeletal muscle. These chronic hyperglycemia fallouts result in decreased glucose consumption by body cells, increased fat mobilisation from fat storage cells, and protein depletion in human tissues, keeping the tissues in a state of crisis. In addition, functional foods such as phytosterols improve the body's healing process from these crises by promoting a proper physiological metabolism and cellular activities. They are plant-derived steroid molecules having structure and function similar to cholesterol, which is found in vegetables, grains, nuts, olive oil, wood pulp, legumes, cereals, and leaves, and are abundant in nature, along with phytosterol derivatives. The most copious phytosterols seen in the human diet are sitosterol, stigmasterol, and campesterol, which can be found in free form, as fatty acid/cinnamic acid esters or as glycosides processed by pancreatic enzymes. Accumulating evidence reveals that phytosterols and diets enriched with them can control glucose and lipid metabolism, as well as insulin resistance. Despite this, few studies on the advantages of sterol control in diabetes care have been published. As a basis, the primary objective of this review is to convey extensive updated information on the possibility of managing diabetes and associated complications with sterol-rich foods in molecular aspects. Topics: Diabetes Mellitus, Type 2; Diet; Humans; Insulin Resistance; Phytosterols; Sterols | 2022 |
Understanding the role of dietary components on atherosclerosis using genetic engineered mouse models.
The generation by genetic engineering of two murine models to investigate atherosclerosis, such as the apoE- and LDLr- deficient mice, is providing an extraordinaire knowledge of the effect of different nutrients on this complex disease. The present revision provides a comprehensive overview of the advances in this field that point to a remarkable complexity. While some controversies over puzzling results could be explained invoking potential nutrient interactions or different food sources of nutrients, it also appears that other factors such as sex, genetic background or immunological status are emerging as generators of differential responses to nutrients during the atherosclerotic process. Topics: Alcohol Drinking; Allergy and Immunology; Animals; Antioxidants; Apolipoproteins E; Arginine; Arteriosclerosis; Ascorbic Acid; Atherosclerosis; Cell Proliferation; Dietary Fats; Disease Models, Animal; Energy Metabolism; Fatty Acids, Monounsaturated; Fatty Acids, Unsaturated; Genetic Engineering; Genetic Variation; Genomics; Homocysteine; Insulin Resistance; Iron; Magnesium; Mice; Mice, Inbred C57BL; Mice, Knockout; Models, Biological; Models, Genetic; Phytosterols; Receptors, LDL; Sex Factors; Sodium; Taurine; Vitamin E | 2006 |
3 trial(s) available for phytosterols and Insulin-Resistance
Article | Year |
---|---|
A Phytosterol-Enriched Spread Improves Lipid Profile and Insulin Resistance of Women with Gestational Diabetes Mellitus: A Randomized, Placebo-Controlled Double-Blind Clinical Trial.
Gestational diabetes mellitus (GDM) has become a serious health risk among pregnant women throughout the world. Phytosterol-enriched margarines are capable of lowering total cholesterol (TC) and low-density lipoprotein (LDL), but little is known about its effects on GDM. We aimed to examine the effects of daily consumption of a phytosterol-enriched spread on insulin resistance and lipid profile in pregnant GDM women.. Pregnant women suffering from GDM in their second trimester were recruited and randomly assigned to consume a margarine spread either with or without phytosterols daily for 16 weeks. Serum lipid profile and glucose and insulin metabolisms were assessed at week 0 (baseline) and week 16 (end of trial).. After 16 weeks, levels of triacylglycerol, TC, and LDL were significantly decreased, while high-density lipoprotein was significantly increased, compared with the baseline in the phytosterol group. In addition, in the same treatment group, glucose metabolic parameters, including fasting plasma glucose, serum insulin levels, the quantitative insulin check index, homeostasis model of assessment of insulin resistance, and β-cell function, were also significantly improved.. Daily consumption of a phytosterol-enriched spread improved insulin resistance and lipid profile in women with GDM. Topics: Adult; Blood Glucose; Diabetes, Gestational; Double-Blind Method; Female; Humans; Insulin; Insulin Resistance; Lipid Metabolism; Lipids; Phytosterols; Pregnancy; Pregnancy Trimester, Second; Treatment Outcome | 2016 |
A moderate-fat diet containing pistachios improves emerging markers of cardiometabolic syndrome in healthy adults with elevated LDL levels.
A randomised, cross-over, controlled-feeding study was conducted to evaluate the cholesterol-lowering effects of diets containing pistachios as a strategy for increasing total fat (TF) levels v. a control (step I) lower-fat diet. Ex vivo techniques were used to evaluate the effects of pistachio consumption on lipoprotein subclasses and functionality in individuals (n 28) with elevated LDL levels ( ≥ 2·86 mmol/l). The following test diets (SFA approximately 8 % and cholesterol < 300 mg/d) were used: a control diet (25 % TF); a diet comprising one serving of pistachios per d (1PD; 30 % TF); a diet comprising two servings of pistachios per d (2PD; 34 % TF). A significant decrease in small and dense LDL (sdLDL) levels was observed following the 2PD dietary treatment v. the 1PD dietary treatment (P= 0·03) and following the 2PD dietary treatment v. the control treatment (P= 0·001). Furthermore, reductions in sdLDL levels were correlated with reductions in TAG levels (r 0·424, P= 0·025) following the 2PD dietary treatment v. the control treatment. In addition, inclusion of pistachios increased the levels of functional α-1 (P= 0·073) and α-2 (P= 0·056) HDL particles. However, ATP-binding cassette transporter A1-mediated serum cholesterol efflux capacity (P= 0·016) and global serum cholesterol efflux capacity (P= 0·076) were only improved following the 2PD dietary treatment v. the 1PD dietary treatment when baseline C-reactive protein status was low ( < 103μg/l). Moreover, a significant decrease in the TAG:HDL ratio was observed following the 2PD dietary treatment v. the control treatment (P= 0·036). There was a significant increase in β-sitosterol levels (P< 0·0001) with the inclusion of pistachios, confirming adherence to the study protocol. In conclusion, the inclusion of pistachios in a moderate-fat diet favourably affects the cardiometabolic profile in individuals with an increased risk of CVD. Topics: Anticholesteremic Agents; Biomarkers; C-Reactive Protein; Cardiovascular Diseases; Cholesterol; Cross-Over Studies; Dietary Fats; Female; Humans; Insulin Resistance; Lipoproteins; Lipoproteins, LDL; Male; Metabolic Syndrome; Middle Aged; Nuts; Phytosterols; Phytotherapy; Pistacia; Sitosterols; Triglycerides | 2014 |
Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity.
The rise in LDL with egg feeding in lean insulin-sensitive (LIS) participants is 2- and 3-fold greater than in lean insulin-resistant (LIR) and obese insulin-resistant (OIR) participants, respectively.. We determined whether differences in cholesterol absorption, synthesis, or both could be responsible for these differences by measuring plasma sterols as indexes of cholesterol absorption and endogenous synthesis.. Plasma sterols were measured by gas chromatography-mass spectrometry in a random subset of 34 LIS, 37 LIR, and 37 OIR participants defined by the insulin sensitivity index (S(I)) and by BMI criteria selected from a parent group of 197 participants. Cholestanol and plant sterols provide a measure of cholesterol absorption, and lathosterol provides a measure of cholesterol synthesis.. The mean (±SD) ratio of plasma total absorption biomarker sterols to cholesterol was 4.48 ± 1.74 in LIS, 3.25 ± 1.06 in LIR, and 2.82 ± 1.08 in OIR participants. After adjustment for age and sex, the relations of the absorption sterol-cholesterol ratios were as follows: LIS > OIR (P < 0.001), LIS > LIR (P < 0.001), and LIR > OIR (P = 0.11). Lathosterol-cholesterol ratios were 0.71 ± 0.32 in the LIS participants, 0.95 ± 0.47 in the LIR participants, and 1.29 ± 0.55 in the OIR participants. After adjustment for age and sex, the relations of lathosterol-cholesterol ratios were as follows: LIS < OIR (P < 0.001), LIS < LIR (P = 0.03), and LIR < OIR (P = 0.002). Total sterol concentrations were positively associated with S(I) and negatively associated with obesity, whereas lathosterol correlations were the opposite.. Cholesterol absorption was highest in the LIS participants, whereas cholesterol synthesis was highest in the LIR and OIR participants. Therapeutic diets for hyperlipidemia should emphasize low-cholesterol diets in LIS persons and weight loss to improve S(I) and to decrease cholesterol overproduction in LIR and OIR persons. Topics: Absorption; Cholesterol; Cross-Sectional Studies; Diet; Double-Blind Method; Eggs; Female; Gas Chromatography-Mass Spectrometry; Humans; Insulin Resistance; Linear Models; Male; Middle Aged; Obesity; Phytosterols; Sterols | 2011 |
7 other study(ies) available for phytosterols and Insulin-Resistance
Article | Year |
---|---|
Nymphayol increases glucose-stimulated insulin secretion by RIN-5F cells and GLUT4-mediated insulin sensitization in type 2 diabetic rat liver.
Nymphaea stellata (Willd.) has been used in traditional medicine for centuries to treat several illnesses, including diabetes. However, scientific evidence supporting its mechanism of action is lacking. Here, we showed that an N. stellata flower chloroform extract (NSFCExt) has significant plasma glucose lowering ability. Furthermore, an active compound was identified and purified by column chromatography, and the structure of this compound, nymphayol, was determined by X-ray crystallographic analysis. Nymphayol was tested for its effects on insulin secretion by RIN-5F cells cultured in low or high glucose medium; we found that nymphayol treatment improved glucose-stimulated insulin secretion in vitro. Additionally, insulin sensitization and glucose uptake were increased in L6 myotubes. Nymphayol was administered to type 2 diabetic male Wistar rats at several doses (5, 10 or 20 mg/kg/day) for 45 days. After nymphayol administration, the plasma glucose concentration was significantly (p⩽0.05) lower (60.33%) than in control diabetic rats, and the plasma insulin level increased in a dose-dependent manner. In addition, the cellular insulin response was analyzed in type 2 diabetic rats; oral administration of nymphayol increased IRS1 phosphorylation and GLUT4 protein expression in liver and muscle. Nymphayol significantly (p⩽0.05) restored the levels of HbA1c, hepatic glycogen and hepatic glucose-metabolizing enzyme (hexokinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, glycogen synthase and glycogen phosphorylase) activity in diabetic rats. The administration of glibenclamide, a reference drug (600 μg/kg), also produced a significant (p⩽0.05) reduction in blood glucose in STZ-nicotinamide induced diabetic rats. The results suggest that nymphayol may be a useful therapy for diabetes because it stimulates insulin secretion and promotes glucose absorption. Topics: Animals; Biological Transport; Blood Glucose; Body Weight; Cell Line; Cell Proliferation; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Drinking; Gene Expression Regulation; Glucose; Glucose Transporter Type 4; Glycated Hemoglobin; Glycogen; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Liver; Male; Muscle Fibers, Skeletal; Phytosterols; Rats; Rats, Wistar; Reactive Oxygen Species | 2015 |
Water-soluble rice bran enzymatic extract attenuates dyslipidemia, hypertension and insulin resistance in obese Zucker rats.
Rice bran enzymatic extract (RBEE) has advantages compared to the original rice bran or its oils including water solubility, lack of rancidity and increased content in high nutritional proteins and nutraceutical compounds, particularly phytosterols, γ-oryzanol and tocols. Our aim was to determine the beneficial effects of RBEE in the pathogenesis of metabolic syndrome in obese Zucker rats.. Obese Zucker rats and their lean littermates were fed a 1 and 5 % RBEE-supplemented diet (O1, O5, L1 and L5). Simultaneously, obese and lean Zucker rats, fed a standard diet, were used as controls (OC and LC, respectively). Body weight, food and water intake, and systolic blood pressure were weekly evaluated. After treatment, biochemical assays of serum glucose, insulin, triglycerides (TG), total cholesterol (TC), non-esterified fatty acids (NEFA), adiponectin and nitrates (NO((x))) were determined.. RBEE treatment reduced circulating levels of TG and TC, whereas increased HDL-cholesterol without altering NEFA values in obese rats. The extract also induced a significant dose-dependent reduction of hypertension linked to obesity. RBEE of 5 % improved insulin resistance and subsequently reduced HOMA-IR index without altering serum glucose levels. Obese animals treated with RBEE showed partial restoration of adiponectin levels and a significant attenuation of pro-inflammatory values of NO((x)).. These findings evidence the nutraceutical properties of RBEE against the pathogenesis of metabolic syndrome by attenuating dyslipidemia, hypertension and insulin resistance as well as by restoring hypoadiponectinemia associated to obesity. Topics: Adiponectin; Animals; Blood Glucose; Blood Pressure; Body Weight; Cholesterol; Diet; Dyslipidemias; Fatty Acids, Nonesterified; Hypertension; Insulin; Insulin Resistance; Metabolic Syndrome; Nitrates; Obesity; Oryza; Phenylpropionates; Phytosterols; Plant Extracts; Rats; Rats, Zucker; Triglycerides; Water | 2013 |
The ABCG5 ABCG8 sterol transporter opposes the development of fatty liver disease and loss of glycemic control independently of phytosterol accumulation.
ABCG5 and ABCG8 form a complex (G5G8) that opposes the absorption of plant sterols but is also expressed in liver where it promotes the excretion of cholesterol into bile. Hepatic G5G8 is transcriptionally regulated by a number of factors implicated in the development of insulin resistance and nonalcoholic fatty liver disease. Therefore, we hypothesized that G5G8 may influence the development of diet-induced obesity phenotypes independently of its role in opposing phytosterol absorption. G5G8 knock-out (KO) mice and their wild type (WT) littermates were challenged with a plant sterol-free low fat or high fat (HF) diet. Weight gain and the rise in fasting glucose were accelerated in G5G8 KO mice following HF feeding. HF-fed G5G8 KO mice had increased liver weight, hepatic lipids, and plasma alanine aminotransferase compared with WT controls. Consistent with the development of nonalcoholic fatty liver disease, macrophage infiltration, the number of TUNEL-positive cells, and the expression of proinflammatory cytokines were also increased in G5G8 KO mice. Hepatic lipid accumulation was associated with increased peroxisome proliferator activated receptor γ, CD36, and fatty acid uptake. Phosphorylation of eukaryotic translation initiation factor 2α (eiF2α) and expression of activating transcription factor 4 and tribbles 3 were elevated in HF-fed G5G8 KO mice, a pathway that links the unfolded protein response to the development of insulin resistance through inhibition of protein kinase B (Akt) phosphorylation. Phosphorylation of Akt and insulin receptor was reduced, whereas serine phosphorylation of insulin receptor substrate 1 was elevated. Topics: Alanine Transaminase; Animals; ATP Binding Cassette Transporter, Subfamily G, Member 5; ATP Binding Cassette Transporter, Subfamily G, Member 8; ATP-Binding Cassette Transporters; CD36 Antigens; Dietary Fats; Eukaryotic Initiation Factor-2; Fatty Liver; Insulin Receptor Substrate Proteins; Insulin Resistance; Lipoproteins; Mice; Mice, Knockout; Multiprotein Complexes; Organ Size; Phosphorylation; Phytosterols; PPAR gamma; Proto-Oncogene Proteins c-akt; Unfolded Protein Response | 2012 |
Meliacinolin: a potent α-glucosidase and α-amylase inhibitor isolated from Azadirachta indica leaves and in vivo antidiabetic property in streptozotocin-nicotinamide-induced type 2 diabetes in mice.
In India, Azadirachta indica is typically known as 'neem tree' and its leaves has long been used in the ayurvedic medical tradition as a treatment for diabetes mellitus. In-depth chromatographic investigation on chloroform extract resulted in identification of one new tetranortriterpenoid. Structural elucidation was established on the basis of spectral data as 24,25,26,27-tetranor-apotirucalla-(apoeupha)-1α-senecioyloxy-3α,7α-dihydroxy-14,20,22-trien-21,23-epoxy named by us as meliacinolin (1). The present study investigated the effect hypoglycaemic, hypolipidemic, oxidative stress, insulin resistance, α-glucosidase and α-amylase of 1 from A. indica. Diabetic rats were treated with 1 for 28 d and a set of biochemical parameters were studied including: glucose level, total cholesterol, triglycerides, lipid peroxidation, liver and muscle glycogen, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. We also looked into liver function by determining glucose-6-phosphatase, glucokinase and hexokinase activities, and the effect on insulin level. While in vitro inhibition of α-glucosidase and α-amylase enzyme activities were used as indices of effect on glucose absorption. As a result we found that blood glucose level, serum biochemical parameters, hepatic enzymes, thiobarbituric acid reactive substances, and insulin level were restored in streptozotocin (STZ)-diabetic mice to normal levels with 1. Meliacinolin inhibited α-glucosidase and α-amylase activities. We conclude that meliacinolin can efficiently inhibit insulin resistance, improvement of renal function, lipid abnormalities, and oxidative stress, indicating that its therapeutic properties may be due to the interaction of meliacinolin with multiple targets involved in diabetes pathogenesis. α-Glucosidase and α-amylase inhibitors offer an effective strategy to lower the levels of post prandial hyperglycemia prevents the digestion of carbohydrates. Topics: alpha-Amylases; Animals; Azadirachta; Biomarkers; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dietary Carbohydrates; Dyslipidemias; Glycoside Hydrolase Inhibitors; Hypoglycemic Agents; Insulin; Insulin Resistance; Kidney; Liver; Male; Mice; Niacinamide; Oxidative Stress; Phytosterols; Phytotherapy; Plant Extracts; Streptozocin; Thiobarbituric Acid Reactive Substances | 2012 |
Phytosterols do not change susceptibility to obesity, insulin resistance, and diabetes induced by a high-fat diet in mice.
Most studies have focused on the cholesterol-lowering activity of phytosterols; however, other biological actions have also been attributed to these plant compounds. In this study, we investigated whether phytosterols could delay (progression phase) and/or reverse (regression phase) insulin resistance or type 2 diabetes mellitus in an experimental mouse model of diet-induced obesity, insulin resistance, and diabetes. Body mass, plasma lipid levels, insulin resistance, and hyperglycemia were determined. Phytosterol intake did not improve these metabolic parameters. Therefore, we were unable to substantiate any protective effect of phytosterol intake on diabetes development or regression in the mouse model used. Topics: Animals; Cholesterol; Diabetes Mellitus, Type 2; Dietary Fats; Disease Susceptibility; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Obesity; Phytosterols | 2008 |
Influence of phytostanol phosphoryl ascorbate (FM-VP4) on insulin resistance, hyperglycemia, plasma lipid levels, and gastrointestinal absorption of exogenous cholesterol in Zucker (fa/fa) fatty and lean rats.
The purpose of this investigation was to determine the effects of Phytostanol Phosphoryl Ascorbate (FM-VP4) on insulin resistance, hyperglycemia, plasma lipid levels, body weight, and gastrointestinal absorption of exogenous cholesterol in Zucker (fa/fa) fatty and lean rats. A group of 12 age-matched male obese (n = 6) and lean (n = 6) Zucker rats were administered 250 mg/kg twice a day (as 2% FM-VP4 in drinking water) for 30 consecutive days. Fasted blood samples prior to and following treatment were taken from all rats for glucose, lipid, insulin, and leptin determination. An oral glucose tolerance test was also carried out at the end of the treatment protocol. In addition, male obese (n = 7) and lean (n = 8) Zucker rats were coadministered a single oral gavage of [(3)H]cholesterol plus cold cholesterol with or without FM-VP4 (20 mg/kg) dissolved in Intralipid and the plasma concentration of the radiolabel was determined 10 h following the dose. FM-VP4 30-day treatment did not alter body weight, morning glucose, insulin, lipids, and leptin concentrations. There was no alteration in glucose tolerance in the nondiabetic, normoglycemic lean group; however, there was a highly significant improvement in glucose tolerance in the fatty group following FM-VP4 treatment. In addition, the insulin response to oral glucose showed no significant change in nondiabetic lean rats, whereas there was a change in the insulin secretory profile in the fatty group following FM-VP4 treatment. Furthermore, following a single oral gavage of FM-VP4 resulted in a significant decrease in the percentage of radiolabeled cholesterol absorbed. These findings suggest that FM-VP4 treatment to fatty Zucker rats could result in increased glucose responsiveness of the insulin secreting pancreatic beta cells. Furthermore, our findings suggest that FM-VP4 may only be effective presystemically. Systemic administration of FM-VP4 is warranted to determine the therapeutic potential of this effect. Topics: Animals; Blood Glucose; Body Weight; Cholesterol; Cholesterol, Dietary; Glucose Tolerance Test; Hyperglycemia; Hypoglycemic Agents; Insulin Resistance; Intestinal Absorption; Leptin; Lipids; Male; Obesity; Phytosterols; Rats; Rats, Zucker | 2003 |
Improvement of vascular dysfunction and blood lipids of insulin-resistant rats by a marine oil-based phytosterol compound.
The syndrome that is characterized by obesity, insulin resistance, and hyperlipidemia is increasingly prevalent in all prosperous societies. It is now recognized as a major contributor to cardiovascular disease. Vascular dysfunction in the form of hypercontractility and impaired nitric oxide-mediated relaxation is a significant component of cardiovascular disease, predisposing to ischemic events. The JCR:LA-cp strain of rats exhibits all major aspects of the obesity/insulin resistance syndrome, including vascular dysfunction and ischemic lesions of the heart. Dietary lipid intake may have a marked effect on plasma lipid levels and, potentially, on vascular disease. We have investigated the effects of a novel preparation, ONC101 (a phytosterol esterified with fish oil), on plasma lipids and vascular function in the insulin-resistant JCR:LA-cp rat. Treatment of obese male rats with ONC101 from 8 to 12 wk of age resulted in no change in plasma lipid concentrations at 0.5 g/kg body weight. At the higher dose of 2.6 g/kg, plasma TG fell 50% (1.26 vs. 2.59 mmol/L, P < 0.002) and cholesterol esters were significantly reduced (1.34 vs. 1.61 mmol/L, P < 0.002). Food intake and body weights were unaffected by ONC101 treatment. At the low dose of 86 mg/kg, the hypercontractility of aortic rings in response to phenylephrine was normalized and the relaxant response to acetylcholine was significantly improved. The results indicate that ONC101 at high doses has significant hypolipidemic effects and, at very low doses, has beneficial effects on endothelial and vascular smooth muscle cell function. Topics: Animals; Fish Oils; Insulin Resistance; Lipids; Male; Phytosterols; Rats; Vascular Diseases | 2002 |