phytochlorin and Colorectal-Neoplasms

phytochlorin has been researched along with Colorectal-Neoplasms* in 7 studies

Other Studies

7 other study(ies) available for phytochlorin and Colorectal-Neoplasms

ArticleYear
Up-regulation of ABCG2 by MYBL2 deletion drives Chlorin e6-mediated photodynamic therapy resistance in colorectal cancer.
    Photodiagnosis and photodynamic therapy, 2023, Volume: 42

    Photodynamic therapy (PDT) may be an effective therapeutic strategy for colorectal cancer at an early stage. However, malignant cells' resistance to photodynamic agents can lead to treatment failure. MYBL2 (B-Myb) is an oncogene in colorectal carcinogenesis and development, for which little research has focused on its effect on drug resistance.. In the present work, a colorectal cancer cell line with a stable knockdown of MYBL2 (ShB-Myb) was constructed first. Chlorin e6 (Ce6) was utilized to induced PDT. The anti-cancer efficacy was measured by CCK-8, PI staining, and Western blots. The drug uptake of Ce6 was assayed by flow cytometry and confocal microscopy. The ROS generation was detected by the CellROX probe. DDSB and DNA damage were assayed through comet experiment and Western blots. The over-expression of MYBL2 was conducted by MYBL2 plasmid.. The findings indicated that the viability of ShB-Myb treated with Ce6-PDT was not decreased compared to control SW480 cells (ShNC), which were resistant to PDT. Further investigation revealed reduced photosensitizer enrichment and mitigated oxidative DNA damage in colorectal cancer cells with depressed MYBL2. It turned out that SW480 cells knocking down MYBL2 showed phosphorylation of NF-κB and led to up-regulation of ABCG2 expression thereupon. When MYBL2 was replenished back in MYBL2-deficient colorectal cancer cells, phosphorylation of NF-κB was blocked and ABCG2 expression up-regulation was suppressed. Additionally, replenishment of MYBL2 also increased the enrichment of Ce6 and the efficacy of PDT.. In summary, MYBL2 absence in colorectal cancer contributes to drug resistance by activating NF-κB to up-regulate ABCG2 and thereby leading to photosensitizer Ce6 efflux. This study provides a novel theoretical basis and strategy for how to effectively improve the anti-tumor efficacy of PDT.

    Topics: ATP Binding Cassette Transporter, Subfamily G, Member 2; Cell Cycle Proteins; Cell Line, Tumor; Chlorophyllides; Colorectal Neoplasms; Humans; Neoplasm Proteins; NF-kappa B; Photochemotherapy; Photosensitizing Agents; Porphyrins; Trans-Activators; Up-Regulation

2023
One-pot synthesis chlorin e6 nano-precipitation for colorectal cancer treatment Ce6 NPs for colorectal cancer treatment.
    IET nanobiotechnology, 2021, Volume: 15, Issue:8

    The drug nanoparticles free of additional carriers hold great promise in drug delivery and are suitable for the therapy of cancers. Herein, we developed a one-pot method to prepare chlorin e6 (Ce6) nano-precipitations (Ce6 NPs) for effective photodynamic therapy of colorectal cancer. The drug loading of Ce6 NPs was around 81% and showed acceptable stability, high biocompatibility as well as effective reactive oxygen species (ROS) generation capability. As a result, the Ce6 NPs can produce significantly elevated ROS upon laser irradiations and achieved better anticancer benefits than free Ce6.

    Topics: Cell Line, Tumor; Chlorophyllides; Colorectal Neoplasms; Humans; Nanoparticles; Photochemotherapy; Photosensitizing Agents; Porphyrins

2021
Photodynamic Treatment of Colorectal Cancer Using Chlorin e6-Loaded Poly(lactide-co-glycolide)- Based Nanoparticles.
    Journal of biomedical nanotechnology, 2021, Oct-01, Volume: 17, Issue:10

    We prepared poly(lactide-co-glycolide) (PLGA) encapsulated with chlorin e6 (Ce6) in an effort to increase the stability and efficiency of photosensitizers for photodynamic therapy (PDT). We determined that Ce6-loaded PLGA nanoparticles (PLGA-Ce6 NPs) had drug-loading efficiency of 5%. The efficiency of encapsulation was 82%, the zeta potential was- 25 mV, and the average diameter was 130 nm. The encapsulation of Ce6 in PLGA nanoparticles showed excellent stability. The nanoparticles exhibited sustained Ce6 release profiles with 50% released at the end of 3 days, whereas free Ce6 showed rapid release within 1 day. Ce6 release patterns were controlled by encapsulation into PLGA. The uptake of PLGA-Ce6 NPs was significantly enhanced by endocytosis in the first 8 hours in the HCT-116 cell line. An intracellular reactive oxygen species assay revealed the enhanced uptake of the nanoparticles. An

    Topics: Cell Line, Tumor; Chlorophyllides; Colorectal Neoplasms; Humans; Nanoparticles; Photochemotherapy; Photosensitizing Agents; Polyglactin 910; Porphyrins

2021
Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer.
    ACS nano, 2017, 05-23, Volume: 11, Issue:5

    While immunotherapy has become a highly promising paradigm for cancer treatment in recent years, it has long been recognized that photodynamic therapy (PDT) has the ability to trigger antitumor immune responses. However, conventional PDT triggered by visible light has limited penetration depth, and its generated immune responses may not be robust enough to eliminate tumors. Herein, upconversion nanoparticles (UCNPs) are simultaneously loaded with chlorin e6 (Ce6), a photosensitizer, and imiquimod (R837), a Toll-like-receptor-7 agonist. The obtained multitasking UCNP-Ce6-R837 nanoparticles under near-infrared (NIR) irradiation with enhanced tissue penetration depth would enable effective photodynamic destruction of tumors to generate a pool of tumor-associated antigens, which in the presence of those R837-containing nanoparticles as the adjuvant are able to promote strong antitumor immune responses. More significantly, PDT with UCNP-Ce6-R837 in combination with the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) checkpoint blockade not only shows excellent efficacy in eliminating tumors exposed to the NIR laser but also results in strong antitumor immunities to inhibit the growth of distant tumors left behind after PDT treatment. Furthermore, such a cancer immunotherapy strategy has a long-term immune memory function to protect treated mice from tumor cell rechallenge. This work presents an immune-stimulating UCNP-based PDT strategy in combination with CTLA-4 checkpoint blockade to effectively destroy primary tumors under light exposure, inhibit distant tumors that can hardly be reached by light, and prevent tumor reoccurrence via the immune memory effect.

    Topics: Animals; Cell Line, Tumor; Chlorophyllides; Colonic Neoplasms; Colorectal Neoplasms; CTLA-4 Antigen; Disease Models, Animal; Female; HeLa Cells; Humans; Imiquimod; Immunotherapy; Mice; Mice, Inbred BALB C; Nanoparticles; Photochemotherapy; Photosensitizing Agents; Porphyrins

2017
Role of p38MAPK in apoptosis and autophagy responses to photodynamic therapy with Chlorin e6.
    Photodiagnosis and photodynamic therapy, 2015, Volume: 12, Issue:1

    Photodynamic therapy (PDT) has been undergoing clinical evaluation for the treatment of colorectal cancer. But the molecular mechanism of photodynamic injury in human colorectal cancer cells still remains unclear.. Chlorin e6 (Ce6) was used to photosensitize SW620 cells. The inhibitory effect of PDT was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide tetrazolium) assay and colony forming assay. Apoptosis was determined by nuclear DAPI (4'-6-diamidino-2-phenylindole) staining and Annexin V-PE/7-AAD assay. Monodansylcadaverine (MDC) staining was used to evaluate the abundance of autophagic vacuoles in PDT treated cells. The apoptosis and autophagy associated proteins were analyzed by western blotting. Moreover, we applied siRNA p38MAPK and p38MAPK inhibitor SB203580 to dissect its effect on cellular response to PDT in SW620 cells.. Ce6 mediated PDT (Ce6-PDT) induced apparent autophagy and apoptosis with dependent on ROS (reactive oxygen species) generation. When p38MAPK was inhibited by siRNA or inhibitor SB203580, a marked enhancement of apoptosis and autophagy in SW620 cells was detected after PDT. Moreover, autophagy inhibitor 3-methyladenine/Bafilomycin A1 greatly aggravated PDT induced photodamage in SW620 cells.. Ce6-PDT induced ROS production to activate p38MAPK probably to prevent SW620 cells from photodamage. Inhibition of p38MAPK activation accelerated cell apoptosis, meanwhile enhanced autophagy may act as a cytoprotective process in SW620 cells.

    Topics: Apoptosis; Autophagy; Cell Line, Tumor; Cell Survival; Chlorophyllides; Colorectal Neoplasms; Humans; Mitogen-Activated Protein Kinase 14; Photochemotherapy; Photosensitizing Agents; Porphyrins; Treatment Outcome

2015
Targeted inhibition of p38MAPK-enhanced autophagy in SW620 cells resistant to photodynamic therapy-induced apoptosis.
    Lasers in medical science, 2015, Volume: 30, Issue:7

    Photodynamic therapy (PDT) is a promising and noninvasive treatment that can induce apoptosis, autophagy, or both depending on the cell phenotype. In this work, chlorin e6 (Ce6) was used to photosensitize human colorectal cancer SW620 cells. In cells, apparent autophagy and apoptosis with dependence on intracellular reactive oxygen species (ROS) generation were detected. p38MAPK activation followed by ROS generation might be a core component in Ce6 mediate PDT (Ce6-PDT)-induced autophagy and apoptosis signaling pathway. By using p38MAPK siRNA, the results showed a marked enhancement on cell apoptosis in Ce6-PDT with increased annexin (+) apoptotic cells, nuclear condensation, caspase-3, and PARP cleavage. Besides, impairment of p38MAPK also promoted the autophagic response to photodamage as indicated by conversion of LC3 and monodansyl cadaverine (MDC) labeling patterns. It appears that Ce6-PDT induced ROS production involving activation of p38MAPK, probably to prevent SW620 cells from photodamage. Moreover, autophagy inhibitor 3-methyladenine/bafilomycin A1 greatly aggravated Ce6-PDT-induced apoptosis in SW620 cells with knockdown of p38MAPK. Taken together, this study suggests that autophagy could represent a promising field in cancer treatment and p38MAPK may be a potential therapeutic target to enhance the efficacy on clinical evaluation for the treatment of colorectal cancer.

    Topics: Apoptosis; Autophagy; Cell Line, Tumor; Cell Survival; Chlorophyllides; Colorectal Neoplasms; Drug Screening Assays, Antitumor; Gene Knockdown Techniques; Humans; p38 Mitogen-Activated Protein Kinases; Photochemotherapy; Photosensitizing Agents; Porphyrins; Reactive Oxygen Species; RNA, Small Interfering

2015
Biodistribution of charged 17.1A photoimmunoconjugates in a murine model of hepatic metastasis of colorectal cancer.
    British journal of cancer, 2000, Volume: 83, Issue:11

    Optimizing photodynamic therapy involves attempting to increase both the absolute tumour content of photosensitizer and the selectivity between tumour and surrounding normal tissue. One reason why photodynamic therapy has not been considered suitable for treatment of metastatic tumours in the liver, is the poor selectivity of conventional photosensitizers for tumour compared to normal liver. This report details an alternative approach to increasing this selectivity by the use of antibody-targeted photosensitizers (or photoimmunoconjugates) to target intrahepatic tumours caused by human colorectal cancer cells in the nude mouse, and explores the role of molecular charge on the tumour-targeting efficiency of macromolecules. The murine monoclonal antibody 17.1A (which recognizes an antigen expressed on HT 29 cells) was used to prepare site-specific photoimmunoconjugates with the photosensitizer chlorine6. The conjugates had either a predominant cationic or anionic charge and were injected i.v. into tumour-bearing mice. Biodistribution 3 or 24 h later was measured by extraction of tissue samples and quantitation of chlorine6 content by fluorescence spectroscopy. The photoimmunoconjugates were compared to the polylysine conjugates in an attempt to define the effect of molecular charge as well as antibody targeting. The anionic 17.1A conjugate delivered more than twice as much photosensitizer to the tumour at 3 h than other species (5 times more than the cationic 17. 1A conjugate) and had a tumour:normal liver ratio of 2.5. Tumour-to-liver ratios were greater than one for most compounds at 3 h but declined at 24 h. Tumour-to-skin ratios were high (> 38) for all conjugates but not for free chlorine6. Cationic species had a high uptake in the lungs compared to anionic species. The photoimmunoconjugates show an advantage over literature reports of other photosensitizers, which can result in tumour:normal liver ratios of less than 1.

    Topics: Adenocarcinoma; Animals; Anions; Antibodies, Monoclonal; Antibodies, Monoclonal, Murine-Derived; Cations; Chlorophyllides; Colorectal Neoplasms; Female; HT29 Cells; Humans; Immunoconjugates; Liver Neoplasms, Experimental; Mice; Porphyrins; Radiation-Sensitizing Agents; Tissue Distribution; Xenograft Model Antitumor Assays

2000