phosphothreonine has been researched along with Hyperglycemia* in 2 studies
2 other study(ies) available for phosphothreonine and Hyperglycemia
Article | Year |
---|---|
Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta.
The cardioprotective effect of opioids or glycogen synthase kinase (GSK) inhibitors given at reperfusion has not been investigated in diabetes models. Therefore, nondiabetic (NDBR) or streptozotocin-induced diabetic (DBR) rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. Groups of NDBR or DBR were administered either vehicle, morphine (0.3 mg/kg), or the GSK inhibitor SB216763 (0.6 mg/kg) 5 min before reperfusion. SB216763 (but not morphine) reduced infarct size in DBRs (44 +/- 1* and 55 +/- 2%, respectively), while both agents reduced infarct size in NDBRs versus untreated NDBRs or DBRs (44 +/- 3*, 42 +/- 3*, 60 +/- 2, and 56 +/- 2%, respectively, *P < 0.001). Morphine-induced phospho- (P-)GSK3beta was reduced 5 min after reperfusion in DBRs compared with NDBRs (0.83 +/- 0.29 and 1.94 +/- 0.12 [P < 0.05] pg/microg tissue, respectively). The GSK3beta mediators, P-Akt, P-extracellular signal-related kinase (ERK)1, and P-signal transducer and activator of transcription (STAT)3, were also significantly reduced in untreated DBR compared with NDBR rats. Morphine-induced elevations of P-Akt, P-ERK1, P-p70s6, P-janus-activated kinase-2, and P-STAT3 in NDBRs were also blunted in DBRs. H9C2 cells raised in 25 mmol/l compared with 5.56 mmol/l glucose media also demonstrated reduced morphine-induced P-GSK3beta, P-Akt, P-STAT3, and P-ERK1 after 15 min. Hence, acute GSK inhibition may provide a novel therapeutic strategy for diabetic patients during an acute myocardial infarction, whereas morphine is less effective due to signaling events that adversely affect GSK3beta. Topics: Animals; Blood Pressure; Cardiotonic Agents; Diabetes Mellitus, Experimental; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Heart Rate; Hyperglycemia; Janus Kinase 2; Male; Morphine; Phosphothreonine; Rats; Rats, Sprague-Dawley; STAT1 Transcription Factor; STAT3 Transcription Factor | 2007 |
Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation.
The hexosamine pathway has been implicated in the pathogenesis of diabetic complications. We determined first that hyperglycemia induced a decrease in glyceraldehyde-3-phosphate dehydrogenase activity in bovine aortic endothelial cells via increased production of mitochondrial superoxide and a concomitant 2.4-fold increase in hexosamine pathway activity. Both decreased glyceraldehyde-3-phosphate dehydrogenase activity and increased hexosamine pathway activity were prevented completely by an inhibitor of electron transport complex II (thenoyltrifluoroacetone), an uncoupler of oxidative phosphorylation (carbonyl cyanide m-chlorophenylhydrazone), a superoxide dismutase mimetic [manganese (III) tetrakis(4-benzoic acid) porphyrin], overexpression of either uncoupling protein 1 or manganese superoxide dismutase, and azaserine, an inhibitor of the rate-limiting enzyme in the hexosamine pathway (glutamine:fructose-6-phosphate amidotransferase). Immunoprecipitation of Sp1 followed by Western blotting with antibodies to O-linked GlcNAc, phosphoserine, and phosphothreonine showed that hyperglycemia increased GlcNAc by 1.7-fold, decreased phosphoserine by 80%, and decreased phosphothreonine by 70%. The same inhibitors prevented all these changes. Hyperglycemia increased expression from a transforming growth factor-beta(1) promoter luciferase reporter by 2-fold and increased expression from a (-740 to +44) plasminogen activator inhibitor-1 promoter luciferase reporter gene by nearly 3-fold. Inhibition of mitochondrial superoxide production or the glucosamine pathway prevented all these changes. Hyperglycemia increased expression from an 85-bp truncated plasminogen activator inhibitor-1 (PAI-1) promoter luciferase reporter containing two Sp1 sites in a similar fashion (3.8-fold). In contrast, hyperglycemia had no effect when the two Sp1 sites were mutated. Thus, hyperglycemia-induced mitochondrial superoxide overproduction increases hexosamine synthesis and O-glycosylation of Sp1, which activates expression of genes that contribute to the pathogenesis of diabetic complications. Topics: Acetylglucosamine; Animals; Cattle; Cells, Cultured; Glycosylation; Hexosamines; Hyperglycemia; Mitochondria; Phosphoserine; Phosphothreonine; Plasminogen Activator Inhibitor 1; Promoter Regions, Genetic; Sp1 Transcription Factor; Superoxides; Transforming Growth Factor beta | 2000 |