phytoestrogens has been researched along with Reperfusion-Injury* in 9 studies
1 review(s) available for phytoestrogens and Reperfusion-Injury
1 trial(s) available for phytoestrogens and Reperfusion-Injury
8 other study(ies) available for phytoestrogens and Reperfusion-Injury
Article | Year |
---|---|
The protective effect of zeranol in cerebral ischemia reperfusion via p-CREB overexpression.
Cerebral ischemia reperfusion (I/R) is a neurovascular disease leading to cerebral damage. It was found that postmenopausal women are liable to more dangerous effects than men at same age in stroke. The objective of this study is to investigate the neuroprotective effect of zeranol against cerebral ischemia reperfusion in ovariectomized rats.. 36 female wistar rats divided in to 3 groups: sham group, I/R group (where I/R was induced 7 weeks after ovariectomy), zeranol group (0.5 mg/kg every 3 days for 5 weeks before I/R). Cerebral ischemia reperfusion (I/R) was performed by bilateral common carotid artery occlusion then de-ligated to restore blood flow. After 24 h of reperfusion, rats performed cylinder test to evaluate behavioral dysfunction followed by decapitation. Brain tissues were collected for biochemical measures such as oxidative stress marker malondialdehyde, antioxidant markers reduced glutathione, inflammatory markers (interleukin-1 beta, tumor necrosis factor alpha, and inducible nitric oxide synthase), matrix metalloproteinase-9, adenosine triphosphate, brain derived neurotrophic factor, glucose transporter-3, phosphorylated c-AMP response element binding protein and finally nissl staining for histopathological examination.. The zeranol administered group showed a reversal of neuronal damage caused by ischemia evidenced by the decrease in MDA, IL-1β, TNF-α, and MMP-9 levels, increase GSH, and ATP levels, decrease expression of iNOS in both regions cortex and hippocampus, increase protein level of p-CREB, GLUT-3 and BDNF, increase number of intact neuron cells in both regions and attenuated histological changes in both cortex and hippocampus regions.. Zeranol has neuroprotective potential against cerebral ischemia reperfusion in ovariectomized rats. Topics: Animals; Brain; Brain Ischemia; Cyclic AMP Response Element-Binding Protein; Female; Inflammation Mediators; Matrix Metalloproteinase 9; Neurogenesis; Neuronal Plasticity; Nitric Oxide Synthase Type II; Oxidative Stress; Phytoestrogens; Rats, Wistar; Reperfusion Injury; Zeranol | 2019 |
Biochanin A protects against focal cerebral ischemia/reperfusion in rats via inhibition of p38-mediated inflammatory responses.
Biochanin A, an O-methylated natural isoflavonoid classified as phytoestrogen, has been reported to show anti-tumorigenesis, anti-oxidation, and anti-inflammatory properties. However, little is known about the effects of biochanin A on cerebral ischemia/reperfusion. In this study, the neuroprotective and anti-inflammatory effects of biochanin A against ischemia/reperfusion injury, as well as the related molecular mechanisms, were investigated in rat models. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2h, followed by 24h of reperfusion. Then neurological deficits, infarct volume and brain edema were evaluated. The MPO activity and TNF-α and IL-1β levels in ischemic boundary zone were determined by a spectrophotometer and the enzyme-linked immunosorbent assay (ELISA). The expressions of TNF-α, IL-1β, and phosphorylation of p38 were measured by RT-PCR or Western blotting. Consequently, our findings showed that biochanin A treatment for 14 days had significantly reduced infarct volume and brain edema, and improved neurological deficits in focal cerebral ischemia/reperfusion rats. The MPO activity and TNF-α and IL-1β levels were greatly increased after ischemia/reperfusion injury, while treatment with biochanin A dramatically suppressed these inflammatory processes. Furthermore, biochanin A attenuated the increase in p-p38 level in the ischemia/reperfusion brain tissue. Taken together, biochanin A has been shown to have neuroprotective effects in cerebral ischemia/reperfusion, and the mechanisms may correlate with inhibiting inflammatory response, as well as the inactivation of p38 signaling pathway. Topics: Animals; Brain Ischemia; Genistein; Inflammation; Male; MAP Kinase Signaling System; Neuroprotective Agents; Phytoestrogens; Rats; Rats, Sprague-Dawley; Reperfusion Injury | 2015 |
The soy phytoestrogens genistein and daidzein as neuroprotective agents against anoxia-glucopenia and reperfusion damage in rat urinary bladder.
Some bladder disorders, such as obstructive bladder and hyperactivity, may be caused partly by ischemia/reperfusion injury (I/R). The neuroprotective effects of estrogens were demonstrated in in vitro studies and a great interest in soy isoflavones (genistein and daidzein) as alternative to the synthetic estrogen receptor modulators for therapeutic use has been pointed out. The aim of this study was to investigate the effect of genistein and daidzein, on rat detrusor smooth muscle contractility and their possible neuroprotective role against I/R-like condition. Whole rat urinary bladders were subjected to in vitro anoxia-glucopenia (A-G) and reperfusion (R) in the absence or presence of drugs and response to electrical field stimulation (EFS) of intrinsic nerves evaluated. Furthermore rats were treated in vivo for 1 week with the phytoestrogens and the same in vitro protocol was applied to the ex vivo bladders. Antioxidant activity of genistein and daidzein on the A-G/R model was determined by measuring malonyldialdehyde (MDA). Moreover, hormones plasma levels were determined by radioimmunoassay. Genistein and daidzein administered either in vitro or in vivo showed significant neuroprotective effect and antioxidant activity. Testosterone and 17β-estradiol plasma levels were not modified by daidzein, while a significant decrease of testosterone in genistein treated rats was evident. Moreover both phytoestrogens significantly decreased detrusor contractions induced by EFS in a concentration-dependent manner. For being either neuroprotective and myorelaxant, genistein and daidzein could be considered a good lead for new therapeutic agents to protect the urinary bladder from hyperactivity and nerve damage. Topics: Animals; Antioxidants; Electric Stimulation; Estradiol; Genistein; Glycine max; Hypoxia; Isoflavones; Lipid Peroxidation; Male; Muscle Contraction; Neuroprotective Agents; Phytoestrogens; Rats; Rats, Wistar; Reperfusion Injury; Testosterone; Urinary Bladder | 2012 |
Genistein blunts the negative effect of ischaemia to the retina caused by an elevation of intraocular pressure.
Deduce whether the isoflavone genistein blunts the effect of ischaemia to the retina.. Ischaemia was induced in rats by raising the intraocular pressure (120 mm Hg) for 50 min. Genistein (10 mg/kg) was injected intraperitoneally 1 h before and after ischaemia. Seven days after ischaemia, the level of mRNAs for neurofilament light (NF-L), caspase 3, caspase 8, glial fibrillary acidic protein (GFAP), poly-ADP ribose polymerase (PARP), Thy-1 and proteins (GFAP, NF-L, PARP) in whole retinas were determined. NF-L and tubulin proteins in optic nerves were also determined. Retinas were also processed for the localization of choline acetyltransferase (ChAT) and GFAP immunoreactivities.. Ischaemia caused a significant reduction in ganglion cell proteins in the optic nerve (NF-L and tubulin) and retina (NF-L). Retinal Thy-1 (mRNA and protein) and NF-L (mRNA) were also reduced while mRNAs of caspase 3, caspase 8, PARP and GFAP (also protein) were increased. Changes in the mRNAs and proteins induced by ischaemia were significantly blunted by genistein with the exception of the increase in GFAP and PARP protein/mRNA levels. Ischaemia-induced changes in the localization of ChAT were also clearly attenuated by genistein treatment.. Genistein blunts most of the damaging effects caused to the retina by ischaemia. Topics: Animals; Caspase 3; Caspase 8; Cyclophilins; Disease Models, Animal; Female; Fluorescent Antibody Technique, Indirect; Genistein; Glial Fibrillary Acidic Protein; Injections, Intraperitoneal; Intraocular Pressure; Neurofilament Proteins; Ocular Hypertension; Phytoestrogens; Poly Adenosine Diphosphate Ribose; Proteins; Rats; Rats, Wistar; Reperfusion Injury; Retinal Diseases; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Thy-1 Antigens | 2011 |
Soy-derived phytoestrogens as preventive and acute neuroprotectors in experimental ischemic stroke: influence of rat strain.
The ability of a soy-based high-phytoestrogen diet (nutritional intervention) or genistein (pharmacological intervention), to limit ischemic brain damage in Wistar, Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats, has been assessed. As to the nutritional intervention, two groups from each strain received either a phytoestrogen-free (PE-0) or a high-phytoestrogen (PE-600) diet from weaning to adulthood. As to the pharmacological intervention, all animals were fed the standard soy-free AIN-93G diet and subsequently separated into two groups from each strain to receive either pure genistein (aglycone form, 1mg/kg/day intraperitoneal) or vehicle at 30 min reperfusion. After an episode of 90 min ischemia (intraluminal thread procedure) followed by 3 days reperfusion, cerebral infarct volume was measured. Arterial blood pressure (ABP) was significantly higher at the basal stage (just before ischemia) in SHR (140 ± 7 mmHg, n=17, p<0.05) than in Wistar (113 ± 4mmHg, n=23) and WKY (111 ± 6mmHg, n=14) rats. No significant differences were shown among the three stages (basal, ischemia, reperfusion) within each rat strain for both PE-0 and PE-600 diets. Wistar, but not WKY or SHR, rats fed the PE-600 diet showed significantly lower infarct volumes than their counterparts fed the PE-0 diet (30 ± 3% vs. 17 ± 3%, p<0.01). Genistein-treated Wistar, but not WKY or SHR, rats showed significantly lower infarct volumes than their vehicle-treated controls (27 ± 2% vs. 15 ± 2%, p<0.01). Our results demonstrate that: (1) the neuroprotective action of either chronic or acute exposure to soy isoflavones is strain-dependent, since it was shown in Wistar but not WKY or SHR rats; and (2) the soy-based diet does not prevent development of hypertension in SHR rats. Topics: Animals; Blood Pressure; Brain Ischemia; Cerebral Infarction; Genistein; Glycine max; Neuroprotective Agents; Phytoestrogens; Phytotherapy; Plant Extracts; Rats; Rats, Inbred Strains; Reperfusion Injury; Stroke | 2011 |
The protective effect of capsaicin receptor-mediated genistein postconditioning on gastric ischemia-reperfusion injury in rats.
No published study has addressed the effect of genistein postconditioning on gastric ischemia-reperfusion (GI-R) injury in rats.. To examine whether capsaicin receptor-mediated genistein postconditioning protects against gastric ischemia-reperfusion injury via the PI3K/Akt signal pathway.. Chloraldurat-anesthetized rats underwent occlusion of the celiac artery for 30 min, followed by 60 min of reperfusion. Based on this animal model of gastric ischemia-reperfusion injury, genistein at doses of 100, 500 or 1,000 μg/kg was administered via peripheral vein 5 min before reperfusion. The dose of 500 μg/kg was optimal for postconditioning, at which the severity of I-R-induced gastric injury significantly decreased. Immunohistochemistry also showed that gastric mucosal cell apoptosis decreased. Capsazepine (CPZ), a specific antagonist for the capsaicin receptor, was administered (1,000 μg/kg, i.v.) just before ischemia. Capsaicin (50 mg/kg, s.c.) once a day for 4 days reversed the protective effects of genistein. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting showed increased calcitonin gene-related peptide (CGRP) expression in genistein group but not in capsazepine or capsaicin group. CGRP inhibitor CGRP8-37 also prevented the effects of genistein in decreasing gastric mucosal injury index. In addition, PI3K inhibitor LY294002 (1.5 mg/kg) reversed the protective effect of genistein. Compared with genistein group, Western blots also demonstrated decreased Akt phosphorylation in LY294002 group.. Our data suggest that capsaicin receptors mediated the protective effects of genistein postconditioning. CGRP secreted by activated capsaicin-sensitive neurons played an important role in the protective effects of genistein. PI3K/Akt pathway was also involved in the protective effects of genistein. Topics: Animals; Chromones; Enzyme Inhibitors; Genistein; In Situ Nick-End Labeling; Ischemic Preconditioning; Morpholines; Phytoestrogens; Rats; Rats, Sprague-Dawley; Reperfusion Injury; TRPV Cation Channels; Up-Regulation | 2010 |
Effects of dietary phytoestrogen on global myocardial ischemia-reperfusion injury in isolated female rat hearts.
We investigated the effects of phytoestrogen on global myocardial ischemia-reperfusion injury in five groups of female rats. A high-phytoestrogen group (HPE) was ovariectomized (Ovx) and fed a diet containing soybean protein and a high-isoflavone soy extract. Another Ovx group of rats was fed the same diet as the HPE group but treated with the estrogen receptor blocker ICI-182,780 (HPE + ICI). A third group of Ovx rats was fed a diet containing soybean protein alone (low-phytoestrogen content; LPE). A fourth Ovx group was fed a diet free of phytoestrogen (Ovx). The fifth group of rats was sham ovariectomized (sham). Hearts from all rats were subjected to 30 min of global, hypothermic (4 degrees C), cardioplegic ischemia and 120 min of normothermic (37 degrees C) reperfusion with oxygenated Krebs-Henseleit buffer. Compared with either the sham or the HPE group, the Ovx and HPE + ICI groups had significantly decreased first derivative of left ventricular pressure (dP/dt), coronary flow rate (CFR), nitrite production and mitochondrial respiratory function and significantly increased Ca2+ accumulation and myocardial histological and ultrastructural injury. The CFR of the LPE group was significantly different from that of either Ovx or HPE + ICI group but the dP/dt, nitrite production, Ca2+ accumulation, and mitochondrial function were not. Our results indicate that diets containing phytoestrogen extract play a cardioprotective role in global myocardial ischemia-reperfusion in female rats. Topics: Animals; Blood Flow Velocity; Calcium; Coronary Circulation; Diet; Estradiol; Estrogens, Non-Steroidal; Female; Fulvestrant; Heart; In Vitro Techniques; Isoflavones; Mitochondria, Heart; Myocardial Reperfusion; Myocardium; Nitrites; Ovariectomy; Phytoestrogens; Plant Preparations; Rats; Rats, Sprague-Dawley; Receptors, Estrogen; Reperfusion Injury; Soybean Proteins; Ventricular Function, Left | 2001 |
Benefits of resveratrol in women's health.
Resveratrol and trans-resveratrol are powerful phytoestrogens, present in the skins of grapes and other plant foods and wine, which demonstrate a broad spectrum of pharmacological and therapeutic health benefits. Phytoestrogens are naturally occurring plant-derived nonsteroidal compounds that are functionally and structurally similar to steroidal estrogens, such as estradiol, produced by the body. Various studies, reviewed herein, have demonstrated the health benefits of phytoestrogens in addressing climacteric syndrome including vasomotor symptoms and postmenopausal health risks, as well as their anticarcinogenic, neuroprotective and cardioprotective activities and prostate health and bone formation promoting properties. Conventional HRT drugs have been demonstrated to cause serious adverse effects including stroke and gallbladder disease, as well as endometrial, uterine and breast cancers. Recent research demonstrates that trans-resveratrol binds to human estrogen receptors and increases estrogenic activity in the body. We investigated the effects of protykin, a standardized extract of trans-resveratrol from Polygonum cuspidatum, on cardioprotective function, the incidence of reperfusion-induced arrhythmias and free radical production in isolated ischemic/reperfused rat hearts. The rats were orally treated with two different daily doses of protykin for 3 weeks. Coronary effluents were measured for oxygen free radical production by electron spin resonance (ESR) spectroscopy in treated and drug-free control groups. In rats treated with 50 and 100 mg/kg of protykin, the incidence of reperfusion-induced ventricular fibrillation was reduced from its control value of 83% to 75% (p < 0.05) and 33% (p < 0.05), respectively. Protykin was seen to possess cardioprotective effects against reperfusion-induced arrhythmias through its ability to reduce or remove the reactive oxygen species in ischemic/reperfused myocardium. Taken together, these data suggest that trans-resveratrol supplementation may be a potential alternative to conventional HRT for cardioprotection and osteoporosis prevention and may confer other potential health benefits in women. Topics: Animals; Anthocyanins; Anticarcinogenic Agents; Antioxidants; Dose-Response Relationship, Drug; Estrogens, Non-Steroidal; Female; Free Radicals; Heart Diseases; Humans; Isoflavones; Phytoestrogens; Plant Preparations; Proanthocyanidins; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Resveratrol; Stilbenes; Ventricular Fibrillation | 2001 |