phytosterols has been researched along with Constriction--Pathologic* in 2 studies
2 other study(ies) available for phytosterols and Constriction--Pathologic
Article | Year |
---|---|
Increased cholesterol absorption is associated with In-stent-restenosis after stent implantation for stable coronary artery disease.
Blood cholesterol levels are regulated by competing mechanisms of cholesterol synthesis, absorption and excretion. Plant sterols are natural constituents of plants, are not synthesized in humans, and serve as markers for cholesterol absorption. Ezetimibe lowers the intestinal absorption of cholesterol and plant sterols. We analyzed the associations of differences in cholesterol metabolism, in particular increased cholesterol absorption, and the occurrence of in-stent restenosis (ISR) in patients with stable coronary artery disease.. Elective stent implantation of de novo stenosis was conducted in 59 patients (74.6 % males, 67.2 ± 9.6 years). Cholesterol and non-cholesterol sterols were quantified in serum samples by gas chromatography or mass spectrometry. ISR was assessed by optical coherence tomography (OCT) and quantitative angiography (QCA) after six months.. Markers for cholesterol absorption (e.g. campesterol-to-cholesterol) were positively associated with ISR measured by QCA (%diameter stenosis, late lumen loss) and OCT (proliferation volume, %area stenosis), whereas markers for cholesterol synthesis (e.g. lathosterol-to-cholesterol) were negatively associated with ISR (%area stenosis: r = -0.271, p = 0.043). There was no association between ISR and total cholesterol, LDL, HDL, triglycerides. Markers for cholesterol absorption (e.g. campesterol-to-cholesterol) were significantly lower in ezetimibe-treated patients compared to patients on a statin only (1.29 ± 0.69 vs. 2.22 ± 1.23; p = 0.007). Combined lipid-lowering with ezetimibe plus statin reduced ISR compared to statin only (13.7 ± 10.4 vs. 22.5 ± 12.1 %diameter stenosis, p = 0.015).. Differences in cholesterol metabolism, more specifically increased cholesterol absorption, are associated with ISR. Topics: Cholesterol, LDL; Constriction, Pathologic; Coronary Angiography; Coronary Artery Disease; Coronary Restenosis; Ezetimibe; Female; Gas Chromatography-Mass Spectrometry; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Male; Phytosterols; Stents; Triglycerides | 2022 |
Accumulation of cholesterol precursors and plant sterols in human stenotic aortic valves.
The pathogenesis of aortic valve stenosis (AS) is characterized by the accumulation of LDL-derived cholesterol in the diseased valves. Since LDL particles also contain plant sterols, we investigated whether plant sterols accumulate in aortic valve lesions. Serum samples were collected from 82 patients with severe AS and from 12 control subjects. Aortic valves were obtained from a subpopulation of 21 AS patients undergoing valve surgery and from 10 controls. Serum and valvular total cholesterol and noncholesterol sterols were measured by gas-liquid chromatography. Noncholesterol sterols, including both cholesterol precursors and sterols reflecting cholesterol absorption, were detected in serum samples and aortic valves. The higher the ratios to cholesterol of the cholesterol precursors and absorption markers in serum, the higher their ratios in the stenotic aortic valves (r=0.74, P<0.001 for lathosterol and r=0.88, P<0.001 for campesterol). The valvular ratio to cholesterol of lathosterol correlated negatively with the aortic valve area (r= -0.47, P=0.045), suggesting attenuation of cholesterol synthesis with increasing severity of AS. The higher the absorption of cholesterol, the higher the plant sterol contents in stenotic aortic valves. These findings suggest that local accumulation of plant sterols and cholesterol precursors may participate in the pathobiology of aortic valve disease. Topics: Aged; Aorta; Body Mass Index; Cholesterol; Constriction, Pathologic; Female; Humans; Male; Phytosterols; Squalene | 2008 |