physalin-b has been researched along with Disease-Models--Animal* in 3 studies
3 other study(ies) available for physalin-b and Disease-Models--Animal
Article | Year |
---|---|
Physalin pool from Physalis angulata L. leaves and physalin D inhibit P2X7 receptor function in vitro and acute lung injury in vivo.
P2X7 receptor promotes inflammatory response and neuropathic pain. New drugs capable of impairing inflammation and pain-reducing adverse effects extracted from plant extracts have been studied. Physalis angulate L. possesses traditional uses and exhibits antiparasitic, anti-inflammatory, antimicrobial, antinociceptive, antimalarial, antileishmanial, immunosuppressive, antiasthmatic. diuretic, and antitumor activities. The most representative phytochemical constituents identified with medicinal importance are the physalins and withanolides. However, the mechanism of anti-inflammatory action is scarce. Although some physalins and withanolides subtypes have anti-inflammatory activity, only four physalins subtypes (B, D, F, and G) have further studies. Therefore, we evaluated the crude ethanolic extract enriched with physalins B, D, F, and G from P. angulata leaves, a pool containing the physalins B, D, F, G, and the physalins individually, as P2X7 receptor antagonists. For this purpose, we evaluated ATP-induced dye uptake, macroscopic currents, and interleukin 1-β (IL-1β) in vitro. The crude extract and pool dose-dependently inhibited P2X7 receptor function. Thus, physalin B, D, F, and G individually evaluated for 5'-triphosphate (ATP)-induced dye uptake assay, whole-cell patch-clamp, and cytokine release showed distinct antagonist levels. Physalin D displayed higher potency and efficacy than physalin B, F, and G for all these parameters. In vivo mice model as ATP-induced paw edema was potently inhibited for physalin D, in contrast to physalin B, F, and G. ATP and lipopolysaccharide (LPS)-induced pleurisy in mice were reversed for physalin D treatment. Molecular modeling and computational simulation predicted the intermolecular interactions between the P2X7 receptor and physalin derivatives. In silico results indicated physalin D and F as a potent allosteric P2X7 receptor antagonist. These data confirm physalin D as a promisor source for developing a new P2X7 receptor antagonist with anti-inflammatory action. Topics: Acute Lung Injury; Animals; Anti-Inflammatory Agents; Computer Simulation; Disease Models, Animal; Dose-Response Relationship, Drug; HEK293 Cells; Humans; Male; Mice; Models, Molecular; Physalis; Plant Extracts; Plant Leaves; Purinergic P2X Receptor Antagonists; Receptors, Purinergic P2X7; Secosteroids | 2021 |
Anti-colitic effects of Physalin B on dextran sodium sulfate-induced BALB/c mice by suppressing multiple inflammatory signaling pathways.
Physalin B is one of the main active withanolide existed in Physalis alkekengi L. var. franchetii (Mast.) Makino, a famous traditional Chinese food and herbal medicine, which has been widely used as heat-clearing and toxin-resolving medicine for the treatment of various inflammatory disease, such as cough, excessive phlegm, pharyngitis, sore throat, pemphigus, eczema, and jaundice.. We aimed to confirm the therapeutic effects of Physalin B on ulcerative colitis (UC) and enrich the further application of its traditional anti-inflammatory effect.. The anti-UC effects of Physalin B were evaluated in Balb/c mice with dextran sulfate sodium (DSS) induction. The body weight, colon length, disease activity index (DAI) and pathological changes of colon tissue were measured. Cytokine levels were detected by ELISA. NF-κB pathway and protein levels of related pathways, such as signal transducer and activator of transcription 3 (STAT3), β-arrestin1 and NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome were detected by western blot.. The dose of Physalin B that is not cytotoxic could dramatically reduce the levels of TNF-α, IL-6 and IL-1β on LPS-stimulated RAW 264.7 cells. Meanwhile, Physalin B dramatically improved clinical signs and symptoms, alleviated body weight loss and colon length shortening in DSS-induced UC mice. Meanwhile, Physalin B also dramatically relieved the pathological damage, reduced in the activity of myeloperoxidase (MPO) and reestablished the balance of pro-inflammatory cytokines. Physalin B could suppress DSS-induced activation of NF-κB. Moreover, Physalin B also markedly suppressed the activation of STAT3, β-arrestin1 and NLRP3 inflammasome.. This study preliminary confirmed the therapeutic effect of Physalin B on experimental acute UC mice and provided robust evidence support for the anti-inflammatory effect of Physalin B, suggesting that Physalin B might be a potential agent for the therapeutic efficacy on UC. Topics: Animals; Anti-Inflammatory Agents; beta-Arrestin 1; Colitis, Ulcerative; Colon; Cytokines; Dextran Sulfate; Disease Models, Animal; Inflammasomes; Inflammation Mediators; Macrophages; Male; Mice; Mice, Inbred BALB C; NF-kappa B; NLR Family, Pyrin Domain-Containing 3 Protein; RAW 264.7 Cells; Secosteroids; Signal Transduction; STAT3 Transcription Factor | 2020 |
Antinociceptive properties of physalins from Physalis angulata.
Pain is the most common reason a patient sees a physician. Nevertheless, the use of typical painkillers is not completely effective in controlling all pain syndromes; therefore further attempts have been made to develop improved analgesic drugs. The present study was undertaken to evaluate the antinociceptive properties of physalins B (1), D (2), F (3), and G (4) isolated from Physalis angulata in inflammatory and centrally mediated pain tests in mice. Systemic pretreatment with 1-4 produced dose-related antinociceptive effects on the writhing and formalin tests, traditional screening tools for the assessment of analgesic drugs. On the other hand, only 3 inhibited inflammatory parameters such as hyperalgesia, edema, and local production of TNF-α following induction with complete Freund's adjuvant. Treatment with 1, 3, and 4 produced an antinociceptive effect on the tail flick test, suggesting a centrally mediated antinociception. Reinforcing this idea, 2-4 enhanced the mice latency reaction time during the hot plate test. Mice treated with physalins did not demonstrate motor performance alterations. These results suggest that 1-4 present antinociceptive properties associated with central, but not anti-inflammatory, events and indicate a new pharmacological property of physalins. Topics: Analgesics; Animals; Anti-Inflammatory Agents; Disease Models, Animal; Edema; Freund's Adjuvant; Hyperalgesia; Male; Mice; Molecular Structure; Pain; Pain Measurement; Physalis; Secosteroids; Tumor Necrosis Factor-alpha | 2014 |